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Abstract
This paper is concerned with the numerical approximation of Fredholm integral equa-
tions of the second kind. A Nyström method based on the anti-Gauss quadrature
formula is developed and investigated in terms of stability and convergence in appro-
priate weighted spaces. The Nyström interpolants corresponding to the Gauss and
the anti-Gauss quadrature rules are proved to furnish upper and lower bounds for the
solution of the equation, under suitable assumptions which are easily verified for a
particular weight function. Hence, an error estimate is available, and the accuracy of
the solution can be improved by approximating it by an averaged Nyström interpolant.
The effectiveness of the proposed approach is illustrated through different numerical
tests.

Mathematics Subject Classification 65R20 · 65D30 · 42C05

1 Introduction

Let us consider the following Fredholm integral equation of the second kind

f (y) −
∫ 1

−1
k(x, y) f (x)w(x) dx = g(y), y ∈ [−1, 1], (1)
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700 P. Díaz de Alba et al.

where f is the unknown function, k and g are two given functions, and

w(x) = (1 − x)α(1 + x)β (2)

is the Jacobi weight with parameters α, β > −1.
Several numerical methods have been described for the numerical approximation

of the solution of Eq. (1) (collocationmethods, projectionmethods, Galerkinmethods,
etc.) and have been extensively investigated in terms of stability and convergence in
suitable function spaces, also according to the smoothness properties of the kernel k
and the right-hand side g; see [2,6,7,9,17,25,29–32].

Most of these methods are based on the approximation of the integral appearing in
(1) by means of the well-known Gauss quadrature formula, introduced by C. F. Gauss
at the beginning of the nineteenth century [10] and considered one of the most signif-
icant discoveries in the field of numerical integration and in all of numerical analysis.
As it is well known, it is an interpolatory formula having maximal algebraic degree of
exactness, it is stable and convergent, and it provides one of the most important appli-
cations of orthogonal polynomials. Gauss’s discovery inspired other contemporaries,
such as Jacobi and Christoffel, who developed Gauss’s method into new directions,
and Heun, who generalized Gauss’s idea to ordinary differential equations opening the
way to the discovery of Runge-Kutta methods. Since then, several other generaliza-
tions and extensions have been introduced, such as the Lobatto and Radau quadrature
formulae, Gauss-Kronrod quadrature rules, optimal rules with multiple nodes, the
anti-Gauss quadrature formula, etc. [11,18].

Gauss-Kronrod quadrature formulae were introduced in 1964 in order to econom-
ically estimate the error term for the n-point Gauss quadrature rule for the Legendre
weight. Their main advantage is that the degree of exactness is (at least) 3n + 1, by
means of 2n + 1 evaluations of the integrand function. However, they fail to exist for
some particular weight functions (Hermite and Laguerre measures, Gegenbauer and
Jacobi measures for certain values of the parameters) because some of the quadrature
nodes may be complex.

To overcome this problem, Laurie [18] constructed in 1996 an alternative interpo-
latory formula, the anti-Gauss quadrature rule. It always has positive coefficients and
distinct real nodes and is designed to have an error of the same magnitude as the error
of the Gauss formula and opposite in sign, when applied to polynomials of certain
degrees. Consequently, coupled to a Gauss rule, it provides a bound for the quadrature
error, while an average of the Gauss and anti-Gauss formulae sometimes produces
significantly more accurate results. In particular, it has been proved that for some
weight functions the averaged formula has a higher degree of exactness [21,23,34].
Several researchers investigated and generalized the anti-Gauss formula in relation to
the approximation of integrals; see [1,3,15,19,22,28,33].

This paper aims to take advantage of anti-Gauss formulae in the numerical solution
of a Fredholm integral equation of the second kind, including the case in which the
unknown solution may have algebraic singularities at the endpoints of the integration
interval.

Following [20], we develop a global approximation method of Nyström type for
Eq. (1) based on the anti-Gauss quadrature formula and we prove stability and con-
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Solution of second kind Fredholm integral… 701

vergence results by exploiting two novel properties of the nodes and weights of the
anti-Gauss rule. Under suitable assumptions, we show that the Nyström interpolants
based on the Gauss and the anti-Gauss formulae bracket the solution of the equation.
Such assumptions are not easily verified in general, but we prove that this happens
for a particular weight function, and we conjecture that this result can be extended to
a broad class of weight functions. The availability of upper and lower bounds for the
solution makes it possible to estimate the approximation error for a given number of
quadrature nodes, allowing one to improve the accuracy by refining the discretization,
if required, or accept the current approximation. In particular situations, the Nyström
interpolant obtained by averaging the two bounds produces much better results than
both the Gauss and the anti-Gauss approximations.

The paper is structured as follows. Section 2 provides preliminary definitions,
notations, and well-known results concerning orthogonal polynomials, and Gauss
and anti-Gauss quadrature formulae. Section 3 contains new theoretical results on the
nodes and coefficients of the anti-Gauss quadrature rule, and provides an error estimate
in suitable weighted spaces. Section 4 introduces a numerical method to approximate
the solution of the integral equation, whose accuracy is investigated in Sect. 5 through
some numerical tests. Finally, the “Appendix” reports the proof of a rather technical
Lemma.

2 Mathematical preliminaries

2.1 Function spaces

Let us denote by Cq([−1, 1]), q = 0, 1, . . ., the set of all continuous functions
on [−1, 1] having q continuous derivatives, and by L p the space of all measurable
functions f such that

‖ f ‖p =
(∫ 1

−1
| f (x)|p dx

) 1
p

< ∞, 1 ≤ p < ∞.

Let us introduce a Jacobi weight

u(x) = (1 − x)γ (1 + x)δ, (3)

with γ, δ > −1/p. Then, f ∈ L p
u if and only if f u ∈ L p, and we endow the space

L p
u with the norm

‖ f ‖L p
u

= ‖ f u‖p =
(∫ 1

−1
| f (x)u(x)|p dx

) 1
p

< ∞, 1 ≤ p < ∞.

If p = ∞, the space of weighted continuous functions is defined as

L∞
u =

{
f ∈ C0((−1, 1)) : lim

x→±1
( f u)(x) = 0

}
,
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702 P. Díaz de Alba et al.

in the case when γ, δ > 0. If γ = 0 (respectively δ = 0) L∞
u consists of all functions

which are continuous on (−1, 1] (respectively [−1, 1)) and such that lim
x→−1

( f u)(x) =
0 (respectively lim

x→1
( f u)(x) = 0). Moreover, if γ = δ = 0 we set L∞

u = C0([−1, 1]).
We equip the space L∞

u with the weighted uniform norm

‖ f ‖L∞
u

= ‖ f u‖∞ = max
x∈[−1,1] |( f u)(x)|,

and we remark that L∞
u endowed with such a weighted norm is a Banach space.

The definition of L∞
u ensures the validity of the Weierstrass theorem. Indeed, for

any polynomial P of degree n we have

‖( f − P)u‖∞ ≥ |( f u)(±1)|.

For smoother functions, we introduce the weighted Sobolev–type space

Wp
r (u) =

{
f ∈ L p

u : ‖ f ‖Wp
r (u) = ‖ f u‖p + ‖ f (r)ϕr u‖p < ∞

}
,

where 1 ≤ p ≤ ∞, r = 1, 2, . . ., and ϕ(x) = √
1 − x2. If γ = δ = 0, we set

L∞ := L∞
1 and Wp

r := Wp
r (1).

