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Abstract

The central theme of this study is to investigate a remarkable capability of
a second-gradient continuum model developed for pantographic structures. The
model is applied to a particular type of this metamaterial, namely wide-knit pan-
tograph. As the structure of this kind has low fiber density, applicability of such
a continuum model may be questionable. To address this uncertainty, numeri-
cal simulations are conducted to analyze the behavior of a wide-knit pantographic
structure, and the predicted results are compared with those measured experimen-
tally under bias extension test. The results presented in this study show that the
numerical predictions and experimental measurements are in good agreement, and
therefore, in some useful circumstances, this model is applicable for the analysis
of wide-knit pantographic structures.

Mechanical metamaterials, pantographic structures, second-gradient modeling,
additive manufacturing

1 Introduction

Design of metamaterials has been of great interest to engineers and scientists due to
the remarkable progress in additive manufacturing (AM) technologies in the last 20
years. Currently, with newly developed and improved techniques, fabrication of mate-
rials with complex microstructures exhibiting exotic and uncommon properties is not a
far-fetched conception as before[1]. In this paper, we particularly focus on the behavior
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Figure 1: 3D-printed wide-knit pantographic structure composed by two families of
fibers connected by pivots.

of pantographic structures — a type of mechanical metamaterial. In general, metama-
terials are classified based on the main interaction phenomena occurring in their mi-
crostructures. A mechanical metamaterial, therefore, is a multi-scale structure whose
overall response is related to mechanical interaction between lower scales constituting
the hierarchical architecture of the material. We refer the reader to the extensive review
paper of Barchiesi et al.[2] for state-of-the-art applications in the study of mechanical
metamaterials.

A pantographic structure, corresponding to a real 3D-printed rectangular specimen
as given in Fig. 1, consists of a planar grid constituted by two orthogonally oriented
families of continuous fibers connected by pivots located at intersections. Due to their
distinct properties, pantographic structures have been extensively investigated in the
literature [3]. From a purely theoretical point of view, the mechanical behavior of pan-
tographic structures is an excellent example to prove the existence of higher-gradient
continua, i.e, continua whose deformation energies depend on higher gradients of dis-
placement field as opposed to the well-known Cauchy continuum where the deforma-
tion energy is only a function of the first gradient of displacement. On the other hand,
from a practical point of view, pantographic structures can be subjected to large de-
formations remaining in elastic regime, which may be a promising feature in different
applications.

Recent progress in manufacturing techniques have prompted the need for develop-
ing higher-gradient models as fabrication of materials with complex microstructures is
becoming increasingly popular. Higher gradient modeling is actually not a new idea
for mechanicians. In the history of mechanics, the roots of higher gradient modeling
can be traced back to the impressive works presented by Italian mechanician Gabrio
Piola in the mid-19th century [4, 5, 6, 7, 8, 9]. Later, in the 20th century, higher gra-
dient modeling was investigated and clearly formulated by different researchers. Here,
we would especially like to mention two pioneering studies presented by Mindlin and
Eshel [10] and Paul Germain [11]. In Mindlin and Eshel [10], the linear theory of elas-
ticity was studied in the context of second gradient modeling, which the strain energy
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density depends on both the strain and its gradient. They studied the three different
versions of strain energy density, providing the relation between those three different
forms in terms of stress and boundary conditions. The differences between the strain
energy densities come from the components included in the energy definitions. Impor-
tantly, to clarify the terminology, the term “second gradient” used in the present paper
refers to the second gradient of displacement. As Mindlin and Eshel mentioned the
first gradient of strain, the two terms “second gradient” and “first strain-gradient” are
actually equivalent. Moreover, Mindlin and Eshel discussed how the angular moment
balance equation cannot be derived directly by variational methods, and they rederived
the complete equations starting from conservation laws (i.e. conservation of linear mo-
mentum, angular momentum and energy). Afterwards, Paul Germain [11] published
another influential study on higher gradient modeling. The main idea of the paper is to
show how variational methods can be systematically applied to study higher gradient
theories. As Germain discussed in his paper, the variational methods provide a very
effective and systematic way to obtain the required equations compared to other ap-
proaches followed in the past. Indeed, as discussed in many related studies [12, 13],
variational approaches are very powerful for mechanicians to establish new mathemat-
ical models quickly and efficiently. In this way, modern continuum mechanics applica-
tions can find more applications. In Germain [11], micromorphic media of order one
were derived in detail, and subsequently, the equations for the general micromorphic
medium were presented. For interested readers, we refer to Toupin [14], Eringen [15],
Misra and Poorsolhjouy [16], Eremeyev [17] and Solyaev et al. [18] for further details.

