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Abstract

We consider the transverse-momentup)(distribution of generic high-mass systems (lepton pairs, vec-
tor bosons, Higgs particles, .. . )quuced in hadron collisions. At smal}, we concentrate on the all-order
resummation of the logarithmically-enhanced contributions in QCD perturbation theory. We elaborate on
theb-space resummation formalism and introduce some novel features: the large logarithmic contributions
are systematically exponentiated in a process-independent form and, after integratign otfexy are
constrained by perturbative unitarity to give a vanishing contribution to the total cross section. At interme-
diate and largey7, resummation is consistently combined with fixed-order perturbative results, to obtain
predictions with uniform theoretical accuracy over the entire range of transverse momenta. The formalism
is applied to Standard Model Higgs boson production at LHC energies. We combine the most advanced
perturbative information available at present for this process: resummation up to next-to-next-to-leading
logarithmic accuracy and fixed-order perturbation theory up to next-to-leading order. The results show a
high stability with respect to perturbative QCD uncertainties.
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1. Introduction

This paper is devoted to study the transverse-momenggispectrum of high-mass systems
produced by hard-scattering of partons in hadron—hadron collisions. IfRefie presented
some quantitative results on the spectrum of the Standard Model (SM) Higgs boson, produced
via the gluon fusion mechanism, at LHC energies. The formalism used ifilRef quite general
and applies to the transverse-momentum distribution of generic high-mass systems (lepton pairs,
vector bosons, Higgs patrticles, ...)opuced in hadron collisions. The purpose of the present
paper is twofold. Owing to its general applicability, we find it useful to first describe and discuss
the formalism with quite some details. We then perform a more systematic phenomenological
analysis of theyy distribution of the Higgs boson at the LHC.

In this introductory section, rather than illustrating the resummation formalism in general
terms, we mainly consider the explicit case of te spectrum of the Higgs boson. This also
serves for underlying some general features of the formalism in concrete, rather than abstract,
terms.

Within the SM of electroweak interactions, the Higgs bof2jns responsible for the mech-
anism of the electroweak symmetry breaking, but this particle has so far eluded experimental
discovery. Direct searches at LEP have established a lower bound of 114.BG@Vthe mass
My of the SM Higgs boson, whereas SM fits of electroweak precision data lead to the upper
limit My < 260 GeV at 95% CL4]. The next search for Higgs boson(s) will be carried out at
hadron colliders, namely, the Fermilab Tevatf6r6] and the CERN LH{7,8].

The main production mechanism of the SM Higgs bogbmt hadron colliders is the gluon
fusion procesgg — H, through a heavy-quark (mainly, top-quark) loop. When combined with
the decay channelH — yy, H > WW and H — ZZ, this production mechanism is one of
the most important for Higgs boson searches and studies over the entire mass range, 00 GeV
My < 1TeV,to be investigated at the LHT]. To fully exploit the physics potential of the gluon
fusion process, itis relevant to provide reliable theoretical predictions for the corresponding total
cross section and for the associated distributions, such as, for instance, thgHajgibution.

The dominant source of theoretical uncertainties on these quantities is the effect of QCD radiative
corrections, which, therefore, have to be carefully investigated.

The total cross section for Higgs boson production by gluon fusion has been computed in QCD
perturbation theory at the leading order (L@)(ag), at the next-to-leading order (NL@9,10]
and at the next-to-next-to-leading order (NNLRQJL—14]in the QCD couplingxrs. The NNLO
computation of the rapidity distribution of the Higgs boson has recently been comfiléfed
A key point of this theoretical activity is that the origin of the dominant perturbative contributions
to the total cross section has been identified and understood: the bulk of the radiative corrections
is due to virtual and soft-gluon ternf$2]. This point has a twofold relevance. On one side, it
explains the observatidi6] of the validity of the largeM; approximation 4, being the mass
of the top quark) in the calculation at the NLO, and, therefore, it justifies the use of the same
approximation at and beyond the NNLO. On the other side, it allows to estimate higher-order
QCD contributions by supplementing the NNLO calculation with an all-order resummation of
the logarithmically-enhanced terms due to multiple soft-gluon emigigghHaving these terms
under control allows us to reliably predict the value of the cross section and, more importantly,
to reduce the associated perturbative uncertainty at the level of ald®@%[17].

When studying ther distribution of the Higgs boson in QCD perturbation theory, it is con-
venient to start by considering separately the laygexnd smallg; regions.
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The largegr region is identified by the conditioqp; ~ Mg . In this region, the perturbative
series is controlled by a small expansion parame@M%), and calculations based on the trun-
cation of the series at a fixed orderig are theoretically justified. SM Higgs boson production at
largeqr via gluon fusion has to be accompanied by the radiation of at least one recoiling parton,
so the LO term for this observable is @f(ag). The LO calculation was reported in REE8]; it
shows that the large4; approximation works well as long &gy < 2M, andgr < M,. Similar
results on the validity of the larg&f approximation were obtained in the case of the associated
production of a Higgs boson plus 2 jets (2 recoiling partons at large transverse moftéhta)

In the framework of the larg@4, approximation, the NLO QCD corrections to the transverse-
momentum distribution of the SM Higgs boson were computed in R2&0s:23] Corrections to

the larged; approximation are considered in REf4]. The numerical programs of Ref&0,23]

can also be used to evaluate arbitrary infrared- and collinear-safe observables up to NLO in the
largeq 7 region and, in the case of R¢23], up to NNLO whery; = 0.

In the smallgr region gr < My), where the bulk of events is produced, the convergence of
the fixed-order expansion is spoiled, since the coefficients of the perturbative sefig{Mﬁ)
are enhanced by powers of large logarithmic terrﬁé(Mi%, /q%). To obtain reliable perturbative
predictions, these terms have to be resummed to all ordess.iThe method to systemati-
cally perform all-order resummation of classes of logarithmically-enhanced terms atggmall
is known[25-33] In the case of the SM Higgs boson, resummation has been explicitly worked
out at leading logarithmic (LL), next-to-leading logarithmic (NLI34,35] and next-to-next-to-
leading logarithmic (NNLL)36] level.

The fixed-order and resummed approaches at small and large valyesaf then be matched
at intermediate values afr, to obtain QCD predictions for the entire range of transverse mo-
menta. Phenomenological studies of the SM Higgs bgsadistribution have been performed in
Refs.[1,35,37-46] by combining resummed and fixed-order perturbation theory at different lev-
els of theoretical accuracy. A comparison of theoretical calculafibd®,42,44]and of results
from parton shower Monte Carlo generatptg—50]is presented in Ref51].

In the present paper we compute the Higgs bagodistribution at the LHC by combining the
most advanced perturbative information that is available at present: NNLL resummation at small
gr and NLO perturbation theory at large . The first results of our calculation were presented in
Refs.[1,52]. Here we perform a more complete phenomenological study and present a discussion
of theoretical uncertainties.

The formalism used to obtain these results was briefly described in Re38] and is il-
lustrated in detail in the present paper. Three distinctive features are anticipated here. The
resummation is performed at the level of the partonic cross section; this implies that the par-
ton distributions are evaluated at the factorization spalewhich has to be chosen of the order
of the hard scalé/. The resummed terms are embodied in a form factor that is universal: it
depends only on the flavour of the partons that initiate the hard-scattering subprocess at the Born
level (e.g.,qg annihilation in the case of Drell-Yan lepton pair production, ggdfusion in
the case of Higgs boson production). A constraint of perturbative unitarity is imposed on the
resummed terms, to the purpose of reducing the effect of unjustified higher-order contributions
at large values ofr and, especially, at intermediate valuesgef The constraint implies that
the total cross section at the nominal fixed-order accuracy (NLO or NNLO) is recovered upon
integration ovegr of the transverse-momentum spectrum (at NELO or NNLL + NLO).