2.2 Monic orthogonal polynomials

Let {p j }∞j=0 be the sequence ofmonic orthogonal polynomials on (−1, 1)with respect
to the Jacobi weight defined in (2), i.e.,

〈pi , p j 〉w =
∫ 1

−1
pi (x)p j (x)w(x) dx =

{
0, j �= i,

c j , j = i,
(4)

where

c j = 22 j+α+β+1

2 j + α + β + 1
· Γ ( j + α + 1)Γ ( j + β + 1)

j ! Γ ( j + α + β + 1)

(
2 j + α + β

j

)−2

, (5)

and Γ is the Gamma function. It is well known (see, for instance, [12]) that such a
sequence satisfies the following three-term recurrence relation

{
p−1(x) = 0, p0(x) = 1,

p j+1(x) = (x − α j )p j (x) − β j p j−1(x), j = 0, 1, 2, . . . ,
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where the coefficients α j and β j are given by

α j = β2 − α2

(2 j + α + β)(2 j + α + β + 2)
, j ≥ 0, (6)

β0 = 2α+β+1Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
, (7)

β j = 4 j( j + α)( j + β)( j + α + β)

(2 j + α + β)2((2 j + α + β)2 − 1)
, j ≥ 1. (8)

Equivalently, by virtue of the Stieltjes process, the recursion coefficients can bewritten
as

α j = 〈xp j , p j 〉w
〈p j , p j 〉w , j ≥ 0, (9)

β0 = 〈p0, p0〉w, (10)

β j = 〈p j , p j 〉w
〈p j−1, p j−1〉w , j ≥ 1. (11)

2.3 Quadrature formulae

In this subsection, we recall two quadrature rules which will be useful for our aims.
The first one is the classical Gauss-Jacobi quadrature rule [10], whereas the second
one is the anti-Gauss quadrature rule, developed by Laurie in [18]; see also [19].

2.3.1 The Gauss-Jacobi quadrature formula

Let f be defined in (−1, 1), w be the Jacobi weight given in (2), and let us express
the integral

I ( f ) =
∫ 1

−1
f (x)w(x) dx (12)

as

I ( f ) =
n∑
j=1

λ j f (x j ) + en( f ) =: Gn( f ) + en( f ), (13)

where the sum Gn( f ) is the well-known n-point Gauss-Jacobi quadrature rule and
en( f ) stands for the quadrature error. The quadrature nodes {x j }nj=1 are the zeros of
the Jacobi orthogonal polynomial pn(x), and the weights or coefficients {λ j }nj=1 are
the so-called Christoffel numbers, defined as (see [20, p. 235])

λ j =
∫ 1

−1
	 j (w, x)w(x) dx = Γ (n + α + 1)Γ (n + β + 1)

n! Γ (n + α + β + 1)

2α+β+1

(1 − x2j )
[
p′
n(x j )

]2 ,
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704 P. Díaz de Alba et al.

with

	 j (w, x) = pn(x)

p′
n(x j )(x − x j )

.

The Gauss-Jacobi quadrature rule is an interpolatory formula having optimal alge-
braic degree of exactness 2n − 1, namely

I (P) = Gn(P), or equivalently en(P) = 0, ∀P ∈ P2n−1, (14)

where P2n−1 is the set of the algebraic polynomials of degree at most 2n − 1, the
coefficients λ j are all positive, and the formula is stable in the sense of [20, Definition
5.1.1.], as

‖Gn‖∞ = sup
‖ f ‖∞=1

|Gn( f )| =
n∑
j=1

λ j =
∫ 1

−1
w(x) dx < ∞.

Moreover, the above condition, together with (14), guarantees the convergence of the
quadrature rule (see, for instance, [27,35]), that is

lim
n→∞ en( f ) = 0.

If f ∈ C2n([−1, 1]), the error en( f ) of the Gauss quadrature formula has the
following analytical expression [5]

en( f ) = f (2n)(ξ)

(2n)!
∫ 1

−1

n∏
j=1

(x − x j )
2w(x) dx,

where ξ ∈ (−1, 1) depends on n and f .
If we consider functions belonging to the Sobolev-type spacesW1

r (w), it is possible
to estimate en( f ) (see, e.g., [20]) in terms of the weighted error of best polynomial
approximation, i.e.,

En( f )w,1 = inf
P∈Pn

‖( f − P)w‖1.

Indeed,

|en( f )| ≤ C
2n − 1

E2n−2( f
′)ϕw,1, (15)

where C �= C(n, f ) and ϕ(x) = √
1 − x2. Here and in the sequel, C denotes a positive

constant which has a different value in different formulas. We write C �= C(a, b, . . .)
in order to say that C is independent of the parameters a, b, . . ., and C = C(a, b, . . .)
to say that C depends on them.

123



Solution of second kind Fredholm integral… 705

About the computation of the nodes x j and weights λ j of the Gauss-Jacobi quadra-
ture rule, in 1962 Wilf observed (see also [14]) that they can be obtained by solving
the eigenvalue problem for the Jacobi matrix of order n

Jn =

⎡
⎢⎢⎢⎢⎢⎢⎣

α0
√

β1√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1√

βn−1 αn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

associated to the coefficientsα j andβ j defined in (6) and (8), respectively. Specifically,
the nodes x j are the eigenvalues of the symmetric tridiagonalmatrix Jn , and theweights
are determined as

λ j = β0 v2j,1,

where β0 is defined as in (7) and v j,1 is the first component of the normalized eigen-
vector corresponding to the eigenvalue x j .

2.3.2 The anti-Gauss quadrature formula

Let us approximate the integral I ( f ) defined in (12) by

I ( f ) =
n+1∑
j=1

λ̃ j f (x̃ j ) + ẽn+1( f ) =: G̃n+1( f ) + ẽn+1( f ), (16)

where G̃n+1( f ) is the n + 1 point anti-Gauss quadrature formula and ẽn+1( f ) is the
corresponding remainder term.

Such a rule is an interpolatory formula designed to have the samedegree of exactness
of the Gauss-Jacobi formula Gn( f ) in (13) and an error of the same magnitude and
opposite in sign to the error of Gn( f ), when applied to polynomials of degree at most
2n + 1, namely

I ( f ) − G̃n+1( f ) = −(I ( f ) − Gn( f )), for all f ∈ P2n+1,

from which

G̃n+1( f ) = 2I ( f ) − Gn( f ), for all f ∈ P2n+1. (17)

This quadrature formula was developed with the aim to estimate the error term
en( f ) of the Gauss rule Gn( f ), especially when the Gauss-Kronrod formula fails
in this intent. This happens, for instance, when we deal with a Jacobi weight with
parameters α and β such that min{α, β} ≥ 0 and max{α, β} > 5/2; see [26].
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706 P. Díaz de Alba et al.

If f is a polynomial of degree at most 2n + 1, the Gauss and the anti-Gauss
quadrature rules provide an interval containing the exact integral I ( f ), an interval
which gets smaller as the degree of the polynomial n increases. Indeed, it either holds

Gn( f ) ≤ I ( f ) ≤ G̃n+1( f ) or G̃n+1( f ) ≤ I ( f ) ≤ Gn( f ). (18)

If, on the contrary, f is a general function, it is still possible to prove, under suitable
assumptions (see [4, Equations (26)–(28)], [8, p. 1664], and [28, Theorem 3.1]) that
the Gauss and the anti-Gauss quadrature rules bracket the integral I ( f ), and that the
error of the averaged Gaussian quadrature formula [18]

GAvG
2n+1( f ) = Gn( f ) + G̃n+1( f )

2
, (19)

is bounded by

∣∣∣I ( f ) − GAvG
2n+1( f )

∣∣∣ ≤ 1

2
|Gn( f ) − G̃n+1( f )|.

