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Featured Application: The investigation proposed in this work is a preliminary step towards the
realisation of an automated COVID-19 detection system from CT images. It can be crucial in
this medical task to aid clinicians in obtaining valuable information about CT images for their
classification or obtaining general information about the status of the disease.

Abstract: COVID-19, an infectious coronavirus disease, caused a pandemic with countless deaths.
From the outset, clinical institutes have explored computed tomography as an effective and comple-
mentary screening tool alongside the reverse transcriptase-polymerase chain reaction. Deep learning
techniques have shown promising results in similar medical tasks and, hence, may provide solutions
to COVID-19 based on medical images of patients. We aim to contribute to the research in this field
by: (i) Comparing different architectures on a public and extended reference dataset to find the most
suitable; (ii) Proposing a patient-oriented investigation of the best performing networks; and (iii)
Evaluating their robustness in a real-world scenario, represented by cross-dataset experiments. We
exploited ten well-known convolutional neural networks on two public datasets. The results show
that, on the reference dataset, the most suitable architecture is VGG19, which (i) Achieved 98.87%
accuracy in the network comparison; (ii) Obtained 95.91% accuracy on the patient status classifica-
tion, even though it misclassifies some patients that other networks classify correctly; and (iii) The
cross-dataset experiments exhibit the limitations of deep learning approaches in a real-world scenario
with 70.15% accuracy, which need further investigation to improve the robustness. Thus, VGG19
architecture showed promising performance in the classification of COVID-19 cases. Nonetheless,
this architecture enables extensive improvements based on its modification, or even with prepro-
cessing step in addition to it. Finally, the cross-dataset experiments exposed the critical weakness of
classifying images from heterogeneous data sources, compatible with a real-world scenario.

Keywords: COVID-19 detection; convolutional neural network; deep learning; lung CT analysis;
image classification; SARS-CoV-2

1. Introduction

COVID-19 is a disease caused by the SARS-CoV-2 virus, declared a pandemic by
the World Health Organisation on 11 March 2020. At the time of writing, COVID-19 has
more than one hundred and eighty million confirmed cases and has caused more than
three million deaths, with a mortality rate of 2.1% [1]. As hospitals have been shown to
have limited availability of adequate equipment, a rapid diagnosis would have been and
still is essential to control the spread of the disease, increase the effectiveness of medical
treatment, and, consequently, the chances of survival without intensive care. Basically,
the polymerase chain reaction and reverse transcriptase (RT-PCR) method is the primary
screening tool for COVID-19, in which SARS-CoV-2 ribonucleic acid (RNA) is detected
within an upper respiratory tract sputum sample [2]. However, many countries are unable
to provide sufficient testing, and, in any case, only people with apparent symptoms are
tested, and it takes hours to provide an accurate result.
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Therefore, there is a need for faster and more reliable screening techniques that could
further confirm the PCR test or replace it entirely, such as imaging-based methods. They
may complement its use to achieve greater diagnostic certainty or even substitute in
some countries where RT-PCR is not readily available. In some cases, chest X-ray (CXR)
abnormalities are seen in patients who initially had a negative RT-PCR test, and several
studies have shown that chest computed tomography (CT) has greater sensitivity for
COVID-19 than RT-PCR and could be considered a primary tool for diagnosis [3–6]. In
response to the pandemic, researchers have rushed to develop models using artificial
intelligence (AI), particularly machine learning, to support clinicians [7].

Computed tomography is already a widely explored medical imaging technique that
allows non-invasive visualisation of the interior of an object [8–13] and is widely used
in many applications, such as medical imaging for clinical purposes [14–18]. For this
reason, clinical institutions have used CT as an effective and complementary screening
tool alongside RT-PCR [5,6] with a higher sensitivity of up to 98% compared to 71% for
RT-PCR [19,20]. In particular, several studies have shown that CT has excellent utility in
detecting COVID-19 infections during routine CT examinations for reasons unrelated to
COVID-19, such as monitoring of elective surgical procedures and neurological exami-
nations [21]. Other scenarios where CT imaging has been exploited include cases where
patients have worsening respiratory complications and cases where patients with negative
RT-PCR test results are suspected to be COVID-19 positive due to other factors. Early
studies have shown that chest CT images of patients may contain some potential indicators
for COVID-19 [2,5,6,22] infections, but may also be contained in non-COVID-19 infections.
This issue can lead to challenges for radiologists in distinguishing COVID-19 infections
from non-COVID-19 infections using chest CT [23,24]. However, the duration of diagnosis
is the main limitation of CT scan tests: even experienced radiologists need about 21.5 min
to analyse the test results of each case [25], and during the emergency, a large number of
CT images have to be evaluated in a very short time, thus increasing the probability of mis-
classification. For this reason, intelligent automatic diagnosis systems that automatically
classify chest CT images can help to improve speed and to rapidly confirm the test result.