The paper is organized as follows. In Sectiihe resummation formalism is discussed in de-
tail. After illustrating the general aspects of our approach in Se@ifyrwe discuss the structure
of the resummed cross section in Sect®? The relation to the standatdspace resummation
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is given in Sectior?.3. Section2.4 is devoted to the finite component of the cross section. In
Section3 we apply the resummation formalism to the production of the SM Higgs boson at the
LHC. In Section4 we draw our conclusions. IAppendix Awe discuss the details of the ex-
ponentiation in the general multiflavour case Apppendix Bwe illustrate the calculation of the
Bessel integrals required in the computation of the perturbative expansion of the resummed cross
section.

2. Transver sesmomentum resummation

The formalism[1,33] that we use to compute thg distribution of the Higgs boson applies
to more general hard-scattering processes. Therefore, we describe it in general terms.

2.1. The resummation formalism: from small to large valueg;of

We consider the inclusive hard-scattering process

hi(p1) + ha(p2) - F(M, q7) + X, 1)

where the collision of the two hadrog and 2 with momentap; and p, produces the trig-
gered final-state systein, accompanied by an arbitrary and undetected final sfai&e denote
by /s the centre-of-mass energy of the colliding hadréns- (p1 + p2)2 ~ 2p1po). The ob-
served final staté is a generic system of non-QCD partons suclb@sor morevector bosons
(y*, W, Z,...), Higgs particles, Drell-Yan (DY) lepton pairs and so forth. We do not consider
the production of strongly interacting particles (hadrons, jets, heavy quarlssince in this
case the resummation formalism of smaHdogarithms has not yet been fully developed.
Throughout the paper we limit ourselves to considering the case in which only the total in-
variant massV/ and transverse momentugi of the system¥ are measured. According to the
QCD factorization theorem (see R3] and references therein), the corresponding transverse-
momentum differential cross sectiodé /dq% can be written as

dO‘F
—2(QT, Ms S)
dqz

1

1
do .
:Zfdxlfdxzfa/hl(m, 142 fio/ o (x2, 1% ;th (g7, M. 5; as(u?), n%. n%),
e e K @

where fa/h(x,uzF) (@ =qyr,q7,g) are the parton densities of the colliding hadrons at the
factorization scaleup, d&Fab/dq% are the partonic cross sectioris= x1x2s is the partonic
centre-of-mass energy, apg is the renormalization scale. Throughout the paper we use parton
densities as defined in th@S factorization scheme, arg(¢?) is the QCD running coupling in
the MS renormalization scheme.

The partonic cross section is computable in QCD perturbation theory as a power series ex-
pansion ines. We assume that at the parton level the systeis produced with vanishingr
(i.e., with no accompanying final-state radiation) in the lowest-order approximation, so that the

1 To be precise, when the systefris not a single on-shell particle of ma&s what we denote byé /dq% is actually
the differential cross sectia? d6 r /dM? dq?.
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corresponding cross sectiondéﬁ,)g/dq% 6 S(q%). SinceF is colourless, the lowest-order par-
tonic subprocess; + ¢ — F, is eithergq annihilation ¢ = g), as in the case of*, W and Z
production, orgg fusion ¢ = g), as in the case of the production of the SM Higgs bo&on

As recalled in Sectiod, higher-order perturbative contributions to the partonic cross section
d6Fap/dg? contain logarithmic terms of the type”iiM?/q2) that become large in the small-
gr region gr < M). Therefore, we introduce the following decomposition of the partonic cross
section in Eq(2):

A A ~ (fin.
doFap _ dUI(Trz?Z) dal(*":lnb) (3)
dq% dq% dq% .
The distinction between the two terms on the right-hand side is purely theoretical. The first
(res)

term, dé,,,,”, on the right-hand side contains all the logarithmically-enhanced contributions,
(%/q2)In"™(M?/q2), at smallgr, and has to be evaluated by resumming them to all orders in
as. The second ternﬂ&,gil”b'), is free of such contributions, and can be computed by fixed-order
truncation of the perturbative series. More precisely, we define the ‘finite’ compdﬁgﬁz) in

such a way that we hate

2

T ~ (fin.)
d
lim /dq% I:Lgb} =0, (4)
2r—0 0 qu f.o.

where the right-hand side vanishasler-by-orderin perturbation theory. In particular, this im-

plies that any perturbative contributions proportionaé (@%) have been removed frodﬁg};)

. . A (res)
and included infG ;" .

The ‘resummed’ componemis <, of the partonic cross section cannot, of course, be eval-
uated by computing all the logarithmic contributions in the perturbative series. However, as
discussed in Sectio.2, these contributions can systematically be organized in classes of LL,
NLL, ... terms and, then, this logarithmic expansion can be truncated at a given logarithmic
accuracy.

In summary, theyy distribution in Eq.(2) is evaluated, in practice, by replacing the partonic
cross section on the right-hand side as follows

dory_[dS] | 4
N 4| ZEab | (5)
dq? dq? | dq? I
T T a T .0.

The first and second terms on the right-hand side denote the truncation of the resummed and
finite components at a given logarithmic accuracy and at a given fixed order, respectively. The
resummed component gives the dominant contribution in the smpalégion, while the finite
component dominates at large valuegpf The two components have to be consistently matched
atintermediate values qfr, so as to obtain a theoretical prediction with uniform formal accuracy
over the entire range ofr, from gr < M up togr ~ M. To this aim, we computh&cfgn')]f‘o,

starting from[dé,p 5.0, the usual perturbative series for the partonic cross section truncated at

a given fixed order inxs, and subtracting from it the perturbative truncation of the resummed

2 The notation X Jf o, means that the quantity is computed by truncating its perturbative expansion at a given fixed
order inas.
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component at theamefixed order inas:

~ (fin.) A ~ (res)
|:dUFab i| — [dGFub:| _ |:dUFab :| (6)
dg5 Jio. L def lto L dgf lto
Moreover, we impose the condition:

A~ (res) A~ (res)

dGFab — doFab (7)
dq? L odg? '
qdr Jdiradfo. qr Jf.o.

This matching procedure guarantees that the replacement {)gtains the full information of
the perturbative calculation up to the specified fixed order plus resummation of logarithmically-
enhanced contributions from higher orders. H§$.and (7)indeed imply that the matching is
perturbatively exact, in the sense that the fixed-order truncation of the right-hand side(6f Eq.
exactly reproduces the customary fixed-order truncation of the partonic cross sectior(2i Eq.
The (smallg7) resummed and (larger) fixed-order approaches are thus consistently combined
without double-counting (or neglecting) of perturbative contributions and by avoiding the intro-
duction of ad-hoc boundaries (such as, for instance, the choice of some intermediate yalue of
as ‘switching’ point between the resummed and fixed-order calculations) between thegdarge-
and smallgr regions.

The resummed contributions that are present in the téﬁ*ﬁf;)]m of Eq. (5) are necessary
and fully justified at small7. Nonetheless they can lead to sizeable higher-order perturbative
effects also at larger, where the smallr logarithmic approximation is not valid. To reduce the
impact of these unjustified higher-order terms, we require that they give no contributions to the
most basic quantity, namely the total cross section, that is not affected bygmaliarithmic
terms. We thus impose that the integral oyerof Eq. (5) exactly reproduces the fixed-order
calculation of the total cross section. sm@}“j,} is evaluated in fixed-order perturbation the-
ory, the perturbative constraint on the total cross section is achieved by imposing the following
condition:

® ~ (res) ® ~ (res)
[aa || - [agp|Cre] ®)
9 d%Z" la o dCI% f.o.