The above bound allows one to choose the integer n so that the averaged Gaussian
formula reaches a prescribed accuracy. It is also worth noting that, while the averaged
rule (19) has, in general, degree of exactness 2n+1, under particular conditions it has
been proved to have degree of exactness 4n − 2	 + 2 for a fixed integer (and usually
small) value of 	 [21,23,34].

An anti-Gauss quadrature formula can easily be constructed [18]. The key of such
a construction is relation (17), which characterizes the anti-Gauss quadrature formula
as an n+1 points Gauss rule for the functional I( f ) = 2I ( f )−Gn( f ). If q ∈ P2n−1,
by virtue of (14), then,

I(q) = I (q), (20)

while for the Jacobi polynomial pn and any integrable function f , it holds

I( f p2n) = 2I ( f p2n). (21)

By using (20) and (21) we can compute the recursion coefficients {α̃ j }nj=0 and {β̃ j }nj=1
for the recurrence relation

{
p̃−1(x) = 0, p̃0(x) = 1,

p̃ j+1(x) = (x − α̃ j ) p̃ j (x) − β̃ j p̃ j−1(x), j = 0, 1, . . . , n,

defining the sequence { p̃ j }n+1
j=0 of monic polynomials orthogonal with respect to the

functional I.
The following theorem holds.
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Solution of second kind Fredholm integral… 707

Theorem 1 The recursion coefficients for the polynomials orthogonal with respect to
the functional I are related to the recursion coefficients for the Jacobi polynomials as
follows

α̃ j = α j , j = 0, . . . , n,

β̃ j = β j , j = 0, . . . , n − 1,

β̃n = 2βn .

Proof The theorem was proved by Laurie in [18]. For its relevance, we report here the
scheme of the proof.

The fact that α̃0 = α0 and β̃0 = β0 is trivial. Then, the recurrence relations for
the two families of orthogonal polynomials implies that p̃1 = p1. Let us proceed by
induction. Let p̃ j = p j for any 1 ≤ j ≤ n − 1. Taking into account (9), (11), and
(20), we have

α̃ j = I(x p̃2j )

I( p̃2j )
= I(xp2j )

I(p2j )
= I (xp2j )

I (p2j )
= α j ,

β̃ j = I( p̃2j )

I( p̃2j−1)
= I(p2j )

I(p2j−1)
= I (p2j )

I (p2j−1)
= β j ,

so that p̃ j+1 = p j+1. In particular, p̃n = pn . To conclude the proof, by applying (21)
and again (9), (11), and (20), we obtain

α̃n = I(x p̃2n)

I( p̃2n)
= I(xp2n)

I(p2n)
= 2I (xp2n)

2I (p2n)
= αn,

β̃n = I( p̃2n)

I( p̃2n−1)
= I(p2n)

I(p2n−1)
= 2I (p2n)

I (p2n−1)
= 2βn .

��
The previous theorem implies that the sequence of polynomials { p̃ j }n+1

j=0 is defined
by

{
p̃ j (x) = p j (x), j = 0, 1, . . . , n,

p̃n+1(x) = (x − αn)pn(x) − 2βn pn−1(x) = pn+1(x) − βn pn−1(x).
(22)

Since the polynomials { p̃ j }n+1
j=0 satisfy a recurrence relation, the nodes x̃ j and the

weights λ̃ j of the associated anti-Gauss quadrature formula can be computed by solv-
ing the eigenvalue problem for the modified Jacobi matrix of order n + 1

J̃n+1 =
[

Jn
√
2βnen√

2βneTn αn

]
,
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708 P. Díaz de Alba et al.

with en = (0, 0, . . . , 1)T ∈ R
n . In fact, the n + 1 nodes are the eigenvalues of the

above matrix and the weights are determined as

λ̃ j = β0 ṽ2j,1,

where β0 is defined by (7) and ṽ j,1 is the first component of the eigenvector associated
to the eigenvalue x̃ j .

The anti-Gauss quadrature rule has nice properties: the weights {λ̃ j }n+1
j=1 are strictly

positive and the nodes {x̃ j }n+1
j=1 interlace with the Gauss nodes {x j }nj=1, i.e.,

x̃1 < x1 < x̃2 < · · · < x̃n < xn < x̃n+1. (23)

Thus, we can deduce that the anti-Gauss nodes x̃ j with j = 2, . . . , n, belong to the
interval (−1, 1), whereas the first and the last node may be outside of it. Specifically,
it was proved in [18] that

x̃1 ∈ [−1, 1] if and only if
pn+1(−1)

pn−1(−1)
≥ βn,

x̃n+1 ∈ [−1, 1] if and only if
pn+1(1)

pn−1(1)
≥ βn .

More in detail [18, Theorem 4], if the following conditions are satisfied

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α ≥ − 1
2 ,

β ≥ − 1
2 ,

(2α + 1)(α + β + 2) + 1
2 (α + 1)(α + β)(α + β + 1) ≥ 0,

(2β + 1)(α + β + 2) + 1
2 (β + 1)(α + β)(α + β + 1) ≥ 0,

(24)

then all the anti-Gauss nodes belong to [−1, 1]. From now on, we will assume that
the parameters of the weight function w satisfy (24).

Let us remark that some classical Jacobi weights, such as the Legendre weight
(α = β = 0) and the Chebychev weights of the first (α = β = −1/2), second
(α = β = 1/2), third (α = −1/2, β = 1/2), and fourth (α = 1/2, β = −1/2) kind,
satisfy conditions (24).

Let us also emphasize that the nodes might include the endpoints±1. This happens,
for instance, with the Chebychev weights of the first (x̃1 = −1 and x̃n+1 = 1), third
(x̃n+1 = 1), and fourth (x̃1 = −1) kind.

The next theorem defines the anti-Gauss rule for Chebychev polynomials of the
first kind. It will be useful in Sect. 4. Let us denote by

T0(x) = 1, Tn(x) = cos(n arccos(x)) = 2n−1 pn(x), n ≥ 1,

the trigonometric form of first kind Chebychev polynomial of degree n, where pn(x)
is the monic polynomial of the same degree; see Sect. 2.2.
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Solution of second kind Fredholm integral… 709

Theorem 2 If α = β = −1/2, then the nodes and the weights for the anti-Gauss
quadrature formula (16) are given by

x̃ j = cos
(
(n − j + 1)

π

n

)
, j = 1, . . . , n + 1,

λ̃ j =

⎧⎪⎨
⎪⎩

π

2n
, j = 1, n + 1

π

n
, j = 2, ..., n.

Proof From recurrence (22), being βn = 1
4 , we have

p̃n+1(x) = 2−n [Tn+1(x) − Tn−1(x)
] = −21−nUn−1(x) · (1 − x2),

where

Un−1(x) = sin(n arccos(x))√
1 − x2

, n = 1, 2, . . . ,

denote the Chebychev polynomials of the second kind. This proves the expression for
the nodes.

