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Abstract
This article deals with the production of energy through photovoltaic (PV) panels. 
The efficiency and quantity of energy produced by a PV panel depend on both deter-
ministic factors, mainly related to the technical characteristics of the panels, and sto-
chastic factors, essentially the amount of incident solar radiation and some climatic 
variables that modify the efficiency of solar panels such as temperature and wind 
speed. The main objective of this work is to estimate the energy production of a PV 
system with fixed technical characteristics through the modeling of the stochastic 
factors listed above. Besides, we estimate the economic profitability of the plant, 
net of taxation or subsidiary payment policies, considered taking into account the 
hourly spot price curve of electricity and its correlation with solar radiation, via vec-
tor autoregressive models. Our investigation ends with a Monte Carlo simulation 
of the models introduced. We also propose the pricing of some quanto options that 
allow hedging both the price risk and the volumetric risk.
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1 Introduction

The production of renewable energies, such as wind and photovoltaic (hereinaf-
ter PV) energy, has been undergoing a significant increase in recent years. The 
installation of wind turbines and PV panels is currently booming, and this trend 
is expected to continue in the near future. These systems allow injecting on the 
market (in addition to a possible personal use) electricity with low environmental 
impact and with relatively low production costs. The “green energy” thus pro-
duced has an important impact on electricity prices through the typical auction 
mechanism in the day-ahead market (Deane et al. 2017). PV panels exploit direct 
solar radiation and they produce energy through the well-known photoelectric 
effect mechanism. The efficiency and quantity of energy produced depend on both 
deterministic and stochastic factors. The deterministic factors are mainly related 
to the technical characteristics of the panels: physical characteristics of the semi-
conductor materials (such as silicon), inclination of the panel and the azimuth 
angle of the panel surface. The stochastic factors are the amount of incident solar 
radiation and the climatic variables: for example, temperature and wind speed 
influence the mechanism of energy production through the photoelectric effect. 
The first objective of this research is to estimate the energy production of a PV 
plant with known technical characteristics. In this regard, we will have to effec-
tively model the stochastic variables that come into play, namely the solar radia-
tion (the basic variable) and the two climatic variables, temperature, and wind 
speed, which will affect the efficiency of the panels. Moreover, we estimate the 
economic profitability of the PV plant taking into account the hourly spot price 
curve of electricity in the day-ahead market. In this way, we can estimate not only 
the quantity of energy produced in a fixed time horizon but also the correspond-
ing market value. In this respect, it is important to build up a model that considers 
among its features the correlation (on an hourly basis) between solar radiation 
and the price of electricity. Note that to evaluate the net income in the production 
of renewable energy, a much-debated topic currently, we could consider the pro-
duction costs for individual technologies. For example, a recent study presented 
by IRENA (2019), Renewable Power Generation Costs in 2018, estimates an 
average cost for the production of PV energy equal to 0.085 USD/kWh. For com-
parison, the average cost of wind power generation is USD 0.056/kWh. Regard-
ing the influence of any taxation or incentives in the production of PV energy, 
we are not currently aware of these data. In any case, these are fixed and deter-
ministic values that do not lead to any modification of the models used so far. 
Finally, the correct assessment of the energy produced by PV panels and of the 
corresponding electricity prices allows the management of two important sources 
of uncertainty: the volumetric risk and the price risk. The volumetric risk regards 
the fact that in a fixed time horizon the production is lower than that planned 
by the producer therefore he is not able to meet the expected commitments. The 
price risk concerns a decrease in electricity spot prices and the corresponding fall 
of the expected income. These two types of risk can overlap and therefore lead to 
even greater losses. We show how quanto options can contribute to the solution 
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to this problem. Results are illustrated through Monte Carlo simulation in rela-
tion to a hypothetical PV system located in Italy. The main references in the lit-
erature regarding the pricing of these options can be traced back to the works of 
Benth et al. (2015), Benth and Ibrahim (2017) and Caporin et al. (2012). Regard-
ing the production of PV energy, some works use neural network techniques, for 
example, Graditi et al. (2016). Benth and Ibrahim (2017) use daily data of some 
PV plants located in Germany and determine a continuous-time process suita-
ble to model the daily PV production. Finally, Lingohr and Müller (2019) deter-
mine a non-linear continuous-time autoregressive process for the production of 
solar energy by using infeed data in Germany. Neto et al. (2017) aim to perform 
a portfolio optimization of RES generation assets (hydroelectric, wind, and PV) 
for the Brazilian market. They also present an economic analysis by taking into 
account taxation and financing for the determination of the associated cash flows, 
but they do not take into account the spot electricity prices. The empirical analy-
sis of the data has highlighted, through the correlation, the presence of a certain 
dependence structure between solar radiation and the price of electricity. Besides, 
solar radiation assumes minimum values at night (for obvious reasons) and maxi-
mum values in the central hours of the day (1–2 pm). At the same time, the price 
of electricity also takes on higher values in the central hours of the day due to 
greater electricity demand. Consequently, we have introduced this feature into our 
model. The principal innovative aspect of our work concerns the modeling of the 
stochastic factors that come into play and the analysis of the profitability of a PV 
system that takes into account the real price of electricity: we used a multivari-
ate model that could link the price of electricity with solar radiation (and there-
fore PV production) through a vector autoregressive process. In this way, we can 
more effectively evaluate both the income of the PV plant and more accurately 
price the joint market/volumetric risk through the quanto options. Pricing these 
options through a multivariate model is another original feature of our contri-
bution. The next sections are structured as follows. In Sect.  2 we describe the 
factors that influence PV production. In Sect.  3 we present the models relating 
to the stochastic factors necessary to estimate the production and profitability of 
PV energy. Then, in Sect. 4, we reveal the results of the model and we price the 
quanto options.