Eq. (8) can be regarded, in some sense, as a unitarity constraint. As a matter of fact, the loga-
rithmic contributions that are resummeddﬁgf,f) are, precisely speaking, plus distributions of
the type[(ag/q%) In”’(MZ/q%)h. Therefore, it is quite natural to require that these resummed
terms give a vanishing contribution to the total cross section. Note that the bulkgf dhistrib-
utionis in the regioyr < My . Since resummed and fixed-order perturbation theory controls the
smallgy and largegr regions respectively, the total cross section constraint mainly acts on the
size of the higher-order contributions introduced in the intermedjateegion by the matching
procedure.

Another distinctive feature of the formalism illustrated so far is that we implement pertur-
bative QCD resummation at the level of the partonic cross section. In the factorization formula
(2), the parton densities are thus evaluated at the factorization;sgakes in the customary per-
turbative calculations at larggr. Although we are dealing with a process characterized by two
distinct hard scaleg;; and M, the dominant effects from the scale regigh<« M are explicitly
taken into account through all-order resummation. Therefore, the central valyeasfd. z has
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to be set equal td/y, the ‘remaining’ typical hard scale of the process. Then the theoretical ac-
curacy of the resummed calculation can be investigated as in customary fixed-order calculations,
by varyingu r andu g around this central value.

At small values ofgr, the perturbative QCD approach has to be supplemented with non-
perturbative contributions, since they become relevanjradecreases. A discussion on non-
perturbative effects on thgr distribution of the SM Higgs boson is presented in Sec8dn

The resummation and matching formalism, which we have so far illustrated in quite general
terms, is set up to deal with the transverse-momentum region whefeM . Resummation of
smallgr logarithms cannot lead to any theoretical improvements in the largegion, where
those logarithms are not the dominant contributions. Wheg M, the use of the resummation
formalism is no longer justified (recommended), and we have to use the customary fixed-order
perturbative expansion.

2.2. The resummed component

The method to systematically resum the logarithmically-enhanced contributions at small
gr was set upg26—30] shortly after the first resummed calculation of the Q¥ spectrum
to double logarithmic accurad5]. The resummation procedure has to be carried out in the
impact-parameter space, to correctly take into account the kinematics constraint of transverse-
momentum conservation. The resummed component of the transverse-momentum cross sectior
in Eq.(3) is then obtained by performing the inverse Fourier (Bessel) transformation with respect
to the impact parametér. We write?

d&(res)
E(ar. M. $s as(uf). k. n%)
dqr
M? [ d%b . .
:T/_"’b'qTWa?(b’M»S;as(u?e),ufe,u%) ©)
S 4
M2 [ b F A 2y 2 2
= z /dbEJo(qu)Wab(b,M,s;otg(;LR),;LR,/LF), (10)
0

whereJp(x) is the Oth-order Bessel function.

The perturbative and process-dependent fa)digr embodies the all-order dependence on the
large logarithms 184252 at largeb, which correspond to ther-space terms In2/q2 that are
logarithmically enhanced at smaf} (the limit g7 < M corresponds td4b > 1, sinceb is the
variable conjugate tg7). Resummation of these large logarithms is better expressed by defining
the N-momenté Wy of W with respect ta = M?/5 at fixed M:

1
Wiy v (b, M; as(uk), n% 1) = / dzzVTIWE (b, M. § = M%)z as(u3). u%. 13).
0

(11)

3 The subscripb, which labels the parton flavour, should not be confused with the impact paradmeter
4 Throughout the paper, th&v-momentshy of any function h(z) of the variablez are defined asiy =

JtdzzN=1h(z).
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The resummation structure Wﬂ,zv can indeed be organized in exponential form, as discussed
below.

In the following of this subsection, the subscripts denoting the flavour indices are understood.
More precisely, we present the resummation formulae in a simplified form, which is valid when
there is a single species of partons. This simplified form illustrates more clearly the key structure
and the main features of the resummed partonic cross section. The generalization to considering
more species of partons does not require any further conceptual steps: it just involves algebraic
complications, which are discussed in Sec2oBand inAppendix A

The logarithmic terms embodied WZ:,N are due to final-state radiation of partons that are
soft and/or collinear to the incoming partons. Their all-order resummation can be orgg8ed
in close analogy to the cases of soft-gluon resummed calculations for hadronic event shapes
in hard-scattering processggi—57]and for threshold contributions to hadronic cross sections
[58,59] We write

Wi (b, M as(ug), 1k 15)
=Hy (M, as(uz); M?/u%, M? /1%, M?/ Q%)
x exp{Gn (as(u%). L M?/u%. M?/Q%)}. (12)

The functionH,f, does not depend on the impact paramétand, therefore, it contains all the
perturbative terms that behave as constants in the bmit co. The functiong includes the
complete dependence érand, in particular, it contains all the terms that order-by-ordergn
are logarithmically divergent when— co. This factorization between constant and logarithmic
terms involves some degree of arbitrarinfsg], since the argument of the large logarithms can
always be rescaled asM?b2 = In 9Q%b2 + In M2/ Q?, provided that is independent o and
that InM2/Q? = O(1) whenbM > 1. To parametrize this arbitrariness, on the right-hand side
of Eq. (12) we have introduced the scafg, such thatQ ~ M, and we have defined the large
logarithmic expansion parametdr, as
2,2
L=In Q f , (13)
bg

where the coefficiertip = 2¢ V2 (yg = 0.5772... is the Euler number) has a kinematical origin
(the use oby in Eqg. (13)in purely conventional: it simplifies the algebraic expressiog)of

The role played by the auxiliary scaf@ (which we name the ‘resummation scale’) in the
context of the resummation program is analogous to the role played by the renormalization (fac-
torization) scale in the context of renormalization (factorization). Although the resummed cross
sectionWﬁ does not depend o@ when evaluated to all perturbative orders, its explicit depen-
dence onQ appears Whem’\/}; is computed by truncation of the resummed expression at some
level of logarithmic accuracy (see below). As in the casg.gfand ur, we should se) at
the central valug) = M; variations of the resummation scafearound this central value can
then be used to estimate the uncertainty from yet uncalculated logarithmic corrections at higher
orders. Note that the resummation scale dependenwfpfshould not be confused with the
‘resummation scheme’ dependence considered in[B&}. In fact, as shown in Sectidh3, WIG
is exactly independent of the resummation scheme.

All the large logarithmic termag L™ with 1 <m < 2n are included in the form factor e4@).
More importantly, all the logarithmic contributions t with n + 2 < m < 2n are vanishing.
This property, which is called exponentiation, folloj26—30]from the perturbative dynamics of
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(Abelian and non-Abelian) gauge theories and from kinematics factorization in impact parameter
space. Thus, the expondghttan systematically be expanded as

G (as. L; M? /%, M?/ 0?)

2 os (3
=LgW(asL) + g\ (asL; M?/u%, M?/0?) + gz(v)(asL; M?/u%, M?/02)
+00 as n—2
+Z(;> en (osLs M2/, M/ Q). (14)
n=4

whereas = as(uﬁ) and the functiong ™ (asL) are defined such thgt™) = 0 whenasL = 0.
Thus the termLg® collects the LL contributions2L"*1; the functiong® resums the NLL
contributionsxgL"; ¢® controls the NNLL term&gL"‘l, and so forth. Note that in the context
of the resummation approach, the parametdr is formally considered as being of order unity.
Thus, the ratio of two successive terms in the expangidhis formally of O(as) (with no L
enhancement). In this respect, the resummed logarithmic expansion (b4 as systematic
as any customary fixed-order expansion in powerggf

The functionH,f, in Eq. (12) does not contain large logarithmic terms to be resummed. It can
be expanded in powers at = as(u%) as

HE (M, as; M? /%, M? /%, M?/0?)