Now, let us apply (16) to a first kind Chebychev polynomial of degree k =
0, 1, . . . , n. We have

G̃n+1(Tk) =
n+1∑
j=1

λ̃ j cos(kθ̃ j ) = πδk,0,

where δk,0 is the Kronecker symbol and θ̃ j = (n − j + 1)π
n . Multiplying both terms

by cos(kθ̃r ), and summing over k, we obtain

n+1∑
j=1

λ̃ j

n∑
k=0

′′ cos(kθ̃ j ) cos(kθ̃r ) = π

n∑
k=0

′′δk,0 cos(kθ̃r ),

where the double prime means that the first and the last terms of the summation are
halved. The expression for the weights follows from the trigonometric identity

n∑
k=0

′′ cos(kθ̃ j ) cos(kθ̃r ) =

⎧⎪⎨
⎪⎩
n, j = r = 1, n + 1,
1
2n, j = r = 2, . . . , n,

0 j �= r .

��
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710 P. Díaz de Alba et al.

3 Convergence results for the anti-Gauss rule in weighted spaces

This section aims to provide an error estimate for the anti-Gauss rule in weighted
Sobolev spaces. Such an estimate, which will be useful for our aims, is similar to
inequality (15); see (28) in Proposition 1. To prove it, we need two additional properties
of the nodes and weights appearing in (16), which are stated in the following lemma.

Let A, B > 0 be quantities depending on some parameters; then, we write A ∼ B
if there exists a constant 1 < C �= C(A, B) such that B

C ≤ A ≤ CB, for any value of
the parameters.

Lemma 1 Let {x̃ j }n+1
j=1 and {λ̃ j }n+1

j=1 be the quadrature nodes and the coefficients,

respectively, of the anti-Gauss quadrature formula G̃n+1( f ) defined in (16). Then,
setting Δx̃ j = x̃ j+1 − x̃ j , for j = 1, . . . , n, we have

Δx̃ j ≤ Cϕ(x̃ j )

n
, (25)

where ϕ(x) = √
1 − x2 and C �= C(n, j). Moreover, if

Δx̃ j ∼ ϕ(x̃ j )

n
, (26)

holds, then

λ̃ j ∼ w(x̃ j ) ϕ(x̃ j )Δx̃ j , (27)

where the constants in ∼ are independent of n and j .

Proof See “Appendix”. ��
We were not able to prove that (26) is always true, but we conjecture it is. Indeed,

the nodes x̃ j interlace with the zeros of the Jacobi polynomial of degree n; see (23).
Since (26) holds for such zeros, the anti-Gauss nodes should have the same asymptotic
distribution. The validity of (26) would imply that the nodes {x̃ j }n+1

j=1 have an arc sine

distribution [20], that is, setting x̃ j = cos θ̃ j , it holds

θ̃ j − θ̃ j+1 ∼ 1

n
.

Relations (26) and (27) are essential in the proof of next proposition.

Proposition 1 Let f ∈ W1
r (w), with r ≥ 1. If (26) holds, then

|ẽn+1( f )| ≤ C
2n + 1

E2n( f
′)ϕw,1, (28)

where ϕ(x) = √
1 − x2 and C �= C(n, f ).

Proof The proof can be obtained, mutatis mutandis, from the proof of [20, Theo-
rem 5.1.8] by using Lemma 1. ��
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4 The numerical method

We propose a solution method for a second kind Fredholm integral equation, based
on the quadrature rules introduced in Sect. 2. To this end, we rewrite Eq. (1) in the
operatorial form

(I − K ) f = g, (29)

where I is the identity operator and

(K f )(y) =
∫ 1

−1
k(x, y) f (x)w(x) dx .

Let us approximate the integral operator K bymeans of theGauss-Jacobi quadrature
formula (13)

(Kn f )(y) =
n∑
j=1

λ j k(x j , y) f (x j ), (30)

and by the anti-Gauss quadrature rule (16)

(K̃n+1 f )(y) =
n+1∑
j=1

λ̃ j k(x̃ j , y) f (x̃ j ). (31)

Then, we consider the following equations

(I − Kn) fn = g, (32)

(I − K̃n+1) f̃n+1 = g, (33)

where fn and f̃n+1 are two unknown functions.
By evaluating (32) at the nodes {xi }ni=1, andmultiplying the equations by theweight

function u evaluated at xi (see (3)), we obtain the system

n∑
j=1

[
δi, j − λ j

u(xi )

u(x j )
k(x j , xi )

]
a j = u(xi )g(xi ), i = 1, . . . , n, (34)

where a j = u(x j ) fn(x j ) are the entries of the solution vector a.
Analogously, a simple collocation of Eq. (33) at the knots {x̃i }n+1

i=1 , and a multipli-
cation of both sides by u(x̃i ), leads to the square system

n+1∑
j=1

[
δi, j − λ̃ j

u(x̃i )

u(x̃ j )
k(x̃ j , x̃i )

]
ã j = u(x̃i ) g(x̃i ), i = 1, . . . , n + 1, (35)
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where ã j = u(x̃ j ) f̃n+1(x̃ j ) are the entries of the solution vector ã. A compact repre-
sentation of systems (34) and (35) is given by

(In − DnKnD−1
n )a = h, (In+1 − D̃n+1K̃n+1D̃−1

n+1)ã = h̃, (36)

where (Kn)i j = λ j k(x j , xi ), Dn = diag(u(x1), . . . , u(xn)), h = (h1, . . . , hn)T with
hi = u(xi )g(xi ); K̃n+1, D̃n+1, and h̃ are similarly defined.

As remarked at the end of Sect. 2.3.2, in some situations the anti-Gauss nodes might
include ±1. To avoid that (35) looses significance, in the weight u(x) we set γ = 0
whenever x̃n+1 = 1, and δ = 0 when x̃1 = −1.

Once systems (34) and (35) have been solved, we can compute the corresponding
weighted Nyström interpolants

fn(y) =
n∑
j=1

λ j

u(x j )
k(x j , y) a j + g(y), (37)

f̃n+1(y) =
n+1∑
j=1

λ̃ j

u(x̃ j )
k(x̃ j , y) ã j + g(y). (38)

Thus, if systems (34) and (35) have a unique solution for n large enough, then
(37) and (38) provide a natural interpolation formula for obtaining fn(y) and f̃n+1(y)
for each y ∈ [−1, 1]. Conversely, if (37)–(38) are solutions of (32)–(33), then the
coefficients a j and ã j are solutions of systems (34) and (35), respectively.

This is the well-known Nyström method developed for the first time in 1930 [24]
and widely analyzed in terms of convergence and stability in different function spaces,
according to the smoothness properties of the known functions; see [2,6,9,13,17].

In the next theorem, by exploiting the results introduced in Sect. 3, we extend the
well-known stability and convergence results, valid for the Nyström method based on
the Gauss rule [6,9,20], to the Nyström method based on the anti-Gauss quadrature
formula.

Theorem 3 Assume that Ker{I − K } = {0} in L∞
u with u(x) = (1 − x)γ (1 + x)δ ,

0 ≤ γ < α + 1, 0 ≤ δ < β + 1, (39)

and let f ∗ be the unique solution of Eq. (29) for a given right-hand side g ∈ L∞
u .

Moreover let us assume that, for an integer r ,

g ∈ W∞
r (u), sup

|x |≤1
‖k(x, ·)‖W∞

r (u) < ∞, sup
|y|≤1

u(y)‖k(·, y)‖W∞
r

< ∞.

Then, for n sufficiently large, systems (34) and (35) are uniquely solvable.