Although promising theoretical effort was made on establishing higher gradient
models, technology of that time was not sufficient to produce materials exhibiting such
complex behaviors. Moreover, with increasing finite element method applications, the
Cauchy continuum has been successfully applied in a large number of problems in
various fields, and that is why scientists and engineers have disregarded higher gradient
models for a long time. However, capabilities of advanced manufacturing techniques
introduced in the last 20 years have clearly changed the opinions on developing higher
gradient models.

This study focuses on the mechanical behavior of wide-knit pantographic struc-
tures. Pantographic structures have been extensively investigated in the recent literature
(for instance, see [19, 20, 21, 22, 23, 24, 25, 26]). A pantographic structure is referred
to as-wide-knit if the number of the fibers composing the grid is low. According to au-
thors’ best knowledge, this is the first study which investigates wide-knit pantographic
structures as a second gradient continuum. In fact, in Andreaus et al. [27], this kind
of structure has been studied by means of a meso-scale model, where the fibers com-
posing the pantographic structure were modeled as Euler-Bernoulli nonlinear beams.
We show a natural way to model the mechanical response of pantographic structures
with a continuous second gradient model even when these structures are wide-knit, i.e.
with fibers close enough to justify the use of a continuous theory (which, instead, is a
logical choice when studying dense knitted fabrics). A fundamental point proposed in
this article is to establish that the presence of some particular microstructures require
the use of a second gradient theory to adequately describe the resulting material, even
when the microstructure cannot actually be considered at a deeper scale of observation,
as in the usual microstructured continua.
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The organization of the paper is as follows: In Section 2, some important aspects
of higher gradient modeling are remarked, and the model used in this study is summa-
rized. Then, in Section 3, the theoretical predictions are presented and compared with
experimental measures. Finally, in Section 4, we highlight our conclusions and try to
provide some insights for future studies based on our observations.

2 Microstructure and Higher Gradient Theories

2.1 Microstructure induces higher gradient terms in equilibrium
equations

Continuum Mechanics allows to study many “natural” materials accurately, approach-
ing a huge number of problems with only few adjustments. Moreover, with the help
of standard homogenization techniques, complex materials (e.g. composites) can be
treated with the same tools used for homogeneous ones. Currently, due to the massive
developments in computer technology and programming, it is possible to study with
very complex problems. Modeling methods like the Finite Elements reduce the com-
plexity of the problem to a mere question of number of degrees of freedom. In fact, it
is always possible to introduce a mesh, as accurate as it is needed, to divide the consid-
ered medium in a certain number of, namely, finite elements with simple geometry, and
then it is an easy task to solve the equations of the Continuum Mechanics. The more
complex is the geometry of the medium, the finer will be the required computational
mesh, and therefore, a greater number of finite elements, thus increasing the number
of degrees of freedom (i.e. of equations to be solved by the simulation tool). Despite
the introduction of such tools, in some cases, the solution may require heavy numerical
computation. For instance, media with complex geometries such as structures com-
posed of bars or fibers: accurately describing such structures requires meshes with a
huge number of finite elements. It has already been mentioned that classical homoge-
nization techniques make it possible to overlook the problem of composites, reducing
them to equivalent materials that globally have the same mechanical responses as the
composite.