=0} (as, M) [1 + ZHE® (MP /%, M? /%, M?/0?)

2
as
+ <;> Hy P (M), M? /i, MP) Q)

o
n Z( S) HED (M2, M2 M) 0P )} (15)
wherea(o) = asa}"o) is the lowest-order partonic cross section for the hard-scattering process

in Eq. (1)

Two other general aspects of the resummed partonic cross sw;@oare the factorization
scale (and scheme) dependence and the process dependence. As discussed below, the form fact
exp{G} doesnot depend on both the factorization scale (and scheme) and the specific hard-
scattering process.

The hadronic cross section on the left-hand side of Bqs a physical observable and cannot
depend on the factorization scale . In practice, the evaluation of the right-hand side at a certain
perturbative accuracy introduces flag dependence of the partonic cross sectlép,,. This de-
pendence is perturbatively balanced by the dependence of the parton densitjgs, (x, ,u%).

Note that the parton densities in &) do not depend on the transverse momentyi{or on

the impact parametér). Recall also that we implement transverse-momentum resummation at
the level of the partonic cross sectidbr,;, by using Eqs(9) and (12) Therefore, any.r de-
pendence of the parton densities cannot introducdagarithmic dependence oh in the form
factor exdG}. In other words, the perturbative expansid®) of the functionHﬁ, depends on

wur, while the exponeng of the form factor and its corresponding logarithmic functizgrfq’,g in
Eq.(14)do not depend op r and on the factorization scheme used to define the parton densities.
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As explicitly shown in Sectio2.3, the form factor exfj} in Eq.(12) does not depend on the
final-state systent produced in the hard-scattering process of(@}.The form factor is process
independent: it is produced by universal soft and collinear radiation from the QCD partons enter-
ing the hard-scattering process (when the simplification of considering a single parton species is
removed, there are various process-independent form factors for the various partonic channels).
The dependence on the process is fully taken into account by the hard-scattering f&tﬁtion
which embodies contributions produced by virtual corrections at transverse-momentum scales
qr ~ M.

The truncation[l/\/,{j]La of the resummed cross section at a given logarithmic accuracy is
defined as follows. At LL accuracy, we include the functigit in the exponent; and we

approximateH{, by the Born cross sectiom}o). At NLL accuracy, we include the functions

gD andgﬁ) and the coefficierfl-{g(l)(.z)At NNLL accuracy, we also includgi(\?) andHf,(z). ;’(rl)e

reason for including botﬁif,(l) andgy” at NLL accuracy is that the combined effectgfH
andLg™ (asL) leads to logarithmic contributionagL", that are of the same order as those in
gj(\?)(asL). An analogous observation applies to the inclusion of @ﬁ andH]f,(Z) at NNLL
accuracy.

The logarithmic truncation of the resummed component of the cross section can then be com-
bined, as in Eq(5), with the fixed-order expansion of the finite component in &). The
NLL + LO result is obtained by supplementing NLL resummation with the LO expansibn
large g7. The NNLL + NLO result combines NNLL resummation with the NLO expansion
at largegr. This procedure for combining the resummed and fixed-order approaches exactly
satisfies the matching conditions in Eg¢$) and (7) Note that the fulfillment of the matching
conditions is not completely trivial. For instance ., was not included in6 *® at NLL
accuracy, the matching condition in EJ) would be violated at LO (in other words, E@#)
would be violated since thgr integral of[d&;f'a”;ho would lead to a non-vanishing finite value
whenQpr — 0).

To reduce the impact of unjustified resummed logarithms in the largeegion, we use a
procedure inspired by that introduced in REF5] to deal with kinematical constraints when
performing soft-gluon resummation T e~ event shapes. We consider the exporgfals, L)
of the form factor in Eqs(12) and (14)and we perform the replacement

G(as, L) — G(as, L). (16)

In other words, in the argument ¢f(as, L) we replace the logarithmic variable with the
variableL defined as

21,2
L= |n(Qbf +1). (17)
0

Comparing the definitions in Eqél3) and (17)we see that in the resummation regign > 1
we havel = L + O(1/(Qb)?), and thus the replacement in E@6) is fully legitimate® to
arbitrary logarithmic accuracy. Although the variablesand L are equivalent to organize the

5 We recall that there is a mismatch of notation betweerthdistribution atg; ~ M and the total cross section. The
LO (NLO) term of the finite component of thgr distribution contributes to the total cross section at NLO (NNLO).

6 Note that the replacement in E(L6) introduces an explicit dependencedﬁ‘ges) on the resummation scal@.
Owing to the matching procedure in ), this dependence is balanced by thalependence of trwfr;f'”').
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resummation formalism in the regiofb > 1, they lead to a different behaviour of the form
factor at small values ob (i.e., large values of;7): when Qb « 1, we havelL — 0 and
exp(G(as, L)} — 1. Therefore, performing the replacement in Etg), we reduce the effect
produced by the resummed contributions in the srhakgion, where the use of the large-
resummation approach is not justified.

In particular, since e (s, L)} = 1 atb = 0, using Eqs(9) and (12)we obtain the relation

o0 A (res)
/dQ% Lz(qT’ M, §, OlS(M%), M%v /’L%’t Q2)
dqr
M? .
= : HF(M,s,ag(;L%);Mz/ui,Mz/u%,MZ/Qz), (18)

which simply follows from the fact that the valuetat= 0 of the ¢-space) Fourier transformation
of the g distribution is equal to the integral ovef of the gy distribution itself. Since the hard
cross sectiort{ is evaluated in fixed-order perturbation theory, the relati@)implies that the
replacement in Eq(16) also allows us to implement the perturbative constré8hon the total
cross section. More precisely, the integral oyerof the gy distributiondsr/dgr at NLL + LO
(NNLL + NLO) accuracy exactly reproduces the calculation of the total cross section at NLO
(NNLO).

The purpose of the transverse-momentum resummation prd@6x80]is to explicitly eval-
uate the logarithmic functior@f\’,’) of Eq.(14)in terms of few coefficients that are perturbatively
computable. As illustrated in Sectich3, this goal is achieved by showing that the all-order
resummation formulél4) has the following integral representation:

2

2 2
Gn (as(uk), L M?/u%, M?/ Q%) = - f dqiz [A(as(qz)) In % + By (as(qz))],

b3/b2 1)
19
whereA (as) and By (as) are perturbative functions
as as\? as\® > as\"
Alas) = —AD 4 <—> AP 4 (—) A® 1Y (—) AW, (20)
T s T T
n=4
- as = (@s\ 5@ , xo(@s\" 2w
B =B —) B 2 =) By. 21
N (as) . N+<7‘[) N+ (71) N ( )

n=3

The coefficientsA®™ and I?Z(\}’) are related to the customary coefficients of the Sudakov form
factors and of the parton anomalous dimensions. This relation is discussed in Qe&tion

Using Eq.(9), the resummed componeds (°* /dq2 of the ¢ distribution is fully deter-
mined by the functionﬁ,f, and Gy in Eg. (12). These functions are in turn specified by the
perturbative coefficient’s{f,(") (see Eq(15)), A™ and é};” (see Eqgs(19)—(21), which can be
extracted from the logarithmic terms in the perturbative expansion afthdistribution at the
n-th relative order invs. Therefore, the customary fixed-order computation ofgthéistribution
is sufficient to obtain the full information that is necessary to explicitly perform resummation at
the required logarithmic accuracy.
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By inspection of they? integration in Eq.(19), it is evident that the exponeity of the

process-independent form factor in Efj2) has the logarithmic structure of E(L.4). The func-
tions gl(\’,’) depend on the coefficients in Eq®20) and (21) and the functional dependence is
completely specified by Eq19). More precisely (see Eq&2)—(24), the LL functiongj(vl) de-
pends onA®, the NLL functiongﬁ) depends also od® and B,(\,l), the NNLL functiongﬁ)
depends also oA® andB'[(Vz), and so forth. Starting from the integral representation in(E@),
the explicit functional form of the functiongf\’}) (for arbitrary values of:) can easily be com-
puted by using the method that is described in Appendix C of [R#f.