In recent years, deep learning workflows have emerged from the proposed AlexNet
convolutional neural network (CNN) in 2012 [26]. CNNs do not follow the typical work-
flow of image analysis because they can extract features independently without the need
for feature descriptors or specific feature extraction techniques. Therefore, they differ
from conventional machine learning methods because they require little or no image pre-
processing and can automatically infer an optimal data representation from raw images
without requiring prior feature selection, resulting in a more objective and less biased
process. Furthermore, they achieved optimal results in many domains, such as computer
vision devoted to medical analysis, with images coming from magnetic resonance imaging
(MRI) [27], microscopy [28], CT [29], ultrasound [30], X-ray [31], and mammography [32].
They have been successfully applied to various different problems, like classification or
segmentation [33–36]. Deep learning-based methods have also made significant progress
in the analysis of lung diseases, which is a comparable scenario to COVID-19 [37–39].
However, the scenario of CT images of lungs referred to COVID-19 and non-COVID-19
patients can be particularly problematic to classify, especially when the damage due to
pneumonia of different causes is present simultaneously. The main findings of chest CT
scans of COVID-19 positive patients indicate traces of ground-glass opacity (GGO) [40].
Two CT scans of COVID-19 and non-COVID-19 are shown in Figure 1.
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Figure 1. (a) represents a CT of the lungs of a patient with COVID-19, in which there are clear traces
of GGO indicated by red arrows. (b) shows a CT of the lungs of a non-COVID-19 patient with diffuse
opacity in the outer parts of the lungs. These images are courtesy of [41].

The overall objective of this study is to investigate the behaviour of the main existing
off-the-shelf CNNs for the classification of patients’ CTs. This work is a preliminary
investigation for the future development of a tool that provides confirmation of the viral
test result or provides more details about the ongoing infection, also considering that
according to the Center for Disease Control (CDC), even if a chest CT or X-ray suggests
COVID-19, the viral test is the only specific method for diagnosis [42]. Specifically, we
propose a comprehensive investigation of the problem of COVID-19 classification from
chest CT images from different perspectives:

1. We present a comparative study of several off-the-shelf CNN architectures in order
to select a suitable deep learning model to perform a three-class classification on the
public COVIDx CT-2A dataset, specifically divided into COVID-19, pneumonia and
healthy cases;

2. On the same dataset, we performed a patient-oriented experiment by grouping all
the CT images of the patients, in which the aim was to provide a diagnosis;

3. We investigated the robustness of the methods by performing two cross-dataset exper-
iments and evaluating the performance of CNNs previously trained on COVIDx CT-
2A. In particular, we performed a two-class classification between COVID-19 and
healthy cases, on the COVID-CT dataset, without fine-tuning;

4. We repeated the experiment just described, by fine-tuning the most promising CNNs,
demonstrating that it is still problematic to integrate automatic methods in the clinical
diagnosis of COVID-19.

We both demonstrate how off-the-shelf deep learning architectures can be utilised to
classify CT images representing COVID-19 affected patients and how transfer learning
capabilities are still far from offering a concrete contribution in a real-world scenario,
as demonstrated by our cross-dataset experiments, without addressing it with different
techniques. The experiments are not intended to provide an exhaustive comparison of
the performance of these methods; instead, we wanted to select the most suitable for our
classification of CT images without, for the time being, investigating possible parametric
improvements. The purpose is to create a concrete baseline with the potential to be
modified and developed further. Moreover, several works in the context of COVID-19
diagnostics have considered small or private datasets or lacked rigorous experimental
methods, potentially leading to over-fitting and overestimation of performance [7,43]. For
this reason, we:

1. Carefully selected the two datasets on which to conduct the experiments described.
In fact, Roberts et al. [7] have recently shown that most of the datasets used in the
literature for the diagnosis or prognosis of COVID-19 suffer from duplication and
quality problems;

2. Selected COVIDx CT-2A, a public reference dataset specifically proposed for COVID-
19 detection from CT imaging, because of the high risks of bias due to source problems
and datasets created from unsupervised public online repositories. It has already
been provided with train, validation, and testing splits.
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We verified the robustness of the solution on both the public COVIDx CT-2A and
COVID-CT datasets. Our proposed approach achieves promising results on COVID-
19 identification, although it does not show satisfactory performance on cross-dataset
experiments.