If An = In − DnKnD−1
n and Ãn+1 = In+1 − D̃n+1K̃n+1D̃−1

n+1 are the matrices of
systems (36), then

cond∞(An) ≤ C, cond∞( Ãn+1) ≤ C,
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where cond∞(A) denotes the condition number of A in the matrix ∞-norm and C is
independent of n.

Finally, if (26) holds, the following estimates hold true

∥∥[ f ∗ − fn]u
∥∥∞ = O

(
1

nr

)
,

∥∥[ f ∗ − f̃n+1]u
∥∥∞ = O

(
1

nr

)
, (40)

where the constants in O are independent of n and f ∗.

Proof The proof follows the line of the corresponding theorem for Gauss quadrature
[9, Theorem 3.1] . ��

According to the previous theorem, both Nyström interpolants (37) and (38) furnish
a good approximation for the unique solution f ∗ of Eq. (29).

At this point, our goal is to prove that the unique solution f ∗ of the equation is
bracketed by the two Nyström interpolants for any y ∈ [−1, 1], namely

fn(y) ≤ f ∗(y) ≤ f̃n+1(y), or f̃n+1(y) ≤ f ∗(y) ≤ fn(y). (41)

This allows us to obtain a better approximation of the solution by the averagedNyström
interpolant

fn(y) = 1

2
[ fn(y) + f̃n+1(y)], y ∈ [−1, 1]. (42)

Let us note that to prove (41), taking into account (29), (32), and (33), it is sufficient
to prove that the discrete operators Kn fn and K̃n+1 f̃n+1 provide an interval containing
the exact value of the integral operator K , namely either

(Kn fn)(y) ≤ (K f ∗)(y) ≤ (K̃n+1 f̃n+1)(y), (43)

or

(K̃n+1 f̃n+1)(y) ≤ (K f ∗)(y) ≤ (Kn fn)(y). (44)

As already mentioned in Sect. 2.3.2, inequalities similar to (43) and (44) have
already been proved for the integral I ( f ). Here the situation is different, as the quadra-
ture formulae do not act on a fixed function f , as in (18), but on its approximations.
Therefore, before proving (43) and (44), where such approximations fn and f̃n+1
appear, we need the following further result.

Theorem 4 Let us express the integrand function k(x, y) f ∗(x), and their approx-
imations k(x, y) fn(x) and k(x, y) f̃n+1(x) in terms of Jacobi polynomials {πi }
orthonormal with respect to weight (2), as follows
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k(x, y) f ∗(x) =
∞∑
i=0

αi (y)πi (x), αi (y) = (K ( f ∗πi ))(y), (45)

k(x, y) fn(x) =
∞∑
i=0

αn
i (y)πi (x), αn

i (y) = (K ( fnπi ))(y), (46)

k(x, y) f̃n+1(x) =
∞∑
i=0

α̃n+1
i (y)πi (x), α̃n+1

i (y) = (K ( f̃n+1πi ))(y). (47)

Then, under the assumption of Theorem 3,

lim
n→∞

∥∥[αn
i − αi ]u

∥∥∞ = 0 and lim
n→∞

∥∥[α̃n+1
i − αi ]u

∥∥∞ = 0. (48)

Proof We have

∣∣[αi (y) − αn
i (y)]u(y)

∣∣ ≤ u(y)
∫ 1

−1
|k(x, y)| ∣∣[ f ∗(x) − fn(x)]u(x)

∣∣ |πi (x)|w(x)

u(x)
dx,

and then

∥∥[αi − αn
i ]u
∥∥∞ ≤ sup

y
u(y)‖k(·, y)‖∞

∥∥[ f ∗ − fn]u
∥∥∞

∫ 1

−1
|πi (x)|w(x)

u(x)
dx

≤ C ∥∥[ f ∗ − fn]u
∥∥∞,

which implies the first relation in (48). We remark that condition (39) ensures the
boundedness of the integral in the right-hand side. A similar procedure is applied to
show the second relation in (48). ��

In the following theorem, we give a sufficient condition for the bracketing (41) of
the solution to hold. The condition is similar to those given in [4, Equations (26)–
(28)], [8, p. 1664], and [28, Theorem 3.1] in different contexts. Such a condition is not
easily verified in practice, without an assumption on the asymptotic behavior of the
Gauss and anti-Gauss quadrature formulae, when applied to polynomials of increasing
degree. We will later prove a stronger result, valid for a particular weight function.

Theorem 5 Let the assumptions of Theorem 3 be satisfied, so that (48) is verified.
Moreover, let us assume that, for any y ∈ [−1, 1], the terms {αi (y)} introduced in
(45) converge to zero sufficiently rapidly, and the following relation holds true

max

{∣∣∣∣∣
∞∑

i=2n+2

αi (y)Gn(πi )

∣∣∣∣∣ ,
∣∣∣∣∣

∞∑
i=2n+2

αi (y)G̃n+1(πi )

∣∣∣∣∣
}

<

∣∣∣∣∣
2n+1∑
i=2n

αi (y)Gn(πi )

∣∣∣∣∣ , (49)

for n large enough. Then, either

fn(y) ≤ f ∗(y) ≤ f̃n+1(y), or f̃n+1(y) ≤ f ∗(y) ≤ fn(y).
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Proof Taking into account (29), (32), and (33), it is sufficient to prove either (43)
or (44). Let {πi } denote the Jacobi orthonormal polynomials. Then, by (45), we can
assert

(K f ∗)(y) =
∫ 1

−1
k(x, y) f ∗(x)w(x) dx =

∞∑
i=0

αi (y)
∫ 1

−1
πi (x)w(x) dx

= α0(y)
∫ 1

−1
π0(x)w(x) dx = √β0 α0(y).

(50)

Moreover, by (30) and (46), we have

(Kn fn)(y) =
n∑
j=1

λ j k(x j , y) fn(x j ) =
∞∑
i=0

αn
i (y)

n∑
j=1

λ jπi (x j )

=
2n−1∑
i=0

αn
i (y)Gn(πi ) +

2n+1∑
i=2n

αn
i (y)Gn(πi ) +

∞∑
i=2n+2

αn
i (y)Gn(πi ).

In the first summation πi ∈ P2n−1, so by the exactness of the Gauss rule and by (4),
we have

(Kn fn)(y) = √β0 αn
0 (y) +

2n+1∑
i=2n

αn
i (y)Gn(πi ) +

∞∑
i=2n+2

αn
i (y)Gn(πi ).

Hence, by (50) we have

(Kn fn)(y) − (K f ∗)(y) =√β0 [αn
0 (y) − α0(y)]

+
2n+1∑
i=2n

αn
i (y)Gn(πi ) +

∞∑
i=2n+2

αn
i (y)Gn(πi ).

(51)

Similarly, by (31) and (47), we have

(K̃n+1 f̃n+1)(y) =
n+1∑
j=1

λ̃ j k(x̃ j , y) f̃n+1(x̃ j )

=
∞∑
i=0

α̃n+1
i (y)

n+1∑
j=1

λ̃ jπi (x̃ j ) =
∞∑
i=0

α̃n+1
i (y)G̃n+1(πi ),
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from which, by applying (17),

(K̃n+1 f̃n+1)(y) =
2n+1∑
i=0

α̃n+1
i (y)(2I − Gn)(πi ) +

∞∑
i=2n+2

α̃n+1
i (y)G̃n+1(πi ). (52)

Let us now focus on the first term in the right-hand side. By the exactness of the Gauss
quadrature rule and the orthogonality of polynomials πi (x), we can write

2n+1∑
i=0

α̃n+1
i (y)(2I − Gn)(πi ) =

2n−1∑
i=0

α̃n+1
i (y)I (πi ) −

2n+1∑
i=2n

α̃n+1
i (y)Gn(πi )

= √β0 α̃n+1
0 (y) −

2n+1∑
i=2n

α̃n+1
i (y)Gn(πi ).