The LL, NLL and NNLL functionSg,(\}), gj(\f) andgl(\?) have the following explicit expressiofis

AD X +Ind-1n)

gWasl) = e o
gy (asL; ZI_; Z_§>
_ %Dm(l—x)— %;(ﬁ—kﬂn(l—)\)) +%:)<1i—x+'n<1—k)> '”5_2:
A(;:?ﬁl (% In—2)+ ln(ll__)\/\) 1 ’ A)’ (23)

2 2
@ M2 M )
gv \asl; —, —
N ( nz’ Q?
A® 32 B? A A@g (aBr-2) C@d-29In@-3)
2(1— )2 (1—2)2

T 282(1-12 o l-r B3

BPgL/ »  In@—n)\ AD 2 i 0?
g \1-x 1-1 2 1-02" u

2 2 2 —
_y A AD@ a 1-21
+|nQ—2(B(1)— + +A<1>ﬁ< + In(1—x)))

iUV 10 g =2 g\ a-a?
(B n [
NPT (BoB2(2 - 31) + ﬂ%x)), (24)

where
= poas(i)L, (25)
BY =By +A™n Z—j, (26)

7 Note that the functional form of the functiomé\',’) is exactly the same as that of the functions that appear in the
calculation of the energy—energy correlatioreife— annihilation[60].
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and g, are the coefficients of the QCPB function:

dInas(u?) 2 = as\" !
= el =— - . 27
dingz = Plasiu) HX_gﬁn - @7)
The explicit expression of the first three coefficierfig, 81 and gy, is [61]
1 1,

ﬂo:l—z(lch—ZNf), ﬂ1=ﬂ(17CA—5CANf—3CFNf),

gy L(2857ps 14155, 205, L can 4 O N2y Boon

2= 64\ B4 A~ Bg AN, T g AtFNr TR T g CaN s T g CrAY )

(28)
whereN is the number of QCD massless flavours andSb&N,) colour factors ar€ 4, = N,
andCr = (N? — 1)/(2N,).

Note that the functiongg\’,‘)(asL) in Egs.(22)—(24)are singular at the poirit= 1, which in
terms of the impact parameter corresponds to the veueb? = (b3/0?) expir/(Boas(11%))}

(i.e., by ~ 1/Agqcp, Where Agep is the momentum scale of the Landau pole in QCD). These
singularities, which are related (see E#9) whenb ~ 1/Aqcp) to the divergent behaviour of
the perturbative running couplings(¢®)/m ~ [foIn(¢?/A%cp)] ™" near the Landau pole, signal
the onset of non-perturbative phenomena at very large valuespfequivalently, in the region

of very small transverse momenta.

This type of singulariti€sis a common feature of all-order resummation formulae of soft-
gluon contributions. Within a perturbative framework, these singularities have to be regularized.
A possible regularization procedure consists in introducing a ‘minimal prescription’, such as
those introduced in Ref59] (in the case of threshold resummation) 4A4,62] (in the case
of b-space or joint resummation). In the casebedpace resummation, other procedures are to
use the b, prescription’ of Ref.[29], by freezing the integration oveér below a fixed upper
limit, or more simply, to introduce a cut-off at a very large (but smaller thahvalue of b
[63]. Admittedly, when the non-perturbative contributions are sizeable, they have to be properly
included, according to the prescription used to regularize the singularities.

2.3. Sudakov form factor, universal form factor and perturbative coefficients
The b-space resummation approach was fully formalized by Collins, Soper and Sterman

[28,32]in terms of perturbative coefficients. Considering the generic hard-scattering process in
Eq. (1), the transverse-momentum differential cross section i&ds written as

00
do M? b
O (qr. M) = —/db—Joqu)WF(b, M.s) 4, (29)
qu K ’ 2

where the dots on the right-hand side stand for terms that are not logarithmically enhanced at
smallgr (largeb). Note that Eq(29) regards the hadronic cross section (and not the partonic
cross section in Eq(10)). Therefore, theéb-space functionW ©' (b, M, s), which embodies the

8 Note that these singularities are not related to the presence of factorially-growing coefficients, such as those due to
renormalon singularities, at very high perturbative orders. A concise discussion on this point can be found in Section 3.1
of Ref.[59], in the related context of threshold resummation.
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logarithmically-enhanced terms, depends on the parton densities of the colliding hadrons. The
all-order resummation of the large logarithmgM?b?) in the regionMb > 1 is accomplished

by showing that thevV-momentsWy (b, M) of W (b, M, s) with respect tac = M?/s at fixed M

can be recast in the following for{82,33}

Wy (b, M)
= Z% r(as(M?), M)H (as(M?))Sc(M, b)
X Z Cea,N Ols(bo/bz))Cab,N(ots(b%/bz))fa/hl,N(b%/bz) fb/hz’N(bg/bz), (30)
a,b

wheref,/n, ~(u?) are theN-moments of the parton densify, , (z, u?), ando(o)F is the lowest-
order cross section for the partonic subproeesg — F. The functionS.(M, b) is the Sudakov
form factor of the quarkd = ¢, ¢) or of the gluon ¢ = g), and it has the following expressitin

mz o, 2
S.(M,b) = exp{ — / % [Ac(as(qz)) In % + B, (aS(QZ))} } (31)
b3 /b2

The functionsA, B, C andH ¥ in Egs.(30) and (31)are perturbative series irs:

Ac(as) = i(%)nw), (32)
n=1

Be(as) = i(%)nlgé’”, (33)
n=1

Caplas, 2) =8ap8(1—2) + iz(%)ncffé) (2), (34)

HF (ag) =1+ i(%)nﬂfw (35)

The functionsA., B. andC,,, are process independent, whﬂi{ depends on the specific hard-
scattering process.

The resummation formulaé30) and (31)are invariant under the following ‘resummation
scheme’ transformatiori83]:

HF (as) — HF (as)[h(as)]

B 5 dInh(as)
¢(as) = Bc(as) — B(ag) ———— Tinae
Caplas, 2) > Cap(as, Z)[h(as)]l/z (36)

9 In Ref. [32] the upper limit of the integral in Eq31) is set toC2;M2, whereC» is an arbitrary factor. The scale
CoM? is thus related to the resummation sca@i@in Eq. (19).
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The invariance can easily be proven by using the following renormalization-group identity
(see Eq(27)):

MZ
dq? dInh(as(g?))
R B S
b3/b?

which is valid for any perturbative function(as).

The physical origin of the resummation scheme invariance of(B@).is discussed in Ref.
[33]. The invariance implies that the factoks’, S, (more precisely, the functioB.) and C,
are not unambiguously computable order by order in perturbation theory. In other words, these
factors can be unambiguously defined only by choosing a ‘resummation scheme’. The choice of a
resummation scheme amounts to definiffy (or C,;) for asingleprocess. More preciselyf
has to be defined for two processes: one process that is controlled, at the lowest perturbative order,
by ¢g annihilation(c = ¢, g) and another process that is controlledggyfusion (¢ = g). Having
done that, the process-dependent fagfgr and the universal (process-independent) facsrs
andC,;, are unambiguously determined for any other process of the type if1)Eq.