2  Materials and methods

2.1  Photovoltaic production

To determine the energy produced by a PV panel, we follow a procedure used 
by Urraca et  al. (2018). The standard test conditions (“STC”) foresee a tempera-
ture equal to 25  ° C and an irradiation level 1000 W/m2. In general conditions, the 
energy instantly produced by a PV panel depends on the effective in-plane radiation 
Geff and the module temperature Tmod. First, we must determine the module tem-
perature through the Faiman relation (Faiman 2008):
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The parameter u0 represents the effect of the radiation on the module temperature 
and u1 explains the cooling by the wind. This relation allows determining the mod-
ule temperature as a function of radiation in the incidence plane Geff, the ambient 
temperature Tamb and the wind speed  WSmod measured at the device height. The u0 
and u1 coefficients have been estimated empirically for different types of PV panels. 
A discussion is given by Koehl et al. (2011) from which we took the values used in 
the numerical application. Finally, the energy produced in general conditions can be 
obtained from the relation (Benth and Benth 2011; Urraca et al. 2018):

with 
P�
DC

= PDC∕PSTC PSTC = nominal power

G�
eff

= Geff∕GSTC GSTC = 1000 W∕m2

T �
mod

= Tmod − TSTC TSTC = 25 ◦C

so that PDC is the energy actually produced. For the parameters k1, …, k6 we took 
the values used by Huld et  al. (2011) for c-Si type panels. The effect of tempera-
ture on the performance of PV panels has been investigated by Barykina and Ham-
mer (2017) so that it is necessary to include it to model the energy production. We 
assume, without loss of generality, that the panel is ground-mounted, i.e. at a typical 
height of about 2 m. For simplicity, we assume that our panel is oriented in such 
a way that the incident radiation is given by the global radiation inferred from the 
MERRA-2 dataset (object of our modeling).

2.2  Dataset characteristics

The hourly time series of climatic variables can be obtained from NASA’s 
MERRA-2 project (https ://gmao.gsfc.nasa.gov/reana lysis /MERRA -2). We have cho-
sen an Italian location with coordinates long. 8.75 and lat. 39.5. This location cor-
responds to a Mediterranean-type climate (with good insolation all year round) and 
flat land that does not contain particular geographical obstacles to radiation. Next, 
we examine each variable in detail.

2.2.1  Solar radiation

The MERRA-2 code for solar radiation is SWGDN (surface_incoming_shortwave_
flux). The data cover 40 years, from 1/1/1980 to 31/12/2019 on an hourly basis (see 
Table 1).