The rest of the article is organised as follows. The following paragraph presents a re-
view of deep learning approaches for COVID-19 detection. Section 2 describes the datasets
used in our experiments and presents the metrics adopted to evaluate the experimental
results illustrated in Section 3. In Section 4, we analyse and discuss the experimental results
and give a comparison with the state of the art. Finally, conclusions and future directions
are drawn in Section 5.

Related Work

Here, we briefly describe some works that have addressed tasks related to COVID-
19. Although the research is still evolving, the automatic classification of COVID-19 has
gained wide attention from researchers around the world [7,42,44,45]. In this context,
we can broadly distinguish the proposed methods into those based on 2D and 3D
images. Among the most recent ones [46,47], 3D images could be handy to avoid
losing the interstitial information of the lungs. However, several works have exploited
2D images showing the property of extracting representative features of COVID-19
lesions for disease detection [48–56]. They are all CNN-based and used CT [48–55]
or CXR [43,50,56] images. We particularly focused this study on deep learning-based
classification methods for COVID-19 detection.

Among the CT-based methods, Jin et al. [48] proposed a deep learning-based system
for COVID-19 diagnosis, performing lung segmentation, COVID-19 diagnosis, and COVID-
infectious slices location. In contrast, Hu et al. [51] proposed a weakly supervised multiscale
deep learning framework for COVID-19 detection, inspired by the VGG architecture [57],
which assimilates different scales of lesion information using CT data of the chest. Polsinelli
et al. [52] implemented a lightweight CNN, based on the SqueezeNet model [58] for efficient
discrimination of COVID-19 CT images against other community-acquired pneumonia
or healthy CT images. Biswas et al. [53] used a transfer learning strategy on the three
pretrained models of VGG-16 [57], ResNet50 [59], and Xception [60], combining them
with the ensemble stacking strategy and tested the method on CT images of the chest.
Zhao et al. [55] adopted the ResNet-v2, a modified version of ResNet [59]. Moreover,
they added group normalisation instead of batch normalisation and conducted a weight
standardisation for all convolutional layers. Lastly, they also incorporated the pre-training
data from CIFAR-10 [61], ILSVRC-2012 [62], and ImageNet-21k [63] as the parameters for
initialisation.

On the subject of CXR-based works, Minaee et al. [50] employed four pretrained mod-
els (ResNet18 [59], ResNet50 [59], SqueezeNet [58] and DenseNet-121 [64]) on CXR data,
and analysed their performance for COVID-19 detection. On the other hand, Signoroni
et al. [43] developed BS-Net, a multi-block deep learning-based architecture designed
for the assessment of pneumonia severity on CXRs. More recently, Oyelade et al. [56]
proposed CovFrameNet, a novel deep learning-based framework based on a substantial
image pre-processing step and a CNN architecture for detecting the presence of COVID-19
on CXRs.

Thanks to the powerful discriminative ability of CNNs, several authors tried to
propose CNN-based frameworks for the diagnosis or prognosis of COVID-19, even though
CNNs typically require large scale datasets to perform a correct classification. However,
most of the existing CT scan datasets for COVID-19 contain at most hundreds of CT
images[65–67]. Therefore, we exploited COVIDx CT-2A [68], composed of 194,922 CT
images, as described in Section 2.1.1 to propose a baseline classification approach and
we evaluated it on the external dataset COVID-CT, described in Section 2.1.2 to assess
generalisability of the proposal. In general, we aim to avoid the following drawbacks:

1. Using small scale datasets;
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2. Using not robust or multiple unsupervised source datasets;
3. Testing the method without external validation.

Regarding the works that employed the datasets used in our study, Zhao et al. [41]
worked on COVID-CT, while Gunraj et al. [54] on COVIDx CT-2A. The former is based on
a transfer learning approach on the DenseNet network, while the latter proposed COVID-
Net CT [54], a deep convolutional neural network tailored for detection of COVID-19 cases
from chest CT images.

This work differs from those described above because:

(i) We propose an extensive comparison between different off-the-shelf CNN archi-
tectures, in order to obtain the most suitable for the task, using a large and public
dataset;

(ii) We avoid the high risks of errors due to datasets created from unsupervised online
public repositories, using two public reference datasets, to try to validate our
approach;

(iii) We introduce a preliminary solution based on learning by sampling, showing how
CNNs need further improvements to generalise the detection of COVID-19 in
heterogeneous datasets.

2. Materials and Methods

In this work, we exploited two publicly available datasets, as described in Section 2.1.
Then, in Section 2.2 we give a detailed description of the metrics adopted to evaluate the
experimental results.

2.1. Datasets

The datasets exploited in this work are COVIDx CT-2A and COVID-CT, both of which
are publicly available. We describe them as follows.