Note that Eq(30)is usually presented in a form wheke" (as) = 1. Such a form is certainly
consistent since, by choositgas) = H' («s) and using the invariance under the transforma-
tion in Eq. (36), it is always possible to st/ (as) = 1 on a process-dependent basis. Note
that this procedure does not correspond to the definition of a resummation scheme. Indeed, the
corresponding Sudakov form fact§f and the function€'/; turn out to be process-dependent
guantities, as pointed out by the explicit and general calculatiﬁgc))fandcg,) (z) in Ref.[36].
For example, in the case gf fusion processes, the Sudakov form factors for the production
of a scalar and a pseudoscalar Higgs boson turn out to be different and to have even a different
dependence on the mass of the top quark.

Comparing the partonic and the hadronic cross sections in(E@sand (30) we see that the
resummed factorsV’, andW* (b, M) are related by

Wy (b, M) =Y Wiy, y (b, M; as(uR), ks 15 fayna N (4F) Fornon (15)- (38)
a,b

To express the resummed partonic cross se@ﬁ@”p in terms of the perturbative coefficients in

Egs.(32)—(35) we have to use E¢30) and substitute the parton densitigs;, v (bj 2/b2) for the
same parton densities evaluated at the factorization gcaléThe substitution can be done by
using

farnn( Z Uab.n (142, 18) foynn (15). (39)
b
where the QCD evolution operatdt,, y (12, 13) fulfills the evolution equations
dUap N (12, 1)
T Z Yae,n (s(i1?)) Uep, N(M Mo) (40)

andy,p n(as) are the parton anomalous dimensions or, more preciselyyth@ments of the
customary Altarelli-Parisi splitting functiong,, (as, z) [64]:

1
00 n
_ as
)’ab,N(aS):/dZZN RN Z):Z<;) Vap v (41)
0

n=1
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We finally obtain[33]

Wab N(b’ M; Ols(,u%), M%’ M%)

= Zoff”F (as(M?), M)HT (as(M?))S.(M, b)

X Y Ceay,n (a5(65/b%)) Cany N (s(b5/%))

ai,by
X Ugya, N (B3/b%, W5 ) Uy n (D02, 1% ), (42)

which relates the resummed partonic cross section ir{H.to the perturbative coefficients in
Egs.(32)—(35)and the anomalous dimensions coefficients in(&d).

In the following we explicitly show how Eq(42) is related to the exponential structure of
Eqg. (12) in the case with a single species of partons. The general case with partons of different
flavours is discussed ippendix A Here we only anticipate that the generalization of @Q)
to the multiflavour cas€ simply involves a sum of exponential terms, namely

Wab N(b’ M; “S(lﬁe)’ lﬁev MZF)

= MUY (M as(n3); M? )k, M/ u%, M?) Q?)
{1}

x exp{Gn.n (as(n’). Ly M?/u%, M?/0?)}, (43)

where the index/} labels a set of flavour indices (which is precisely specifiefppendix A).

Within the simplified treatment in which there is a single species of partons, the resummed
partonic cross section in E@¢42) can easily be recast in the factorized exponential form of
Egs. (12) and (19) To this aim, we first use the identit7) with i (as) = Cn(as) to replace
Cn(as(b3/b?) in EQ.(42)in terms ofCy (as(M?)). Then, we insert in E¢(42) the solution of
the evolutlon equatiof40):

15
d 2
Un (b3/b2, M%):exp{— q—qzyN(oes(qz))}. (44)
b2/b?

We finally obtain the exponential form in E@L9), where the perturbative functioA(as) is
exactly the perturbative function in E¢32), and the functionBy (as) is given as follows in
terms of the perturbative functions in E¢&7), (33), (34) and (41)

- dinC
By (as) = B(as) + 2B(as) TllniNa(:S) + 2yn (as). (45)

10 | the multiflavour case, Edq12) directly applies to the flavour non-singlet components of the resummed partonic
cross section.
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The expression of the hard-process funcﬂvﬁfl in Eq.(12)is

HE (M, as(u?); M?/u%, M?/u%, M2/ Q%)
=07 (as(M?), M)H" (as(M?))C} (es(M?))

2

9 2 2 M? 2
xexp: / %[A(as(f))m%+1§N(as(q2))}+ / %Zyzv(as(qz))}. (46)

Note that, as discussed in Sectidr2, the form factor exfj} and, hence, the perturbative
functionsA(as) and By («s) in Eq. (19) do not depend on the factorization scalg. As a con-
sequence, the functiom«as) andBy (as) are also independent of the factorization scheme used
to define the parton densities. Since, as is well known, the anomalous dimepgigns:s) do
depend on the factorization scheme, the relaits) implies that both the perturbative functions
B.(as) andC,,(as) depend on the factorization scheme in such a Wayéh;a(txg) turns out to
be factorization-scheme independent.

As anticipated in Sectio®.2, the form factor exfi7} does not depend on the final-state system
F produced in the hard-scattering process. From @dg.and (45)this independence is a simple
consequence of the process independence of each of the perturbative fuAgtieg)s B, (as),
Cap(as) andyab,N(aS)-

The relation(45) also implies that the form factor efp} does not depend on the resumma-
tion scheme used to express the various factors in the resummation for@@)aed (31 we
recall that the customary Sudakov form faci(M, b) in Eq. (31) does instead depend on the
resummation scheme). It is indeed straightforward to show that the fungtjoms) in Eq. (45)
is invariant under the resummation-scheme transformations i(BBY.

Unlike the form factor ex{i7}, the non-logarithmic functioﬁif, in Eq.(46)explicitly depends
on the factorization scalg r, on the factorization scheme (through,, n (xs) andyp n (@s))
and on the final-state system(throughaéo) andHF). NonethelesSH,f, does not depend on the
resummation scheme, since the fanle:(as)Clz\,(as) is invariant under the transformations in
Eq.(36).

The universal (i.e., independent of the process and of the factorization and resummation
schemes) perturbative functiofy.(as) in Egs. (20) and (32)is known up toO(ag). The LL

and NLL coefficients4§1) andAEz) are[30,34]

1 2
whereC, =Crif c=¢q,qandC, = C, if c = g. The NNLL coefficientAEg) is notyet known. In

our quantitative study of transverse-momentum resummation at NNLL accuracy (see Sgction
we assume that the value Aﬁs) is the same as the oif@5,66]that appears in resummed calcu-
lations of soft-gluon contributions near partonic threshold. This assumption is based on the fact
that the two coeﬁicientﬂgl) andAE.Z) in Eq.(47)are exactly equal to those of the related pertur-
bative function that controls threshold resumma{8] in the MS factorization scheme. Note,
however, that the two soft-gluon functiods (a¢s) do not necessarily coincide at high perturba-

tive orders since, for instance, the soft-gluon function for transverse-momentum resummation is
universal while the soft-gluon function for threshold resummation depends on the factorization
scheme.
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The first-order coeﬁicienéfl)\, of the universal perturbative functid®y (s) in Egs.(21) and

(45)is
(1 1
BN, =B® +2y",, (48)
where[30,34]

3 1
B[gl) = B(;l) = —ECF, B;l) = —é(llC‘A —2Ny). (49)

Note that, since the LO anomalous dimensipﬁ’QN are universal, the NLL coefficien" in
Eq. (49) are themselves independent of the factorization and resummation schemes.