The zero values are reached before sunrise and after sunset. Besides, solar 
radiation has a maximum value for each geographical location and for each hour 
and day of the year which depends (in a “clear sky” condition) on the position of 
the sun. The actual value of the radiation at a given instant, therefore, represents 

(1)Tmod = Tamb +
Geff

u0 + u1 ⋅WSmod
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https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2


1 3

Performance estimation of photovoltaic energy production  

a fraction of the maximum radiation which depends on the atmospheric condi-
tions (cloud cover, fog, presence of dust, etc. ...). The maximum radiation value 
can be estimated empirically by extracting the maximum radiation value for each 
hour and day of the year from the dataset (therefore each of these values will be 
estimated in a subset with 40 records). In Fig. 1a we report the maximum radia-
tion as a function of the hour and day of the year (grid with 24 × 365 values) in a 
three-dimensional graph. In Fig. 1b we report the maximum radiation for the year 
(with an hourly period; 8760 values on the x-axis). The upper curve corresponds 
to hour 12 (with the upper value on 21 June), the lower curves correspond to hour 
5 am and hour 7 pm.

Furthermore, we have noticed that the average radiation represents 82.55% of 
the corresponding maximum value therefore in this location the radiation reaches 
on average high values.

2.2.2  Temperature

The MERRA-2 code for temperature is TS. The data cover 16  years, from 
1/1/2004 to 31/12/2019 on an hourly basis and 140,256 records (see Table 1 for 

Table 1  Variables statistics—real values

Indicator Solar radiation 
(W/m2)

Temperature (°C) Wind speed (m/s) Electricity 
price (€/
MWh)

Mean 205.96 17.42 2.81 66.0465
Std. Dev. 287.70 9.70 1.86 34.5806
Skewness 1.22 0.65 0.96 2.0632
Kurtosis 3.19 2.97 3.42 6.5268
Min. 0 −4.14 0.01 0
Max. 1030 49.68 12.47 450
N° obs. 350,640 140,256 140,256 138,072

Fig. 1  (a) Maximum radiation vs. day/h. (b) Maximum radiation for each hour of the year
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the main statistics). We note that extreme temperatures are unlikely. Tempera-
tures that exceed 45 °C are only 0.33% while the negative ones are 0.66%.

2.2.3  Wind speed

The MERRA-2 codes for wind speed are U2M (2-m eastward wind) and V2M (2-m 
northward wind) which represent the two components. The wind speed is then 
deducted. The data cover 16 years, from 1/1/2004 to 31/12/2019 on an hourly basis 
(see Table  1). We observe that the wind speed remains rather low. Values higher 
than 10 m/s represent only 0.09% of the dataset. Let’s assume that the PV panel is 
at a height of 2 m. Otherwise, we can exploit a well-known relationship (D’Amico 
et al. 2015b) to transform the intensity of the wind based on height. We also note 
that the average wind intensity depends on the hour: the average speed increases 
until it reaches a peak around hour 2  pm, then reverses the trend and decreases. 
Another aspect of the seasonality of the wind intensity can be deduced from the 
monthly average values. Finally, we examine the serial correlation for the series. For 
this purpose, we analyze the autocorrelation function (ACF) and partial correlation 
function (PACF) given in Fig. 5, Sect. 3.3. From these plots, we find evidence of 
the presence of serial autocorrelation at lags 1 and 2, while the series also denotes a 
clear seasonality of 24 h.

2.2.4  Electricity price

The data concerning electricity price is available from the Italian company “Gestore 
Mercati Energetici” website (http://www.merca toele ttric o.org/It/downl oad/DatiS 
toric i.aspx). We considered the Sardinia zonal price from 1/4/2004 to 31/12/2019 on 
an hourly basis since our PV plant is located in Sardinia (see Table 1). We note that 
prices exhibit a high kurtosis, due to the sudden peaks that characterize the elec-
tricity prices. Indeed, we note that although the average value is equal to 66.05 €/
MWh, about 1% of the prices reach or exceed a threshold of 200 €/MWh. The price 
of electricity depends heavily on the hour and on the month, for example, from the 

Fig. 2  Mean electricity price vs. year

http://www.mercatoelettrico.org/It/download/DatiStorici.aspx
http://www.mercatoelettrico.org/It/download/DatiStorici.aspx
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dataset inspection, we highlight two maximum peaks at hours 10 am and 8 pm and 
the lowest values are found at night (for which the demand for energy drops). Aver-
age prices reach the lowest values between March and May, while higher values 
occur between July and September. The average price of electricity varies from year 
to year (see Fig. 2). In the reference period, the highest average price occurred in 
2008 and the lowest in 2016.