2.1.1. COVIDx CT-2A

COVIDx CT-2A [68] is an open-access dataset. At the time of writing, it is composed of
194,922 CT images from 3745 patients from 15 different countries, between 0 and 93 years
old (median age of 51), with strongly clinically verified findings. Every image belongs to
a particular class verified by expert pathologists. In particular, the classes are COVID-19,
indicating CT images of COVID-19 positive patients, pneumonia indicating CT images of
patients with pneumonia not caused by COVID-19, and normal, indicating CT images of
patients in normal conditions.

The countries involved are part of a multinational cohort that consists of patient cases
collected by the following organisations and initiatives from around the world:

1. China National Center for Bioinformation (CNCB) [49] (China);
2. National Institutes of Health Intramural Targeted Anti-COVID-19 (ITAC) Program

(hosted by TCIA [69], countries unknown);
3. Negin Radiology Medical Center [70] (Iran);
4. Union Hospital and Liyuan Hospital of the Huazhong University of Science and

Technology [71] (China);
5. COVID-19 CT Lung and Infection Segmentation initiative annotated and verified

by Nanjing Drum Tower Hospital [72] (Iran, Italy, Turkey, Ukraine, Belgium, some
countries unknown);

6. Lung Image Database Consortium (LIDC) and Image Database Resource Initiative
(IDRI) [73] (countries unknown);

7. Radiopaedia collection [74] (Iran, Italy, Australia, Afghanistan, Scotland, Lebanon,
England, Algeria, Peru, Azerbaijan, some countries unknown).

Figure 2 shows some sample images taken from the dataset.
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Figure 2. Sample CT images from the COVIDx CT dataset. From top to bottom, the images in (1)
represent coronavirus pneumonia due to SARS-CoV-2 infection (NCP), (2) are common pneumonia
(CP), and (3) are healthy lungs. Images are courtesy of [54].

2.1.2. COVID-CT Dataset

COVID-CT-dataset was created by Zhao et al. [41] to be used for future research and
works related to the diagnosis of COVID-19 using CT images. The images were collected
between 19 January 2020 and 25 March 2020 for a total of 470 CT images of different patients.
Of these images, 275 are chest CTs of COVID-19 positive patients, while the remaining
195 are non-positive patients. The classes are COVID-19 which indicates CT images of
COVID-19 positive patients, as in the previous dataset, and non-COVID-19 which indicates
CT images of non-COVID-19 patients, grouping CT images of patients with pneumonia not
caused by COVID-19 and of patients in normal condition. One sample per class is shown
in Figure 3. A senior radiologist confirmed the usefulness of this dataset at Tongji Hospital,
Wuhan, China, who diagnosed and treated a large number of COVID-19 patients during
the COVID-19 outbreak between January and April 2020 [41].

Figure 3. Sample CT images from the COVID-CT dataset. On the left, an image that represents
a coronavirus pneumonia due to SARS-CoV-2 infection. On the right, image belonging to the
non-COVID-19 class. Images are courtesy of [41].
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2.2. Metrics

The performance measures have been evaluated by averaging five different simula-
tions for all the networks. The measures used to quantify the performance of a network are
the accuracy (Acc), precision (Pre), specificity (Spec), recall (Rec), F1-score (F1) as following
defined:

accuracy =
TP + TN

TP + TF + FP + FN
,

precision =
TP

TP + FP
,

specificity =
TN

FP + TN
,

recall =
TP

TP + FN
,

F1 =
2 ∗ precision ∗ recall

precision+recall
=

2 ∗ TP
2 ∗ TP + FP + FN

.

Precision measures the number of correctly labelled items belonging to the positive
class divided by the items correctly or incorrectly labelled as belonging to the same class.
Specificity measures the proportion of correctly identified negatives (also called the true
negative rate), while sensitivity measures the proportion of correctly identified positives
(also called the true positive rate). The fourth measure is accuracy, defined as the ratio of
correctly labelled instances to the entire pool of instances. The last is the F1 score, which
conveys the balance between accuracy and recall.

Furthermore, since we are facing a multiclass imbalance problem, we adopted two
global metrics for multiclass imbalance learning to evaluate the performance of the net-
works [75]. They are the macro geometric average (MAvG), defined as the geometric mean
of the partial accuracy of each class, and the macro arithmetic average (MAvA), defined as
the arithmetic mean of the partial accuracies of each class.

We describe them as follows:

MAvG = (
J

∏
i=1

Acci)
1
J ,

MAvA =
∑J

i=1 Acci

J
.

3. Results

We now describe the experimentation conducted in this work. In detail, in Section 3.1
we first describe the experimental setup adopted for the classification tasks. Then, in
Section 3.2 we report the results of the experiments performed on both datasets.