In the 1960s and 1970s, the problem of medium with microstructure was addressed
by R. D. Mindlin, R. A. Toupin, and P. Germain in a number of papers. In their stud-
ies, different points of view of higher gradient modeling have been discussed to deal
with materials equipped with microstructure, and they have shown how the existence
of microstructure in some cases could induce higher order terms in the equilibrium
equations of the material under consideration. Differently from classical homogeniza-
tion techniques, in this case, equations containing terms dependent on second or higher
order derivatives of displacement are obtained, inducing so-called higher gradient the-
ory. Why do we pursue this way of thinking rather than trying to employ standard
homogenization methods, for example, for composites? Our answer is very simple:
the path followed by Mindlin, Toupin and Germain is effective and straightforward
as the Principle of Virtual Works (or, equivalently, the Principle of Virtual Powers) is
employed.
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2.2 Variational principles in presence of microstructure

The Principle of Virtual Works (PVW) can be used systematically to deduce the funda-
mental equations for a given theory in Continuum Mechanics. As we have mentioned,
there are multiple approaches that one can use to address the description of continua
and find the governing equations, but the PVW provides the fastest way to get the
sought equations and prevents errors that, in other approaches, might be difficult to
detect.

As it was shown in Germain [11], when considering the problem of microstruc-
tured continua (also called micromorphic in Eringen’s approach) the PVW provides
equations of second gradient theories. Germain [11] shows that, by applying the Vir-
tual Powers Principle (where virtual velocities are involved), the classical equations
of the Continuum Mechanics are easily obtained. Here, the crucial point is to assign
the right kinematics. Therefore, in case of a usual continuum, this is considered to be
composed of a continuous distribution of particles which are geometrically represented
by a material point M and by its velocity components U;. When considering the mi-
crostructure, from a macroscopic point of view each particle is still represented by a
material point M, but its kinematics must be defined more precisely. Germain gives
a very clear and simple explanation of the relationship between kinematics, Principle
of Virtual Powers and continuum theory. The main feature of the method explained
in Germain [11] is that, assigned the required kinematics, the associated continuum
theory can be deduced immediately via the PVW (or PVP). This is the fundamental
reason why this method is simpler than others proposed in the literature: it all reduces
to the search for the kinematics associated with the studied problem.

2.3 Kinematics for the second gradient theory

Following the work of Germain [11], it can be shown how the kinematics due to the
presence of the microstructure generates a second gradient continuum at macroscopic
level. As mentioned earlier, in the classical description, a continuum consists of contin-
uous distribution of particles, geometrically described by a point M and characterized
by a velocity field, defined by its components U;. However, in a theory which takes into
account the presence of microstructure, each particle represented by a point M must be
characterized by a more refined kinematics. Then, how do we describe the presence
of microstructure from the kinematics point of view? At this stage, it is necessary to
consider the continuum at microscopic level: each particle has to be considered as a
continuum P(M) of small extension. Germain shows in detail how the previous as-
sumption implies that the velocity field U; associated with the continuum P(M) and
the y;; field of the relative velocity gradients (resulting in a second order tensor) have
to be considered. This final result makes it necessary to introduce the second gradi-
ent of the relative velocities x;j;, which is a third order tensor. Therefore, it is clearly
shown that the presence of a microstructure can be naturally described by introducing
higher order terms in the continuum theory considered. This is the starting point in the
study of pantographic structures. A certain microstructure is chosen in order to have a
second gradient continuum as simple as possible and then homogenization techniques
are utilized to determine an appropriate continuum model.
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2.4 A second-gradient homogenized model

In dell’Isola et al. [20], it has been shown how to obtain a macroscopic second-gradient
continuum model with a heuristic homogenization process which specifically consists
in performing an identification procedure of macro-deformation energy which is as-
sociated to a postulated micro-model. Therefore, the macroscopic Lagrangian (line
or surface) density of macro-deformation energy is obtained in terms of constitutive
parameters appearing in the postulated expression of micro-deformation energy. Al-
though the validity of the model presented by dell’Isola et al. [20] has been shown in
different studies (see for example [28, 29, 30, 31, 32, 33, 34]) to predict the mechan-
ical behavior of pantographic metamaterials, experimental evidences have shown that
further improvements are unavoidable to establish a more robust model. Therefore, in
this study, an improved model presented by Spagnuolo et al. [35] is adopted for the
numerical simulations. In the study [35], the proposed improved model takes into ac-
count that the two families of fibers constituting the structure may not follow a single
placement field description, as it was presented in dell’Isola‘et al. [20], due to the re-
sistive behavior of pivots. Therefore, the strain energy of the model was formulated
based on two independent placement fields to allow relative displacement between the
two families of fibers.