3  Model

We advance a stochastic model for the main variables that come into play in 
Faiman’s relation (1). We first propose autoregressive models of univariate time 
series of solar radiation, temperature, wind speed, and electricity prices and then we 
advance a more general scheme where solar radiation and electricity prices are mod-
eled jointly in the form of a bivariate model. The application of Faiman’s relation 
(1) to the results of the specific considered models allows quantifying the expected 
production and income.

3.1  The solar radiation

In Sect. 2.2.1 we determined an estimate of the maximum radiation for each hour of 
the day and each day. Now, the effective radiation R(t) will be a stochastic fraction of 
the maximum radiation Rmax(t) which depends on atmospheric factors.

We determine for each hour (t = 1, …, 8760) and each year of the dataset, the 
fraction:

This fraction is defined when Rmax(t) ≠ 0. Consequently, we deduce that 
R(t) = Rmax(t) ⋅ (1 − K(t)). We note that a similar index denoted ‘clearness index’ 
was introduced by Koudouris et al. (2018). It represents the ratio between the effec-
tive solar radiation and the one measured at the top of the atmosphere. The authors 
model hourly clearness index for each month (for a total of 288 distributions) with 
a mixture of Kumaraswamy distributions. This method is particularly onerous in 
terms of parameters, so we prefer to model the variable K(t) as a single process. To 
model the solar radiation, we just have to model the stochastic process K(t) using the 
following process with white noise ε1:

The seasonal component has two main periods (1 year and 24  h) that can be 
deduced from the single-sided amplitude spectrum (or the periodogram), besides the 
24 h period can also be deduced from the ACF function (Fig. 3, top panel). Note 

K(t) =
Rmax(t) − R(t)

Rmax(t)
∈ [0, 1]

K(t) = c1 + A1 ⋅ sin
(

2�

24
⋅ t + B1

)

+ A2 ⋅ sin
(

2�

8760
⋅ t + B2

)

+

2
∑

i=1

�i ⋅ K(t − i) + �1
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Fig. 3  ACF (top panel) and PACF (bottom panel) for K(t) process

Table 2  Variables statistics—
simulated values

Indicator Solar radia-
tion (W/m2)

Temperature (°C) Wind speed (m/s)

Mean 210.03 17.43 2.81
Std. Dev. 279.25 9.69 1.78
Skewness 1.09 0.00 0.99
Kurtosis 2.89 2.42 4.24
Min. 0 −13.13 0.00
Max. 999.1 47.95 15.36
N° obs. 350,640 140,256 140,256

Fig. 4  Simulated and empirical solar radiation series (W/m2)
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that if we consider a single year dataset, the 1-year period is deleted. Next, we add 
an autoregressive component with two lags. To this end, we can examine the PACF 
function (Fig. 3, bottom panel).

The statistics of the simulated series are shown in Table 2 and are similar to the 
empirical values in Table 1.

Furthermore, we compare a simulated series in Fig.  4 (upper panel) with the 
empirical series (lower panel, referring to the last year of the dataset, where the 
x-axis comprises 8760 hourly values). We can see an excellent analogy of the data. 
This particular trajectory possesses the same qualitative characteristics as the empir-
ical one. For example, zero values (corresponding to night hours) are positioned in 
the right place while the highest values are positioned around the summer solstice. 
Besides, the comparison between Tables 1 and 2 gives more reliable goodness of 
fit since this comparison was made with a certain number of simulated trajectories. 
For example, the difference in mean value is −1.98% and the difference in standard 
deviation is 2.94%, which are very low differences.

Neto et al. (2017) applied a mean-reverting model with a deterministic season-
ality index to model directly the solar radiation. Here, we preferred to apply an 
autoregressive component to the K(t) process since the maximum radiation is easily 
deduced from the empirical data.

3.2  Temperature

We can refer to the contributions of Benth and Benth (2011), Huang et al. (2018), 
Türkvatan et al. (2020) and Zapranis and Alexandridis (2011). The models described 
therein are aimed at pricing temperature-based derivatives and contain the main 
characteristics of temperatures series, namely, seasonality, autoregressive proper-
ties, and mean-reverting character. In accordance with the works listed, we decide to 
model the temperature using its known peculiarities, that is, a seasonal deterministic 
component and an autoregressive stochastic component. Let T(t) be the temperature 
series on an hourly basis. The seasonal component is a combination of sinusoidal 
functions (with 1 year and 24 h main periods). Next, we model the residuals T̂(t) 
with an ARMA model. The optimal lags have been chosen with AIC and BIC crite-
ria, we selected then an AR(3) process. We report the values of the estimated param-
eters in Table 3. The final process is (with white noise ε2):

Table 3  Parameters of the 
ARMA component

Value p value

AR(1) 1.7927 0
AR(2) −1.0739 0
AR(3) 0.2053 0
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Next, we determine simulated trajectories from the model (see Table 2). A com-
parison with Table  1 (empirical data) shows a good fitting of the model. Indeed, 
the difference in mean value is −0.06% and the difference in standard deviation is 
0.10%, which are very close values.