3.1. Experimental Setup

The images to be classified are lung CTs. They are organised into classes, as described
below. Considering this work as a baseline for further investigation, the images are not
subject to any preprocessing or augmentation process. In order to make the experiments
reproducible, we kept the dataset splits provided by the authors and did not apply any
randomisation strategy. We employed two different training strategies:

(i) From scratch;
(ii) Fine-tuning the previously trained networks.

The tests were carried out on several popular CNNs to find the best architecture for
our purpose. The tested networks are AlexNet [26], the Residual Networks [59] ResNet18,
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ResNet50, ResNet101, GoogLeNet [76], ShuffleNet [77], MobileNetV2 [78], InceptionV3 [79],
and VGG16 [57].

The experiments were performed using the hyperparameters setting described in
Table 1 for all networks to assess potential performance variations. In particular, after
empirical evaluation, we adopted Adam, which performed better than the other solvers. In
addition, the maximum number of epochs was set to 20 due to a large number of images.

Table 1. Hyperparameters setting for training CNNs from scratch and fine-tuning.

Params Value

Solver Adam
Max Epochs 20
Mini Batch Size 8
Initial Learn Rate 1 × 10−4

Learn Rate Drop Period 10
Learn Rate Drop Factor 0.1
L2 Regularisation 0.1
Validation Frequency 8000

Since COVIDx CT-2A is the largest dataset, we employed it for model training. Its
images were divided by the authors according to the following percentages: 70%, 20%,
and 10% for training, validation, and testing, respectively. As for the COVID-CT dataset,
we used it in two ways: the first time, it was taken as a whole as a test set, while the
second time, it was divided in the same way as COVIDx CT-2A to be used for a fine-tuning
strategy.

3.2. CT Image Classification via Deep Learning

Several types of experiments were designed in this work in order to assess the feasibil-
ity of the deep learning approach and its robustness. In particular, on the COVIDx CT-2A
dataset, we performed:

1. A three-class classification as reported in Section 3.2.1;
2. A patient-oriented classification, described in Section 3.2.2.

On the other hand, on the COVID-CT dataset, we realised:

1. A two-class classification using the four best-performing networks from the previous
experiments on the entire dataset;

2. A two-class classification using the same four networks, fine-tuning them on this
dataset.

Both are reported in Section 3.2.3.

3.2.1. Three-Class Classification on COVIDx CT-2A

In this experiment, we trained each network used in this work, using the split proposed
by the authors, in order to obtain a baseline result. Table 2 shows the results obtained with
each architecture employed, while Figure 4 shows the relationship between the MAvG
metric and the three classes included in the dataset.

3.2.2. Patient-Oriented Classification on COVIDx CT-2A

For this experiment, the models obtained from the experiments described in Section 3.2.1
were used. We proceeded as follows: the test set (consisting of 25,658 images) was used,
according to the subdivision provided by the authors, to have one set of images for each
of the 426 different patients in the test set. We ensured that each patient only had images
belonging to one class because otherwise, this would invalidate the test. Once the images
of each patient had been examined, the model would produce results similar to those of the
ternary classification. With this in mind, it was decided to use class accuracy as a critical



Appl. Sci. 2021, 11, 8227 9 of 17

metric: if it was above 50%, the patient belonged to the class. Otherwise, it would be classified
as incorrect. In this way, it was possible to see how each model behaved with each class, and
finally, average accuracy was calculated to describe the level of accuracy of the network, as
shown in Table 3.

Table 2. Macro-average performance for testing on COVIDx CT-2A.

Net Pre Rec Spe Acc F1 MAvA MAvG

AlexNet 91.88% 92.50% 96.64% 95.38% 92.17% 91.75% 91.88%
GoogLeNet 89.46% 88.96% 95.13% 93.59% 89.08% 89.46% 89.39%
InceptionV3 95.48% 94.34% 97.54% 96.97% 94.84% 95.48% 95.48%
VGG16 96.65% 96.57% 98.44% 97.93% 96.58% 96.65% 96.63%
VGG19 97.85% 97.87% 99.08% 98.87% 97.86% 97.85% 97.84%
ShuffleNet 95.36% 94.92% 97.94% 97.28% 95.13% 95.36% 95.34%
MobileNetV2 94.24% 93.05% 97.31% 96.38% 93.38% 94.24% 94.14%
ResNet18 96.41% 96.67% 98.22% 97.71% 95.98% 96.41% 96.40%
ResNet50 92.19% 89.53% 95.61% 94.62% 90.45% 92.19% 92.16%
ResNet101 94.99% 93.06% 97.16% 96.53% 93.08% 94.99% 94.97%
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Figure 4. MAvG and classwise accuracy trends with the different classifiers adopted. Cov, Norm,
Pne stands for the COVID-19, normal, and pneumonia classes, respectively.