By replacing this equality in (52), and taking (50) into account, we have

(K̃n+1 f̃n+1)(y) − (K f ∗)(y) = √β0 [α̃n+1
0 (y) − α0(y)]

−
2n+1∑
i=2n

α̃n+1
i (y)Gn(πi ) +

∞∑
i=2n+2

α̃n+1
i (y)G̃n+1(πi ).

(53)

For n sufficiently large, by using (48) fromTheorem4, equalities (51) and (53) become

(Kn fn)(y) − (K f ∗)(y) =
2n+1∑
i=2n

αi (y)Gn(πi ) +
∞∑

i=2n+2

αi (y)Gn(πi ) + εn,

(K̃n+1 f̃n+1)(y) − (K f ∗)(y) = −
2n+1∑
i=2n

αi (y)Gn(πi ) +
∞∑

i=2n+2

αi (y)G̃n+1(πi ) + ε̃n,

where εn → 0 and ε̃n → 0 as n → ∞.
Now, by the assumption (49), both

sign
(
(Kn fn)(y) − (K f ∗)(y)

)
= sign

(
2n+1∑
i=2n

αi (y)Gn(πi )

)

and

sign
(
(K̃n+1 f̃n+1)(y) − (K f ∗)(y)

)
= sign

(
−

2n+1∑
i=2n

αi (y)Gn(πi )

)

hold, which shows that either (43) or (44) are satisfied. ��
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We now consider the special case of Chebychev polynomials of the first kind, and
show that in this case assumption (49) becomes a much simpler one.

Corollary 1 Under the assumptions of Theorem 5, if α = β = − 1
2 in (2) and the

inequality

max

{∣∣∣∣∣
∞∑
k=2

(−1)kα2nk(y)

∣∣∣∣∣ ,
∣∣∣∣∣

∞∑
k=2

α2nk(y)

∣∣∣∣∣
}

< |α2n(y)| , (54)

holds for n large enough, then either

fn(y) ≤ f ∗(y) ≤ f̃n+1(y), or f̃n+1(y) ≤ f ∗(y) ≤ fn(y).

Proof For the Chebychev polynomials of the first kind, we have β0 = π and ci =
21−2iπ , i ≥ 1; see [12].

To begin with, Gn(π0) = G̃n+1(π0) = √
π . Let us initially consider the first

summation in (49). From the expression of the nodes and weights for the Gauss-
Chebychev quadrature formula, we can write

Gn(πi ) = 1

2i−1√ci

n∑
j=1

π

n
cos

i(2 j − 1)π

2n
=

√
2π

n

n∑
j=1

cos
i(2 j − 1)π

2n
.

If i is not a multiple of 2n, [16, Formula 1.342.4] implies

Gn(πi ) =
√
2π

2n
sin(iπ) · csc iπ

2n
= 0.

On the contrary, by applying standard trigonometric identities, we obtain

Gn(π2nk) = (−1)k
√
2π, k = 1, 2, . . . .

Now, let us consider the second summation in (49). For i ≥ 1, from Theorem 2 it
follows that

G̃n+1(πi ) = 1

2i−1√ci

⎡
⎣ π

2n
+

n∑
j=2

π

n
cos

i(n − j + 1)π

n
+ (−1)i

π

2n

⎤
⎦

=
√
2π

n

⎡
⎣1 + (−1)i

2
+

n−1∑
j=1

cos
i jπ

n

⎤
⎦ .

It is immediate to verify that G̃n+1(πi ) = 0 when i is odd. For i even and not multiple
of 2n, from the identity
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n−1∑
j=1

cos
i jπ

n
= −1,

it follows that G̃n+1(πi ) = 0. Finally, G̃n+1(π2nk) = √
2π , k = 1, 2, . . ..

Thanks to the above relations, (49) becomes (54), and the Corollary is proved. ��
To illustrate the effectiveness of condition (54), let us assume that the Fourier

coefficients (45) exhibit a moderate decay rate, e.g., αi (y) ∼ 1
i2
. Then, from the

classical identities

∞∑
k=2

(−1)k

k2
= 1 − π2

12
and

∞∑
k=2

1

k2
= π2

6
− 1,

(54) immediately follows. On the contrary, assuming for a general weight function
that |Gn(πi )|, |G̃n+1(πi )| ≤ Mn , for i = 2n, 2n+1, . . ., and that the coefficient αi (y)
decay as above, it is easy to verify that (49) does not hold.

We notice that results of this kind are important, in general, for many applications of
anti-Gauss quadrature rules.We numerically observed for other classes of Gegenbauer
weight functions (α = β) a behaviour for Gn(πi ) and G̃n+1(πi ) similar to the one
proved for first kind Chebychev polynomials. We conjecture that it is possible to prove
conditions analogous to (54) also in these cases. This aspect will be studied in further
research.

5 Numerical tests

The goal of this section is to illustrate, by numerical experiments, the performance of
the method described in the paper. We consider three second kind Fredholm integral
equations, having a different degree of regularity in suitable weighted spaces. For each
test equation, we solve systems (34) and (35), we compute the Nyström interpolants
fn and f̃n+1, defined in (37) and (38), respectively, as well as the averaged Nyström
interpolant fn given by (42). Then, we compare the absolute errors with respect to
the exact solution f ∗ at different points y ∈ [−1, 1]. When the exact solution is not
available, we consider the approximation obtained by Gauss quadrature with n = 512
points to be exact.

All the numerical experiments were performed in double precision on an Intel
Core i7-2600 system (8 cores), running the Debian GNU/Linux operating system and
Matlab R2019a.

Example 1 Let us consider the equation

f (y) +
∫ 1

−1
xey sin(x + y) f (x) dx = g(y),

where g(y) = 1
16 (8 cos 2 − 4 cos 4 − 4 sin 2 + sin 4)ey cos y + cos(3y), in the space

L∞
u with u(x) = √

1 − x2. The exact solution is f ∗(y) = cos 3y.
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Table 1 Approximation errors
for Example 1

y=0.04 n ( fn − f ∗)u ( f̃n+1 − f ∗)u (fn − f ∗)u

4 −7.82e−03 7.82e−03 −3.95e−06

8 −1.04e−08 1.04e-08 −1.23e−13

16 −1.11e−16 0.00e+00 −1.11e−16

y=−0.5 n ( fn f ∗)u ( f̃n+1 − f ∗)u (fn f ∗)u

4 −3.97e−03 3.97e−03 −2.11e−06

8 −5.27e−09 5.27e−09 −6.27e−14

16 −1.25e−16 −6.94e−17 −9.71e−17

Table 2 Condition number of
matrices An and Ãn+1 for
Example 1

n cond∞(An) cond∞( Ãn+1)

4 3.7912 5.4749

8 4.8704 5.5818

16 5.2624 5.7739

32 5.5085 5.7748

We report in Table 1 the approximation errors at two points of the solution domain,
produced by the Gauss and anti-Gauss quadrature formulae, as well as by the averaged
formula fn , for n = 4, 8, 16. Since the kernel and the right-hand side are analytic
functions, the Gauss and the anti-Gauss rules lead to errors of opposite sign and
roughly the same absolute value. For this reason, the accuracy of the approximation
furnished by the averaged formula greatly improves: three digits for n = 4 and five
digits for n = 8. The machine precision is attained for n ≥ 16; when this happens,
rounding errors may prevent the error to change sign.