3.3  The wind speed process

Some models for wind speed have been developed by Caporin and Preś (2012), 
D’Amico et al. (2015a), Sim et al. (2019) and Casula et al. (2020). We have adopted 
the latter which allows being integrated into a bivariate model with the price of elec-
tricity. Let W(t) be the wind speed at the time t. We apply at first the Box-Cox trans-
formation given by the function (see e.g. Casula et al. 2020) f�(x) =

x�−1

�
 . The trans-

formed variable Ŵ(t) = f𝜉(W(t)) has a distribution close to the Gaussian one. Next, 
we use a process similar to that used for temperature with white noise ε3:

The seasonal component has two main periods (1  year and 24  h) that can be 
deduced from the single-sided amplitude spectrum (if we consider a single year 
dataset, the 1-year period is deleted). Next, we add an autoregressive component 
with two lags. To this end, we can examine the ACF and the PACF function (Fig. 5, 
top/bottom panel respectively).

T(t) = c2 + C1 ⋅ sin
(

2�

24
⋅ t + D1

)

+ C2 ⋅ sin
(

2�

8760
⋅ t + D2

)

+

3
∑

i=1

�i ⋅ T(t − i) + �2

Ŵ(t) = c3 + E1 ⋅ sin
(

2𝜋

24
⋅ t + F1

)

+ E2 ⋅ sin
(

2𝜋

8760
⋅ t + F2

)

+

2
∑

i=1

𝛿i ⋅ Ŵ(t − i) + 𝜀3

Fig. 5  ACF (top panel) and PACF (bottom panel) for wind speed process
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The final step is to apply the inverse Box-Cox transformation fξ
−1(x) = (1 + ξ ⋅ x)1/ξ. 

The parameters of the model have been estimated through log-likelihood maximiza-
tion (performed with Matlab tools, values omitted). Then, we simulate trajectories 
from this process through the Monte Carlo procedure. The statistics of the simulated 
series are reported in Table 2. A comparison with Table 1 (empirical data) shows a 
good fitting of the model. The difference in mean value is 0.00% and the difference 
in standard deviation is 4.30%, which are again very low differences.

3.4  The electricity price process

An overview of recent models was provided by Weron (2014) and Nowotarski and 
Weron (2018) and the bibliography included therein. We will use the approach 
developed in Casula et  al. (2020) again in this context. Let P(t) be the electricity 
price at the time t. The price process P(t) has a non-Gaussian probability distribu-
tion (confirmed by the J-B test, see Casula et al. 2020) and is characterized by price 
peaks and near-zero values. To transform this distribution to a Gaussian one, we 
apply the N − PIT transformation defined as (Nowotarski and Weron 2018; Unie-
jewski et al. 2019) P̃(t) = G−1

(

FP(t)(P(t))
)

 where FP(t) is the cumulative distribution 
function (CDF) of P(t) and P̃(t) is the transformed variable. As the real distribution 
of P(t) is not known, we can estimate it with the empirical distribution function. 
Finally, G−1 is the inverse of the standard normal CDF. Next, we use a process simi-
lar to that used before, with white noise ε4:

P̃(t) = c4 +M1 ⋅ sin
�

2𝜋

24
⋅ t + N1

�

+M2 ⋅ sin
�

2𝜋

168
⋅ t + N2

�

+M3 ⋅ sin
�

2𝜋

8760
⋅ t + N3

�

+
2
∑

i=1

𝛾i ⋅ P̃(t)(t − i) + 𝜀4

Fig. 6  ACF (top panel) and PACF (bottom panel) for electricity price process
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The seasonal component has three main periods (1 year, 1 week, and 24 h) that 
can be deduced from the single-sided amplitude spectrum (if we consider a single 
year dataset, the 1-year period is deleted). Next, we add an autoregressive compo-
nent with two lags. To this end, we can examine the ACF and the PACF function 
(Fig. 6, top and bottom panel respectively). Finally, we simulated trajectories from 
the process through Monte Carlo procedure and applied the inverse N − PIT trans-
formation P(t) = F−1

P(t)

(

G
(

P̃(t)
))

.
The parameters of the model have been estimated through log-likelihood maximi-

zation (performed with Matlab tools, values omitted). Then, we simulate trajectories 
from this process (statistics are reported in Table 4 for year 2019). A comparison 
with empirical data shows a good fitting. The difference in mean value is −0.31% 
and the difference in standard deviation is 1.94%, which are very low differences, so 
that the simulated values represent faithfully the real ones.