If we assume a 2D continuum whose reference configuration is given by a rectan-
gular domain Q = [0, £,] X [0, L;] C R? (for example,in Fig. 1, £, = Land £, = ¢
represent the lengths of the sides of the ideal rectangle containing the pantographic
structure) and by assuming that deformations are planar, the current configuration of
Q is described by the planar macro-placements y' and y? for each fiber family, re-
spectively. Let be {Dq,D,} an orthogonal basis for the reference configuration. By
following Spagnuolo et al. [35], the following strain energy is adopted in the numeri-
cal simulations

2
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and vy denotes the shear distortion related to the angle change between fibers
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and d, is the unit vectors tangent to each fiber family in the current configuration

. i
© IFD,||

(6)

where F is the deformation gradient for each independent placement, F* = Vy“ (no

summation over «). The terms K., Kj,, K,,, and K are the constant and positive material

parameters related to stretching, bending, shearing, and fiber connectivity, respectively.
Finally, the governing equations are obtained by the variational statement

5fW(8a,Ka,y,X1,X2)dQ=0 Yéu (7)
Q

where du belongs to the vector space of admissible displacement variations, i.e. test
functions. In this study, as deformation is assumed to be quasi-static, kinetic energy is
not included in the expression given in Eq. 7.

Additionally, in order to characterize wide-knit pantographic structures more pre-
cisely, a criterion referred to as wide-knit ratio is defined as follows

: ned _ ne(a \/E)

4 ¢ ®

where ny is the number of fibers of one of the two families attached to the short side,
¢ the length of the short side, and a is the depth of the fiber cross section (see Fig. 2).
This ratio w clearly lies within the range w € (0, 1], where, when the upper limit value
is reached, then we are considering a grid which is very similar to a plate.

mm————y
1
L

)

Figure 2: Schematic representation of the dimensions involved in the computation of
the wide-knit ratio w.

The used numerical code has been implemented with a standard package available
in COMSOL Multiphysics®, namely, Weak Form PDE. In Weak Form PDE package,
energy terms are introduced along with defined dependent variables (two placement
fields in this study), and a tensorial field, which is constrained to be equal to the gradient
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of placement fields (by using the method of Lagrangian multipliers), is defined so that
energy expressions requiring a second gradient of placements are easily introduced
[36].

3 Comparison of numerical simulations with experimen-
tal measurements

In this section, by using the model detailed in the previous section, numerical predic-
tions are presented for the wide-knit pantographic layer under study and compared with
experimental measures. A 3D-printed wide-knit pantographic layer with the length,
L = 210 mm, and height, £ = 70 mm, is considered in this study. The wide-knit ratio
of the structure is about 0.09, which indicates a quite low fiber density. Fibers have a
rectangular cross section with a = 0.9 mm and b = 1.6 mm, where a and b are the
height and width of the cross section, respectively. Also, the two families of fibers are
interconnected with pivots with a radius of 0.5 mm. The wide-knit pantographic layer
is made of polyamide PA 2200, whose Young’s modulus is ¥, = 1600 MPa, and the
Poisson’s ratio is v = 0.36. In the numerical simulations, the prescribed displacement
boundary condition is applied at one of the short sides to simulate a bias extension
test while the other short side is kept fixed. The following constitutive parameters
are used in the numerical simulations: K, = 1.86 x 10°N/m, K, = 1.26 x 1072 Nm,
K, =30N/m, and K, = 8 x 10 N/m?.
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(d) up = 36 mm

(e) up = 48 mm ) up = 60 mm

Figure 3: Comparison between experimental measurements and numerical simulations
under bias extension test

The experimental measurements and theoretical predictions are compared during
extension of the wide-knit pantographic structure under study in Fig. 3. The figures
(see Figs. 3a-3f) are provided for different values of prescribed displacement, namely
for uyp = 0,12,24,36,48, and 60 mm, respectively. As it can be seen by comparison,
numerical results match perfectly the experimental measures. In order to have a better
interpretation of the theoretical predictions, two sets of material lines have been as-
signed in the second-gradient continua, which are oriented exactly along the directions
of fibers. In this way, it is shown how the second-gradient model can be effectively
applied to investigate the mechanical behavior of wide-knit pantographic structures.
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Figure 4: Contribution of energy terms.