Table 3. Patient-oriented testing with COVIDx CT-2A.

Net COVID-19 Normal Pneumonia AVG

AlexNet 88.89% 96.83% 94.40% 93.97%
GoogLeNet 73.10% 92.06% 94.90% 86.52%
Inception V3 83.63% 98.41% 98.40% 93.48%
VGG16 90.64% 97.62% 100.00% 96.09%
VGG19 95.91% 98.41% 97.60% 97.31%
ShuffleNet 85.96% 98.41% 96.00% 93.46%
MobileNet V2 77.78% 98.41% 100.00% 92.06%
ResNet18 82.46% 98.41% 98.40% 93.09%
ResNet50 66.08% 99.21% 96.00% 87.10%
ResNet101 71.93% 99.21% 99.20% 90.11%

3.2.3. Two-Class Classification on COVID-CT

For this experiment, we proceeded in two steps: initially, we used the entire COVID-CT
dataset as a test dataset for the top four models obtained from the Section 3.2.1 experiments.
Subsequently, it was decided to perform a fine-tuning strategy on the same models. In
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particular, we chose VGG19, given its results in both previous experiments, MobileNetV2,
one of the most superficial networks with good results in classifying patients of the normal
and pneumonia classes, and, finally, VGG16 and ResNet18, being the two networks with
the best results after VGG19. The dataset was then divided into training, validation, and
testing, according to the percentages provided by the authors. Table 4 shows the results on
the whole dataset, while Table 5 shows the results after the fine-tuning strategy.

Table 4. Macro-average performance for testing on COVID-CT without fine-tuning.

Net Pre Rec Spe Acc F1

VGG19 52.23% 52.13% 52.13% 52.82% 51.88%
VGG16 45.28% 45.94% 45.94% 47.18% 44.43%
ResNet18 49.70% 49.81% 49.81% 51.74% 45.75%
MobileNetV2 49.11% 49.33% 49.33% 50.94% 46.72%

Table 5. Macro-average performance for testing on COVID-CT with fine-tuning.

Net Pre Rec Spe Acc F1

VGG19 70.19% 68.70% 68.70% 69.15% 68.40%
VGG16 61.19% 60.94% 60.94% 61.19% 60.84%
ResNet18 70.16% 70.01% 70.01% 70.15% 70.02%
MobileNetV2 67.13% 67.05% 67.05% 67.16% 67.07%

4. Discussion

In this section, we give a detailed discussion of the results obtained, shown in Section 3.

4.1. On the Three-Class Classification on COVIDx CT-2A

As Table 2 shows, it can be seen that GoogLeNet, still the worst performing network,
scored consistently below 90%, except for specificity and accuracy. Even ResNet50, which
reports quite different values, drops to 89.53% in recall, indicating that the network had
some difficulty in accurately distinguishing true positives. As for the rest of the models,
they all show consistent results, as was the case during the validation phase. VGG19
presents exceptional results, reaching 99.08% in specificity, while the other metrics exceed
97%. VGG16 and ResNet18 obtained similar results. In general, it can be seen that the
network that produced the best results was VGG19, having consistently high values in
every metric. It is followed by VGG16 and ResNet18, with excellent results narrowly below
those reached by VGG19. The fine-tuning strategy, which will be carried out to prepare the
models for the classification on the COVID-CT dataset, will concern these three models,
plus MobileNet V2, to deduce possible adaptability of specific networks in the mobile
environment for this task.

Some specific insights come from Figure 4, which shows the relationship between
the MAvG metric and the class accuracies for each classifier used. In particular, it can
be seen that in addition to having by far the highest accuracy, VGG19 is also the only
one to have a uniform and acceptable score for all three classes. Concerning the problem
of unbalanced and multiclass classification, it is fundamental to underline that all the
networks manage to achieve high accuracies essentially thanks to the scores obtained on
the normal and pneumonia classes. For example, ResNet50 obtained 99.21% accuracy on
the normal class and only 66.08% on the COVID-19 class, being the best and the worst,
respectively. Furthermore, MobileNetV2 obtained 100.00% accuracy on the pneumonia class,
but only 77.78% on the COVID-19 class, being the best and the fourth-worst, respectively.

4.1.1. On the Patient-Oriented Classification on COVIDx CT-2A

The peculiarity of misclassification of CT images of patients belonging to the COVID-
19 class affects every network. In some cases in a more pronounced form and in others
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less so. A deeper analysis of the results showed that many of the misclassified patients
were classified as belonging to the class pneumonia. This issue is due to the similarity of the
images, as both classes represent pneumonia, although of different origins.