Table 4  Simulated and 
empirical electricity price series 
statistics for the year 2019

Indicator Empirical Simulated

Mean 51.80 51.96
Std. Dev. 13.37 13.11
Skewness −0.46 −0.41
Kurtosis 4.83 4.69
Min. 0 0
Max. 113.07 109.57

Fig. 7  Correlation electricity price—solar radiation period 2005–2019
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3.5  Electricity price: solar radiation bivariate model

We highlight that the correlation between the price of electricity and solar radiation 
has undergone considerable variations over time. In Fig. 7, we reported the correla-
tion using a 1-year rolling window.

Finally, in Table 5 we list the correlations year by year. The salient fact concerns 
a sudden change in the period 2011–2012, indeed it is verified that the correlation 
passes from positive to negative values. Since the correlation changes considerably 
year by year, it is appropriate to create a bivariate model that can take this character-
istic into account and to model these variables year by year separately.

To achieve this, in the models that describe the solar radiation and the price of 
electricity, we have replaced the respective AR(2) components with a single VAR 
(“vector autoregressive”) process. We used more specifically a VAR(2, 2) process 
with 2 variables and 2 lags. The bivariate model considered can therefore be writ-
ten as follows:

where η1 and η2 are white noises and K̂(t) and P̂(t) are the deseasonalized processes:

To explain the change in correlation in the period 2011–2012, we consider 
in Table 6 the quantity of energy from renewable sources produced in Italy and 
we note that since 2011 there has been a massive input of PV energy, which 
has exceeded wind power production (ISTAT source, http://dati.istat .it/Index 
.aspx?lang=en&SubSe ssion Id=cc362 11b-d2d0-4c05-bb28-8d7c6 6cbd4 29).

We can argue that an increase in PV production may lead to a decrease in 
prices due to the behavior of producers in the auction mechanism in the Day-
Ahead Market.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

K̂(t) =
2
∑

i=1

ai ⋅ K̂(t − i) +
2
∑
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2
∑
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2
∑
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⎪

⎨
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24
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�

2𝜋
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�

Table 5  Real correlations electricity price—solar radiation period 2009–2019

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Corr. 0.3292 0.2932 0.1437 −0.0964 −0.1654 −0.2614 −0.1580 −0.2247 −0.1873 −0.0953 −0.1509

http://dati.istat.it/Index.aspx?lang=en&SubSessionId=cc36211b-d2d0-4c05-bb28-8d7c66cbd429
http://dati.istat.it/Index.aspx?lang=en&SubSessionId=cc36211b-d2d0-4c05-bb28-8d7c66cbd429
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3.6  The expected production and income

To determine the energy produced, we apply at first the Faiman relation (1). We 
use the values from Koehl et  al. (2011): u0 = 26.9  W/ ° C  m2; u1 = 6.20  Ws/ ° C 
m3. Precisely, we followed the choice of Huld and Gracia Amillo (2015), page 
5163, which consists in taking the average value of the values reported by Koehl 
et al. (2011). Next, we apply the relation (2) from Urraca et al. (2018). The asso-
ciated parameters are taken from Huld et al. (2011) for c-Si type panels: k1 =  − 0.
017237; k2 =  − 0.040465; k3 =  − 0.004702; k4 = 0.000149; k5 = 0.000170; k6 = 
0.000005.

Finally, we consider a nominal power PSTC = 1 kW. Another important aspect of 
our work consists in determining the hypothetical profit deriving from the produc-
tion of electricity in a fixed time horizon. To do this, we will use the zonal electric-
ity price introduced earlier. The expected income at a time t0 ≥ 0 up to time t0 + τ is:

where r is a constant risk-free interest rate, P(t0 + k) is the price at the time t0 + k 
and z(t0 + k) is the energy produced at the time t0 + k. An estimator of the expected 
income is:

where H is the number of simulations, Pi(t0 + k) is the value of the price process at 
the time t0 + k for the ith simulated path and zi(t0 + k) has analogous meaning for the 
power production process. The estimation of the income through formula (2) con-
siders the influence of the specific processes modeling the different variables as well 
as their interdependencies.