As itis seen in Fig. 3, the behaviors of fibers in the experiment and material lines in
the simulation are quite similar to each other. Additionally, contributions of the energy
terms given in the total deformation energy expression are investigated in Fig. 4. Each
term is plotted for the particular value of prescribed displacement, 1y = 60 mm. As
it can be observed in Fig. 4, pivots have a substantial role in the overall mechanical
behavior of the structure. The shear energy is considerably large in the center of the
specimen while fiber connectivity energy is high around the intersections of the fibers
connected to both lower and upper corners of the specimen. On the other hand, the
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terms related to extension and bending are slightly large at both ends of the specimen,
especially on the fibers connected at the corners of the pantographic structure. It is
clear that in the center of the specimen energy terms due to the existence of pivots are
dominant.

In order to give a better insight on pivot behavior during the extension test, distance
between two families of fibers |[y' — y?|| is plotted in Fig. 5 for a selected value of the
prescribed displacement, namely #y = 60 mm. As it can be seen in Fig. 5, relative
distances on the fibers connected to the corners of the specimen are large. Indeed, this
indicates that failure of the structure may potentially occur on these fibers.

m
x10™

35
30
25
) 20
15
10
5

0

Figure 5: Relative displacement between two families of fibers.

Moreover, force-displacement plots of the experiment and simulation are compared
in Fig. 6. In the experiment, it is observed that pivots may get broken when large dis-
placements occur. As it is shown in Fig. 6, some minor jumps are observed around 60
mm of displacement. Then, the experimental plot, at around 64.4 mm of displacement,
has an abrupt jump: at this point, as it is shown in Fig. 7, three pivots got broken in the
lower part of the specimen. The damage occurs around the intersection of the fibers
connected at the lower corners of the specimen. Overall, the numerically obtained
force-displacement plot compares very well with those experimentally measured .
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Figure 6: Force-Displacement Plot (Experiment vs Simulation).

(@) up = 64 mm (b) up = 64.4 mm

Figure 7: Pivot damage observed during bias extension test.

4  Conclusions

In this work, inspired by the pioneering works of P. Germain [11], Mindlin [10], Toupin
[14] and Sedov [37] on second gradient theories, we have shown that it is natural to
model the mechanical response of pantographic structures with a continuous second
gradient model even when the fibers of these structures are not dense enough to justify
the use of a continuous theory (which, instead, seems to be the natural choice when
dealing with dense knitted fabrics).
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The fundamental point proposed in this paper was to show that the presence of a
microstructure, or better an architecture, in some cases make it possible to use models
where the strain energy depends not only on the gradient of the displacement, but also
on its second gradient, even when microstructure cannot actually be considered at a
deeper scale of observation, as it is the case in the usual microstructured continua.

The concept of interpreting mechanical effects of microstructure by using a sec-
ond gradient continuum is already a fascinating idea but it acquires greater importance
when one considers a microstructure producing such effects even with few elemen-
tary cells. It should be now clear that such a structure, which can be considered as
the corresponding homogenized metamaterial (even when one is very far from hav-
ing a dense knitting), really exhibits high-performance mechanical properties. In the
different fields of applications, it could be useful to consider the coupling with other
kind of materials (e.g. granular materials [38, 39, 40, 41, 42, 43, 44], laminated plates
[45, 46, 47, 48, 49], and micropolar materials [50, 51, 52]).

The study presented here can be completed by an analysis of the damage in pan-
tographic structures. General discussions to investigate the damage in higher gradient
theories can be found in [53, 54, 55, 56]. Problems related to modeling and simulation
of metamaterials like those presented in this paper can be greatly simplified by the in-
troduction of appropriate numerical tools [57; 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72]. Finally, the problem which has been briefly presented in this article
can be investigated and many of its applications can be designed and tested. This re-
quires accurate theoretical analyses: in the literature several points of reference can be
found[73, 74, 75, 76, 717,78, 79].
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