On the other hand, in the case of AlexNet, for the normal class, a relatively high
result was obtained, a sign that few patients were misclassified; a similar situation for the
pneumonia class where some patients were classified as belonging to both the COVID-19
and the normal class. In general, the model obtained a balanced average accuracy.

Additionally, GoogLeNet’s results obtained for patients of the class COVID-19 are
much lower than AlexNet, and even if the accuracy of the other classes is average, we can
see how it affects the average accuracy of the network.

As for InceptionV3, the accuracy of the COVID-19 class is higher than GoogLeNet but
remains at a high level when compared to the results of the other classes. On the other
hand, the average accuracy of the network obtains a positive result.

VGG16 achieves 100% in the classification of patients in the class pneumonia, the
highest result so far and the optimal one. The class normal also obtained a very high
result, while the class COVID-19, although obtaining outstanding results, had some minor
difficulties in classification. As for VGG19, although it did not reach 100% in the pneumonia
class compared to VGG16, this model achieves high and uniform results: 95.91% in the
COVID-19 class is the highest achieved so far. The other classes also produced satisfactory
results, and the average accuracy of the network is 97.31%.

ShuffleNet performs as well as the average, leading to a relatively low result for the
COVID-19 class compared to the other two classes, which perform very well. However,
network accuracy is still average.

MobileNetV2 has excellent performance in the pneumonia and normal classes, while
the poor result obtained in the COVID-19 class affects the average accuracy of the network.

With regard to the Residual networks, ResNet18 obtained high results in the normal
and pneumonia classes and remained average in the COVID-19 class. The network’s final
accuracy is also average; although both ResNet50 and ResNet101 achieved very high results
in the two classes pneumonia and normal, as ResNdidet18 did, those obtained in the COVID-
19 class are drastically low, the lowest to date. This makes ResNet50 the network with the
lowest average accuracy, caused mainly by the results obtained from the classification of
patients in the COVID-19 class; ResNet101 is slightly higher, but still with unsatisfactory
results.

To sum up, considering the results obtained with VGG19, the network with the lowest
number of misclassified COVID-19 patients, we went to see what they were to try to
draw specific conclusions. VGG19 misclassified seven patients and, of these, not all were
misclassified by the other networks, indicating that a hybrid approach could improve
results.

4.1.2. On the Two-Class Classification on COVID-CT

Although VGG19 was the best in the previous tests, it did not produce the same results
with this dataset, as it can be seen from Table 4. As for VGG16, it scored lower than VGG19
in the previous tests and the binary classification of COVID-CT. In this case, ResNet18
scores higher and closer to VGG19. The same applies to MobileNetV2, which achieves
results just below ResNet18.

As a result of the fine-tuning, the results have improved significantly, although still
below the results obtained with the previous dataset, as shown in Table 5. These lower-
than-average results may be due to the fact that the original COVID-CT dataset, dating
back to the early 2020s, has been slowly modified over the months with the addition of
new CT images of poor quality or compromised by overlaps. This fact explains why the
networks cannot classify the images correctly, as having been trained with the high-quality
images from the COVIDx CT-2A dataset, they struggle to accurately classify these new
elements.
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To sum up, the results of the two tables do not differ as much as one would expect
from a fine-tuning strategy. Finally, it can be said that fine-tuned ResNet18 was able to
outperform the other CNNs, with metric values that always hover around 70%.

4.1.3. Comparison with the State-of-the-Art

Table 6 shows a brief but effective comparison with the state of the art works on
COVIDx CT-2A. As it can be seen, the works of Gunraj et al. [54] produced significant
early results with their proposed COVID-Net CT convolutional neural network. However,
recently, the work of Zhao et al. [55] outperformed state of the art, reaching 99.2% using
ResNet-v2, a modified version of ResNet and several improvements, such as the group
normalisation or the weight standardisation for all convolutional layers. Finally, our
baseline work demonstrates that even pre-existing architectures can reach outstanding
results. As reported in Table 6, we reached 98.87% accuracy with VGG-19 without any
improvement, such as preprocessing, data standardisation, group normalisation, etc. This
opens the field to further investigations and improvements, as detailed in the following
section.

Table 6. Comparison of our work with the state of the art on COVIDx CT-2A.