4  Results

We first present the results about energy produced, then we generate implied 
incomes, and finally, quanto options are built for hedging risks. A comparison 
with the empirical values confirms the suitability of the proposed approach.

V
(

t0, t0 + �
)

= E
t0

[

�
∑

k=1

P
(

t0 + k
)

⋅ z
(

t0 + k
)

⋅ (1 + r)−k

]

(2)V̂
(

t0, t0 + 𝜏
)

=
1

H

H
∑

i=1

𝜏
∑

k=1

Pi

(

t0 + k
)

⋅ zi
(

t0 + k
)

⋅ (1 + r)−k

Table 6  Gross production of PV electricity (millions of KWh)

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

PV 193.0 676.5 1905.7 10,795.7 18,861.7 21,588.6 22,306.4 22,942.2 22,104.3 24,377.7
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4.1  Energy production

The statistics of the empirical energy produced are reported in Table 7. We con-
sider the dataset from 1/4/2004 (availability of the electricity price series) until 
31/12/2019 (138,072 records) and we picture a synthetic series in Fig. 8.

We complete the analysis with a Monte Carlo simulation for which we have 
generated ns = 100 trajectories for each stochastic variable (see Table 8) and we 
note a good correspondence with the empirical values reported in the same table. 
Indeed, the differences in mean value (reported year by year) are respectively: 
−0.32%, 0.91%, 0.96%, −1.53% and −0.21%. Consequently, the simulated pro-
duction values faithfully follow the empirical ones.

4.2  Income estimation

The results of the associated income estimated at the beginning of the time hori-
zon (for the years 2015 to 2019) with a risk-free interest rate of 1% are shown in 
Table 9. We note here again a good correspondence between empirical and simu-
lated values. Indeed, the differences in mean value (reported year by year) are 
respectively: −0.38%, −3.00%, −2.03%, −2.07% and − 0.82%. Hence, the applied 
multivariate model allows us to reproduce faithfully the income, which contains 
all the stochastic variables introduced previously. The results are compared with 
those obtained by simulating the two series independently and in this case, a 

Table 7  Empirical energy 
produced statistics (expressed 
in kW)

Indicator Value Indicator Value Indicator Value

Mean 0.1890 Skewness 1.1304 Min. 0
Std. Dev. 0.2613 Kurtosis 2.8855 Max. 0.9720

Fig. 8  Empirical energy produced (on an hourly basis for the period 2004–2019)
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worse result is highlighted. We also report the correlation between the simulated 
electricity price and solar radiation series which are close to the real ones given 
in Table 5. Therefore, another strong point of the model is highlighted, namely 
the ability to reproduce the observed dependence structure.

4.3  Quanto options

The payoff associated with lower than expected energy production and electricity 
price can be expressed as a double put option C(K1, K2) = max(K1 − E; 0) ⋅ max(K2 − p; 
0) with E =

1

n

∑n

i=1
Ei; p =

1

n

∑n

i=1
pi . The “energy index” E is defined as the average 

energy produced over a specified horizon [τ1, τ2] where Ei is the energy produced at a 
time i. The same holds for the price index p, where pi denotes the spot price at a time 
i. The period is measured in hours and the horizon is arbitrary. The index n will then 
represent the number of hours in the given horizon. Finally, the strike values K1 and K2 
are fixed. Assume that the quanto option is exercised at the time τ2. Its arbitrage-free 
price Qt at time t ≤ τ2 is given by (Benth et  al. 2015) Q

t
= e

−r⋅(�2−t)E
(

C
(

K1,K2

))

 . 
Here, r > 0 denotes the risk-free interest rate (which we assume constant, as before). 
Since in our application, price and production levels differ widely year by year, we 
consider the options when referring to a specific year, evaluated at a time t = τ1. 
Regarding the pricing of this type of option, we can follow two distinct procedures. 
Benth et al. (2015, 2018) derive, in their application, a closed formula deduced from 
the hypotheses made on the dynamics of the underlying. Instead, Caporin et al. (2012) 
propose pricing through the Monte Carlo simulation, which allows dealing with more 
general situations (in the absence of closed formulas) but the method proves more 
onerous regarding processing times. Monte Carlo simulation was also used in Benth 

Table 8  Real vs. simulated 
production for years 2015–2019

Year Real mean production Simulated 
mean produc-
tion

2015 0.1892 0.1898
2016 0.1876 0.1859
2017 0.1977 0.1958
2018 0.1761 0.1788
2019 0.1892 0.1896

Table 9  Real vs. simulated 
incomes and simulated 
correlations price-solar radiation 
years 2015/2019

Year Real income Simulated income Simulated 
income 
(indep.)