Table 2 reports the condition number in infinity norm of the matrices An and Ãn+1
of linear systems (34) and (35), showing that they are extremely well-conditioned.

The graph on the left hand side of Fig. 1 displays the exact weighted solution and the
Gauss, anti-Gauss, and averaged interpolants, when n = 2. With a larger number of
nodes, the approximations are too close to the solution for the graph to be significant. It
can be observed that, in this example, the Gauss error is positive on the whole interval,
while the anti-Gauss one is negative. This fact is confirmed by the graph on the right
hand side in the same figure, which reports a plot of the errors for n = 8. The averaged
rule produces a solution which is very close to the exact solution even with such a
small number of nodes.

Example 2 The second test integral equation is the following

f (y) −
∫ 1

−1

e(x+y)

1 + x2 + 3y2
f (x)

dx√
1 − x2

= |y| 92 , (55)

which has a unique solution f ∗ ∈ L∞.
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Fig. 1 On the left, comparison of the exact weighted solution of Example 1 with the approximations
produced by the Gauss, anti-Gauss, and averaged rules, for n = 2. On the right, errors corresponding to the
three quadrature formulae when n = 8

Table 3 Approximation errors
for Example 2

y=0.05 n fn − f512 f̃n+1 − f512 fn − f512

4 2.15e−03 −1.97e−03 8.82e−05

8 6.10e−06 −5.39e−06 3.55e−07

16 −3.21e−07 3.35e−07 7.09e−09

32 −6.78e−09 7.09e−09 1.55e−10

64 −1.48e−10 1.55e−10 3.41e−12

128 −3.26e−12 3.41e−12 7.69e−14

256 −7.03e−14 7.69e−14 3.30e−15

y=−0.7 n fn − f512 f̃n+1 − f512 fn − f512

4 2.72e−05 −1.13e−05 7.96e−06

8 −2.50e−07 3.44e−07 4.66e−08

16 −4.27e−08 4.47e−08 9.84e−10

32 −9.41e−10 9.84e−10 2.17e−11

64 −2.07e−11 2.17e−11 4.80e−13

128 −4.58e−13 4.80e−13 1.08e−14

256 −9.88e−15 1.08e−14 4.72e−16

As theoretically expected, the convergence is slower than in the previous case,
because of the non-smoothness of the right-hand side. Nevertheless, Tables 3 and 4
numerically confirm the final statement in Theorem 3, as well as the fact that the
condition number does not grow significantly with n. Moreover, the last column of
Table 3 shows that the averaged formula provides up to 2 additional correct digits,
with respect to the approximations obtained by the Gauss and anti-Gauss rules.

Figure 2 compares the three approximations obtained for n = 2 to the exact solution
in the left hand side graph, and reports the plot of the errors for n = 8 on the right.
The last graph shows that, in this particular example, the errors corresponding to the
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Table 4 Condition number of
matrices An and Ãn+1 for
Example 2

n cond(An) cond( Ãn+1)

4 5.1075 4.8956

8 6.2113 6.2612

16 7.0302 6.9803

32 7.3841 7.3917

64 7.5732 7.5724

128 7.6646 7.6653

256 7.7107 7.7105

-1 -0.5 0 0.5 1
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0
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1
solution
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Anti-Gauss
average

-1 -0.5 0 0.5 1
-8

-6

-4

-2

0

2

4

6 10 -6

error Gauss
error Anti-Gauss
error average

Fig. 2 On the left, comparison of the exact weighted solution of Example 2 with the approximations
produced by the Gauss, anti-Gauss, and averaged rules, for n = 2. On the right, errors corresponding to the
three quadrature formulae when n = 8

4 8 16 32 64 128 256
10 -15
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10 0

Gauss
anti-Gauss
average
1/n 4

4 8 16 32 64 128 256

10 -10

10 -5

10 0

Gauss
anti-Gauss
average
1/n 3

Fig. 3 Weighted ∞-norm errors (40) for Example 2 (on the left) and Example 3 (on the right)

Gauss and the anti-Gauss rules are always opposite in sign, but they do not keep a
constant sign.

The fact that the order of convergence is at leastO(1/n4), as predicted byTheorem3
since the right-hand side belongs toW∞

4 , is illustrated in Fig. 3. The graph on the left
shows the decay of the weighted infinity norm error (40) for the three quadrature
methods, compared to the curve 1/n4. The graph shows that the infinity norm errors

123



722 P. Díaz de Alba et al.
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n

Sn

Fig. 4 Coefficients αi (y) from (45) for Example 2 (left), and corresponding summations from assumption
(49) in Theorem 5 (right)

of the Gauss and the anti-Gauss rules are almost coincident, and they decay faster than
1/n4. The averaged rule is more accurate, but the order of convergence is the same.

To give numerical evidence to Theorem 5 and Corollary 1, we illustrate in Fig. 4 the
assumptions (49) and (54), which in this case coincide. In the integral equation (55),
we set the sample solution f ∗(x) = cos(x), and compute the coefficients αi (y) in
(45) by a high precision Gauss quadrature rule Gn( f ) with n = 128. The coefficients,
depicted in the graph on the left of Fig. 4, decay exponentially. For this reason, only
those above machine precision were displayed, that is, αi (y) with i = 0, 1, . . . , 33.

Then, fixed y = 0.3, the three summations in (49) were computed for n =
1, . . . , 15. We denoted them by Rn , Ra

n , and Sn , respectively. The graph on the right
hand side of Fig. 4 clearly shows that Rn and Ra

n are both smaller than Sn , and the differ-
ence between these quantities increases as n progresses, showing that the assumption
of Theorem 5 is valid in this example. The situation is similar considering other values
of y in [−1, 1].
Example 3 In the final example, we apply our approach to the integral equation

f (y) −
∫ 1

−1
(y + 3)| cos(1 + x)| 52 f (x)

√
1 − x2 dx = ln(1 + y2), (56)

to approximate the unique solution f ∗ ∈ L∞
u , with u(x) = (1 − x2)1/4.

From the non-smoothness of the kernel, it follows that the approximate solutions fn
and f̃n+1 converge to the exact solution f ∗ with order at leastO(1/n3). The theoretical
expectation is confirmed by the numerical results, reported in Tables 5 and 6. The
order of convergence is illustrated by the graph on the right hand side of Fig. 3.

In Fig. 5 we report for the integral equation (56) the coefficients αi (y) defined
in (45) (graph on the left), as well as the summations from the assumption (49) of
Theorem 5 (graph on the right), similarly to what we did in Fig. 4 for Example 2.
Like in the previous example, we set the sample solution f ∗(x) = cos(x) in (56), and
y = 0.3.