Net Acc

COVID-Net CT-1 [54] 94.5%
COVID-Net CT-2 L [54] 98.1%
COVID-Net CT-2 S [54] 97.9%
Bit-M [55] 99.2%
VGG-19 (this work) 98.87%

4.1.4. Limitations of This Work

Although interesting results have been shown, our work suffers from some limita-
tions. First, the most performing solution on COVID-19 class relies entirely on the VGG19
architecture, even though other networks showed excellent results in the other two classes.
Considering the properties of these networks, combining their features could improve
the results, particularly in increasing the capacity to distinguish the different classes more
specifically. Second, every experimental condition assumed no preprocessing step. How-
ever, in the context of proposing a complete framework in the future, preprocess the images
(e.g., with denoising) could be crucial. Third, the patient-oriented experiments confirmed
the excellent results obtained by VGG19, even though certain patients have been misclassi-
fied in contrast to other CNNs. Efforts should be made in this sense in order to understand
more clearly the sections of the CT scan that are discriminative in this critical scenario.
Fourth, as represented by the classwise performance, the COVID-19 class is generally
harder to distinguish with respect to the others because of their structure. For this reason,
handcrafted and, potentially, the combination of heterogeneous descriptors could help
recognise the most challenging cases, as already shown in similar tasks [80–82].

5. Conclusions

The objective of this work was to propose a classification methodology for the diagno-
sis of COVID-19 through deep learning techniques applied on CT images. To achieve this
goal, an extensive comparative study of the main existing CNN architectures was carried
out.

The tests carried out on the two datasets showed very different results. Those obtained
with the COVIDx CT-2A dataset are excellent for all the models used; in particular, VGG19
stands out for the high values obtained in the specificity metric and precision and recall.
No other network has achieved these results. However, it is important to say that networks
such as VGG16 and ResNet18 also achieved more than satisfactory results. As far as the
other networks are concerned, GoogLeNet and ResNet50 seem the least suitable, as they
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always deviated considerably from the average values obtained. In addition, the results
obtained with VGG-19 are comparable with the results of the networks currently existing
at the state of the art that works on COVIDx CT-2A.

The patient-oriented classification also brought outstanding results, with high accuracy
values for the class COVID-19, and, in some cases, 100% accuracy for the class pneumonia.
The best network remains, in any case, VGG19, being the one with the highest average
accuracy and, therefore, misclassifying a few patients compared to the other networks.
Through the analysis of the misclassified patients, it was deduced that it is probably
necessary to create an ad hoc network exploiting the existing CNNs to improve the results.

About the COVID-CT dataset, however, the results do not match the previous ones
and, on the contrary, there was a drop in performance of almost 50%. Only fine-tuning was
able to remedy this, increasing the values obtained by 20%. Nevertheless, this does not
compensate for the difference in performance. The problem could be mainly due to the
quality of the images of the COVID-CT dataset, which are often compromised or of very
poor quality.

This work highlighted some limitations. First of all, cross-dataset experiments showed
that existing CNNs, even after a fine-tuning procedure, really suffer from limited dataset
scenarios. Second, patient-oriented experiments show that some networks misclassified
some COVID-19 patients as normal pneumonia cases, while others did not. This clearly
motivates further investigation on the models and, also, possible modifications. Third,
the absence of defined standards in the acquisition of these images and, in addition, the
problem of building affordable COVID-19 datasets from heterogeneous sources, especially
during the early months of the pandemic [7] can be considered a limitation and also a
future direction, as it clearly appears that the distinctive COVID-19 features need to be
further studied.

The indications emerging from this work are that:

(i) In addition to fine-tuning, some preprocessing steps oriented to the enhancement
of CT images could be helpful for the networks to produce more discriminative
features; and

(ii) Considering the results of the patient-oriented experiments, a hybrid approach,
even involving ad hoc handcrafted features, could improve the results.

In future directions, we certainly aim to discover other valuable features from CT
images to recognise COVID-19, extending the investigation to include handcrafted features
and even combining them with deep features. In addition, we also want to consider
assessing the severity of COVID-19.

We will conduct further experiments to identify key features in CT images and facili-
tate screening by medical doctors. We want to stress again that this work is still at the stage
of theoretical research, and the models have not been validated in real clinical routines.
Our contribution is to offer a baseline with some public benchmark datasets to be extended
with new investigations. Therefore, we would like to test our system in the clinical routine
and communicate with doctors to understand how such a system can be integrated into
the clinical routine.

Therefore, we would like to:

1. Modify VGG19 to investigate the best accuracy density (accuracy divided by the
number of parameters) and the best inference time;

2. Optimise the hyperparameters, for example with Bayesian method;
3. Use class activation map (CAM) to understand which parts of the image are relevant

in the misclassification cases obtained by VGG19 but not from the other networks;
4. Test our system in the clinical routine and communicate with doctors to understand

how such a system can be integrated into the clinical routine.
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