Correlation

2015 79,722.0 80,027.8 80,283.8 −0.1755
2016 62,458.0 64,331.9 65,489.5 −0.1507
2017 82,430.8 82,900.8 84,102.9 −0.1357
2018 90,979.9 92,866.8 94.738.7 −0.0973
2019 81,946.4 82,618.3 84.135.3 −0.1435
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and Ibrahim (2017), but there the authors directly modeled the production of PV 
energy instead of the factors that influence it. In our example, we followed the Monte 
Carlo simulation. For example, we report in Fig.  9 the values of the quanto option 
for the years 2016 and 2018. We considered a variable strike for both variables (pro-
duction level and electricity price) therefore the option value is presented as a three-
dimensional figure with respect to the strike values set as independent variables.

From the comparison between these two cases, we note that the same strikes 
range for both options leads to different fair values of the options. Consequently, it is 
clear that the quanto options should ideally offer hedging for a specific horizon. We 
can also deduce from these plots that the value of the quanto option increases as the 
strike values increase. Indeed, if we increase the strike values (namely the “planned” 
price and production values), it is more likely that the real values are below these 
planned values. Therefore, the cost of hedging against price/volumetric risk will be 
higher. Furthermore, it is interesting to note that if only one of the two strikes take 
on a “high” value, the option value is lower. In this situation, the price/volumetric 
risk does not exist simultaneously therefore the balance of these two situations leads 
to the fair price of the quanto option.

5  Discussion

The growing diffusion of renewable energies requires the creation of models to esti-
mate the production and profitability of energy. In this work, we specifically dealt 
with the production of energy by PV panels that exploit the photoelectric effect. If we 
consider a PV panel with certain fixed technical characteristics, the amount of energy 
produced essentially depends on the amount of incident solar radiation. The efficiency 
of the panel also depends, to a certain extent, on temperature and wind speed. To cor-
rectly model the energy produced, we must therefore effectively model these three 
stochastic variables. We have described the models used in the work and we have 
shown that they allow us to fully replicate the empirical values. Finally, to evaluate the 
income deriving from the production of electricity, it is appropriate to correctly model 
the series of electricity prices. For this purpose, we applied a bivariate model solar 
radiation/electricity price to cope with the correlation between these two variables. We 
also described the model used in the work, and we verified that the simulated values 

Fig. 9  Quanto option for the year 2016 (left panel) and the year 2018 (right panel)
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also faithfully replicate the empirical values. More precisely, the comparison between 
empirical and simulated values takes place on different levels. First, we compared 
the individual variables (solar radiation, temperature, wind intensity, and electricity 
price). Subsequently, we compared the energy production and the income (where all 
4 stochastic variables come into play). Besides, the VAR models used to estimate PV 
production and the price of electricity are sufficiently flexible and adapt to the descrip-
tion of data coming from sites with slightly different climatic conditions. The results 
of the estimates will give us slightly different parameters, but the general methodol-
ogy remains unchanged. Moreover, the stochastic processes that represent the main 
climatic variables (solar radiation, wind intensity and temperature) are based on typi-
cal characteristics of these variables. Regarding the model of the electricity price, also 
in this case we have exploited the typical characteristics of this variable. The different 
zonal markets present in the Italian territory may present more or less high values but 
despite this, the qualitative characteristics are similar. A fundamental aspect of our 
model is to have considered the observed dependence structure between the price of 
electricity and solar radiation. This particularity is also valid outside the local context 
used for our numerical simulations so we can conjecture that the type of model used 
here can cover a wider field of application. Finally, taking into account that an energy 
producer is subject to both volumetric risk (lower than expected production) and price 
risk (drop in the spot price of electricity), we have developed quanto options useful to 
face these risks. These options were then priced with the Monte Carlo method.
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