In this case, the coefficients αi (y) are slowly decaying. The first 500 coefficients,
computed by a Gauss quadrature rule with 1024 nodes, are displayed in the graph on
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Table 5 Approximation errors for Example 3

y=0.5 n ( fn − f512)u ( f̃n+1 − f512)u (fn f512)u

4 2.31e−03 −2.35e−03 −2.31e−05

8 2.05e−05 −1.71e−05 1.72e−06

16 −1.54e−06 1.77e−06 1.12e−07

32 −1.72e-07 1.67e−07 −2.57e−09

64 −1.38e−08 1.23e−08 −7.36e−10

128 1.28e−09 −1.48e−09 −1.02e−10

256 −3.06e−11 3.95e−11 4.42e−12

y=−0.3 n ( fn − f512)u ( f̃n+1 − f512)u (fn f512)u

4 1.87e−03 −1.90e−03 −1.87e−05

8 1.66e−05 −1.38e−05 1.39e−06

16 −1.25e−06 1.43e−06 9.09e−08

32 −1.39e−07 1.35e−07 −2.08e−09

64 −1.12e−08 9.97e−09 −5.96e−10

128 1.03e−09 −1.20e−09 −8.23e−11

256 −2.48e−11 3.20e−11 3.58e−12

Table 6 Condition number of
matrices An and Ãn+1 for
Example 3

n cond(An) cond( Ãn+1)

4 5.2241 5.5508

8 5.5169 5.4774

16 5.5349 5.5323

32 5.5393 5.5445

64 5.5444 5.5455

128 5.5460 5.5459

256 5.5464 5.5464
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5 10 15 20
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10 -2

10 0
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n
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Fig. 5 Coefficients αi (y) from (45) for Example 3 (left), and corresponding summations from assumption
(49) in Theorem 5 (right)
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the left hand side of Fig. 5. From the graph on the right of the same figure, representing
the summations from (49), it is clear that the assumption of Theorem 5 is not verified
for each index n. For the sake of clarity, we reported only the first 20 values of Rn , Ra

n ,
and Sn , but the situation is similar for the remaining 228 we computed. Even if the
assumption of the sufficient condition proved in the theorem is not valid here, Table 5
shows that the error of the Gauss and the anti-Gauss rules changes sign as well, for all
the test performed.
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Appendix

In this section, we report the proof of Lemma 1. Before starting, we remind that the
zeros {x j }nj=1 of the Jacobi polynomial pn satisfy the following relations [20]

Δx j ∼
√
1 − x2j

n
, Δx j ∼ Δx j−1, and θ j − θ j+1 ∼ 1

n
, (57)

setting x j = cos θ j .
Moreover [36, pp. 198, 236], there exists c > 0 such that, for any θ ∈ [ cn , π − c

n

]
,

pn(cos θ) = n− 1
2 κ(θ)[cos (Nθ + μ) + (n sin θ)−1O(1)], (58)

d

dθ
pn(cos θ) = n

1
2 κ(θ)[− sin (Nθ + μ) + (n sin θ)−1O(1)], (59)
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whereμ = −π
2 (α+ 1

2 ), N = n+ 1
2 (α+β +1), the constants in O(1) are independent

of n, and

κ(θ) = π− 1
2

(
sin

θ

2

)−α− 1
2
(
cos

θ

2

)−β− 1
2

, α, β > −1.

Proof of Lemma 1 To begin with, let us prove (25). Setting x̃ j = cos θ̃ j , from the
interlacing property (23) we deduce

θ̃1 > θ1 > θ̃2 > · · · > θ̃n > θn > θ̃n+1.

Thus, we can assert

Δx̃ j =
∫ θ̃ j

θ̃ j+1

sin t dt ≤
∫ θ j−1

θ j+1

sin t dt = (θ j−1 − θ j+1) sin θ̄ , θ̄ ∈ [θ j+1, θ j−1].

Then, setting x̄ = cos θ̄ ∈ [x j−1, x j+1], by applying (57) and the following relation
from [20]

1 ± x j ∼ 1 ± x ∼ 1 ± x j+1, x ∈ [x j , x j+1],

we obtain

Δx̃ j ≤ C
√
1 − x̄2

n
≤ C

√
1 − x̃2j

n
.

We recall that C denotes a positive constant which may have a different value in
different formulas.

In order to prove (27), we start from the following expression for the weights [22,
Theorem 2.1]

λ̃ j = 2〈pn, pn〉w
pn(x̃ j ) p̃′

n+1(x̃ j )
. (60)

Let us investigate the asymptotic behavior of the denominator. By (22), taking into
account (59), we have

d

dθ
p̃n+1(cos θ) = d

dθ

[
pn+1(cos θ) − βn pn−1(cos θ)

]

= κ(θ)(n + 1)
1
2

[
− sin ((N + 1)θ + μ) + ((n + 1) sin θ)−1O(1)

]

−βnκ(θ)(n−1)
1
2

[
−sin ((N − 1)θ+μ)+((n − 1) sin θ)−1O(1)

]

� 3

4
κ(θ)n

1
2

[
− sin (Nθ + μ) + (n sin θ)−1O(1)

]
,
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where the symbol � denotes asymptotic equivalence, and βn � 1/4 (see Eq. (8)).
Then, by applying (58) we can write

pn(cos θ)
d

dθ
p̃n+1(cos θ) � 3

4
κ2(θ)

[
−1

2
sin(2(Nθ + μ)) + (n sin θ)−1O(1)

]
,

from which, as d
dθ

p̃n+1(cos θ) = p̃′
n+1(cos θ)(− sin θ), evaluating the above expres-

sion at x̃ j = cos θ̃ j we obtain

pn(x̃ j ) p̃
′
n+1(x̃ j ) � 3

4

κ2(θ̃ j )

sin θ̃ j

[
1

2
sin(2(N θ̃ j + μ)) + (n sin θ̃ j )

−1O(1)

]
, (61)

which is a positive quantity; see [22, Theorem 2.1].
By Stirling formulae

n! � √
2πn nne−n, Γ (n + a + 1) � √2π(n + a)

(
n + a

e

)n+a

,

we deduce from (5) that

〈pn, pn〉w � 2α+β

n
.

Consequently, by replacing the above estimate and (61) in (60), and taking (26) into
account, we obtain

λ̃ j � 4

3

2α+β+1 sin θ̃ j

nκ2(θ̃ j )
= 4

3
π(1 − x̃ j )

α+ 1
2 (1 + x̃ j )

β+ 1
2

√
1 − x̃2j

n

∼ 4

3
πw(x̃ j )ϕ(x̃ j )Δx̃ j ,

with ϕ(x) = √
1 − x2, from which (27) follows.
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34. Spalević, M.M.: On generalized averaged Gaussian formulas. II. Math. Comp. 86, 1877–1885 (2017)
35. Steklov, V.A.: On the approximate calculation of definite integrals with the aid of formulas of mechan-

ical quadratures (Russian). Izv. Akad. Nauk. SSSR 6(10), 169–186 (1916)

123



728 P. Díaz de Alba et al.

36. Szegö,G.:Orthogonal Polynomials, vol. 23.AmericanMathematical SocietyColloquiumPublications,
Providence (1975)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Solution of second kind Fredholm integral equations by means of Gauss and anti-Gauss quadrature rules 
	Abstract
	1 Introduction
	2 Mathematical preliminaries
	2.1 Function spaces
	2.2 Monic orthogonal polynomials
	2.3 Quadrature formulae
	2.3.1 The Gauss-Jacobi quadrature formula
	2.3.2 The anti-Gauss quadrature formula


	3 Convergence results for the anti-Gauss rule in weighted spaces
	4 The numerical method
	5 Numerical tests
	Acknowledgements
	Appendix
	References