The universal second-order coeﬁicidﬁf])\, in Eq.(45)is

~(2 1 2
B2 =B —260C Yy + 272y, (50)

or, equivalently, by performing the inverse Mellin transformation-&pace:
B2 (z) =8(1—2)B® —20C P () + 2P2 (2). (51)

The value of the quark coeﬁicierﬁ,gz) can be obtained by using the results of Réf(] for

the coefficient%,gz) and Cﬁ,) (z) of the DY process. These results are confirmed by the general
(process-independent) calculation of H86], which considers both thgg-annihilation and the
gluon fusion channels. From the results of H86] we obtain the value of the gluon coefficient

Eéz), and we can also explicitly check the universality of bé[ﬁ) andééz). To write down the

expression oﬁf.z), we recall that the second-order tem&?) (z) of the Altarelli—Parisi splitting
functionsP,..(as, z) has the following general dependencezon

1 2
PR@) = AP 45— 25y + P, (52)

1-2)+

where A% is the coefficient in Eq(47), 1/(1 — z)4 is the customary ‘plus’-distribution and
P2™97) denotes all the remaining and less singular (whers 1) contributions toP.2 (z).
The explicit expressions aP2™%z) and of the constants® can be found in the literature
(see, e.g., Ref64]). Using the notation of Eq52), the universal NNLL coeﬁicienﬁéz) is [36]

2
B2 = ﬁAE,Z) +8(1— z)ﬂocc% +2P2"9(2) + 280 PE.(2). (53)
-+
where
~ 1 N
Py ) ==5Crl=2).  P)=0. (54)

The first-order coefficienté?;? and Cg) in EQ. (34) do not depend on the process and on
the resummation scheme, and were first computed in R&f$.and[35], respectively. Their
expressions in th#S factorization scheme are

1 1
C@=Chl@=5:1-2. CP@=Cy@=5Crz (55)

The flavour-diagonal first-order coefficiemﬁ? and Cg,) and the coeﬁicientﬂf @ and
H;(l) depend on the resummation scheme. The dependence on the resummation scheme is



G. Bozzi et al. / Nuclear Physics B 737 (2006) 73—-120 91

canceled in the perturbative coefficients of the hard-process furfb(thrFor example, by ex-
panding Eq.46) in powers ofas(;ﬁe), we obtain the following expression for the first-order
coefficientHf,(l) of Eq. (15):

Hy (M? /1. M2 1, M2 07)

1 -
= H'® 4 20® — potr+2y Pty - (?‘“)EQ + B(ND)%, (56)
where we have defined
M? M? M?
Lr=In—, Lr=In—, Lo =In—. (57)
2 2 0 2
Mg Mg 0

The coefficienl‘HF(l) depends on the process and is explicitly known for several processes (see
Ref.[36] and references therein).

To complete the resummation program at NNLL, the coefflcveﬁfz) is also needed. This
coefficient is not known in analytic form for any hard-scattering process. Nonetheless, within
our resummation formalism, it can be determined for any hard-scattering process whose corre-
sponding total cross section is known at NNLO. This point is discussed in detail at the end of
Section2.4.

2.4. The finite component

The finite componen«}‘lcr(f'n )/qu of the transverse-momentum cross section is computed
at a given fixed order ims according to Eq(6). To implement Eq(6), we have to subtract

[d6 e 0. from [d6Faplio.- |
As discussed in Section8.1 and 2.2 the finite componenti&lg;';)/dq% does not con-

tain any perturbative contributions proportional &QqT) (these contributions and all the

logarithmically-enhanced terms at sm@# are included inié s’ /dg?). Therefore, when com-

puting [da}fl'l”h)] t.0. according to the subtraction procedure in ), we can consistently neglect
any terms proportional t8(¢2) both in[d&paplt.0. and m[da“es)]fO This is formally equiv-

alent to the evaluation of bothl6r4plt.0 and [d&}r‘fl‘j‘)]fo in the largegr region (or, more

precisely, in the region whergr # 0). The expansions diZé ")}, at the first and at the

second perturbative order thus give

~ (fin.) N A (res)
do Fab _ dUFab _ dUFab (58)
dg? | dg? dq? ’
7 dLO dr JdLoO dr JdLo
~ (fin.) ~ ~ (res)
|:d Fab ] _ |:daFah:| _ I:dOFah ] (59)
dq¢? Inlo dq? Inlo dq? Inio

where the subscript LO (NLO) denotes the perturbative truncation of the various cross sections at
the leading order (next-to-leading order) in the region wiagre: 0. The extension of Eq$58)
and (59)at still higher perturbative order is straightforward.

The contributiongdarapli.0. ON the right-hand side of Eq$58) and (59)are obtained by
computing the customary perturbative series for the partonic cross section at a given fixed order
(f.0.=LO,NLO, ...) inas. The fixed-order truncatiopis =1t . of the resummed component
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is obtained by perturbatively expanding the resummed compoizieu(rjets) in Eq. (10). To this
purpose, we define the perturbative coefficienits) as follows:

Wiy (b, M, 3; as, u%, u%, Q%)

= Z%(?.)F(as, M) { Seaberd(1—2)

2 g2 a2 2 12 a2
as\"[ 5Frm ( - M?> M M) Fn) ('M M M>]
+ E vl Ly —, 5, == |+ H 55— )
( ) [ el 02) e\ u ny 0°
(60)

wherez = M?/5, as = as(u?), ac(?)F(as, M) = a”‘FaC(L‘g)(M) and, in general, the power,
depends on the lowest-order partonic subproeesg — F. In Eq.(60), W‘f;, is the resummed
cross section on the right-hand side of EIP). Note, however, that E§60) depends on the re-
summation scal®?. The dependence on the resummation scale has been introduced {(h®Eqs.
and (12)through the replacement in E(.6). The perturbative coefficied® ™ on the right-hand
side of Eq.(60) is a polynomial of degreer2in the logarithmic variabld. defined in Eq(17).
The coefficientsE ™ vanish by definition wheid. = 0 (i.e., whenb = 0), and theb-independent
part of W, \ (b, M) is embodied in the coefficientg™.

The perturbative expansion of Ed.2) or, more precisely, of Eq42) gives

F( F 1;2 = F1;1 =

2@ D = 5 I0 @0+ Z5 0, 0L, (61)
F2 F2;4 7 F(2;3 F(2;2 = F(2;1 7
cc(<—)ab(Z L) - cci—aZ(Z)L4 + ECEE—aZ(Z)Ls + EccE—aZ(Z)LZ + ECE((—a;(Z)L’ (62)

where the dependence on the scale rai@g., M?/u2 andM?/Q? is understood. The exten-
sion of Eqs(61) and (62}o the higher order termg ™ (z, L) with n > 3, is straightforward.

cc<ab
The b-independent coefficients F 16 (), HF D (z), £ F @0 (z) andHF @ (z) are more easily
presented by considering théi-moments with respect to the variahléWe have

F(L:2) 1. a
Ecc_‘(—ab,N = ZAE )5ca85b, (63)
F1;1
Ecé(eul)J,N(MZ/Q ) [‘Suﬂsch (B(l) + A(l)EQ) + 5607/ N T Sbeca N] (64)
2 F® M2 M2 Mm?
cc<ab,N 2 ’ QZ

1
= 68cadcb |:Hf(l) — (BL(.D + EAE-DEQ)ZQ - PcFﬂOER:|

+80aCly) y + 8 CE 5 + (Beaviy +8a¥ Dy ) (€F — L), (65)
e (A“))Zawatb, (66)

2.3 1 1 _ra1
Tl an(MP/0%) = —AD [gﬂoﬁméeb + 5T ann (M Q2>]’ (67)
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: M? M?2 M2
5 F@22) < )

cc<ab,N 2 ’ QZ
1 1 M? M? M?
—EAEl) [Hf}:ab’N( 2 k] Q2 - ,305ca56b(£R - EQ)
F(LD 2 (@) @
Z Eca—alhl N M /Q )[‘Sala Youb.n T 8016V410. N]
al by
1 F(L1
LAt + (B + ADeg — o) SEE (207, (68)
F21) M 2 M Z m?
Ecc_‘(—ab,N 2 ’ QZ

F;1
= ECEE—aZ,N(MZ/Q )'BO(ZQ - ER)

LY (M_Z m? %2)
cc<«a1b1,N /‘L% /'L%" Q2

ay,by
1 1
X [8a1a01p (BP + AP €0) + 8aa yb(ll)J,N + Sblhya(lzz,N]
1 1 2
- [80&55}7 (Bc(z) + AEZ)KQ) - ﬂo((SCGCéb?N + 35bC¢(-a?N) + ‘Sca N + (SChyc(a)N] (69)

e, (117 10
C b,N ) )
cc<a % M% QZ

2 2 1 1
= Scabar HY P + 5aCl) y +80C2 y + CO N CS Y

1 1 1
+ HCF(l) ((Sca Céb?N + 85h Céa))N) + éAgl) ﬂoﬁzaca 8517

1o 0 F(L:1) 2, 12\1,2

+ E[AE’ )801165’7 + ﬁoxcéeab,N(M /0Q )]EQ
1 1 2

— [8caen (B + AP o) — Bo(8caCly n +8enCla ) + Seaviy w + eV w10

1 1 1
+ éﬁO(gcaVC‘a(b?N + 5cbVC(a)N)€% + (86‘0 Vcb N + 5cb)/m N)EF

M? M? Mm?

1

—HF—() (M_z’ 5 —)ﬂOZR
R

cc<ab,N M%‘ ’ Q2
1 FQ) M? M? M? F(L @
+ E Z [HCCealbl,N 2020 a * (Scalsﬁbch v + Scalctbl N
a1y KR HKfp

1 1 1
800, CL0 || Gusarsth o+ S ) — )

1
- 8a1a5b1b<<B¢(‘l) + §A£1)£Q>6Q + pCFﬂ0€R>}

1
— 8¢abebPeF <§ﬂ55§e + ﬂ1€R>. (70)

The right-hand side of Eq§63)—(70)is expressed in terms of the resummation-scheme indepen-
dent coefficients given in Secticgh3 and of the logarithmgy, £F and{y defined in Eq(57).
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To explicitly exhibit the independence of the resummation scheme we can, for example, rewrite
the contribution in the third line of Eq69) in terms of the resummation-scheme independent
coefficientséc(lz\) (see Eq(50)) and Cﬁ) ~ With a # b (see Eq(55)):
a2 + ADE) = ooy +8C ) + bar 432
= scaaa,(B@ + AP o) + 8ea(L— ) (v2y — BoC)x)
+8e(1— 8ea) (v 2y — BoCL ). (71)

Inserting Eqs(60)—(62)in Eq. (10), performing the integral over the impact parameter
and removing the contributions proportional&t(o;%) (for example, all the contributions coming

fromH"™ in Eqg. (60)), we obtain the following expressions for the fixed-order contributions

cc<—ab

[d&"*>}t o on the right-hand side of Eq&8) and (59)
461 M2
[L%b <qT7 M,s =—; (XS(/L%), /’L%7 /‘L%‘a Q2>i|
dqg z LO
Oés(,U« ) 2 ©)
T —& Z cc F Ols M)

x[ C‘Z(if;(z)12<qr/Q>+2§<i§2,< Qz)ll(qT/Q)} (72)

ds ey M? 2\ 2 2 42
[ TFa <qr,M,§=—;as(uR),MR,up,Qﬂ
dq? 2 NLO

~ (res)
do OFab
= d 2

(g7, M, §; as(u%), u%. 3. QZ)]
LO

as(u?) ) 2
+< T ) QZZGCCFaSM)M)
M? M? M?)\ -
b ( e —)1k<qT/Q>. (73)
Z cc<ab M%’ M% Q2
On the right-hand side of Eqér2) and (73)the dependence ajy is fully embodied in the
functionsi, (g7 /Q), which are obtained by the following Bessel transformation:

5 x b QZ 2
In(qr/Q) = szdb 5 0(bgr) In"( + 1) (74)
0

O

The term Iff (1 + Q?b?/b3) = L" in the integrand comes from the replacemént> L (see
Eq.(16)). In customary implementations bfspace resummation, one has to consider the Bessel
transformation of powers of ’I’NQZbZ/bS) = L", which can be expressed in terms of powers
of In”(QZ/cﬁ). The functionsl, (¢7/ Q) have instead a more involved functional dependence
on gr. As shown inAppendix B this functional dependence can be expressed in terms of
K, (gr/Q), the modified Bessel function of imaginary argument that is defined by the following
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integral representation:

o0

Kv(x)zfdte‘xms“ coshvt. (75)
0

We conclude this section with some observations on the hard-scattering futfion,, .
This function is resummation-scheme independent, but it depends on the specific hard-scattering
subprocess+c¢ — F. The coeﬁ|C|ent§{F(i)ab of its perturbative expansion can be determined
by performing a customary perturbative calculation of ghedistribution in the limitg; — 0.
Moreover, as discussed in Sectid2, within our resummation formalisii” controls the strict
perturbative normalization of the corresponding total cross section (i.e., the integral g¢f the
distribution). This property can be exploited to determine the coefficl)a(rifé)ab in a different
manner, that is, from the perturbative calculation of the total cross section.

To illustrate this point we consider the total cross secmijﬁb, at the partonic level,

oo

. . d6Fap .
61 (M. 5 s(u). 1. 1) = / dQ?Wza(qrvas;as(u?e),ui,u%% (76)
T
and we evaluate the; spectrum on right-hand side according to the decomposition in terms
of ‘resummed’ and ‘finite’ components (see H®)). Then we use Eq(18) to integrate the

resummed component ovgf, and we obtain

~ (fin.)

2 % d
N 2 40pqp
& Fa = §H5b+/d “dgt (77

This expression is valid order by order in QCD perturbation theory. Once the perturbative coef-

ficients of the fixed-order expansions®f!, , H, anddé ") /dq2 are all known, the relation
(77)has to be regarded as an identity, which can epr|C|tIy be checked. Note, however, that since

the fixed-order truncatio(d&lgg},‘)/dq%]f,o, does not contain any contributions proportional to

S(q%) [d(}g},’)/dq%]m does not explicitly depend on the coefficiémfbl) (see Egs(58) and
(72)). Analogously,[dcr(fn )/qu]NLO does not explicitly depend on the coefﬁc@mf,, 2 (see
Egs.(59) and (73), and so forth. Therefore, E¢(7) can be used to determine th&IND coeffi-
cientH! "™ from the knowledge 06'%, at N'LO and ofdé """ /dq? at N*~1LO, without the
need of explicitly computing the smajlr behaviour of the spectrumrpab/qu at N'LO. For
example, at NLO Eq(77) gives

M?
as ZU@F((X MYH

Fay (M? M? M? M2
cc<ab $ ’ M%’ M%’ Q2
tot a. 2 2 A tot ~
[GFOab(M’ S1as, 1. 17)Ino — [6Fm (M. S1as)] o
e &(fin.)
—/dq%[ Fab (QT,M,§§‘XS,M%,M12V,Q2)i| : (78)
0

dq? LO

whereas = as(1%) and we have used

[61%, (M. §; as)] o = 8(1— M?/5) Zacc - (as, M)8cabip. (79)
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AtNNLO Egq. (77) gives

2 2 2 2
s M 0) F(2) M M M
( ) Z Oce, F(as’ M)HC&—ab 2 ’ Q2

[e.e]

dé ~ (fin.) dé (fin.)
~tot ~ tot OFab Fab
& [6 dq’ {[ ] [—} } %)
= {[Far]nnro — [6Fun o} / dq? Inlo dqf lio

and the generalization at still higher ordergn > 2) is

< ) Z o-cc F(as’ M)Hci(f—)ab

00 dé A (fin.) dé A (fin.)

={[6%,] — [61%, s /dq {[ OFab ] _[ 9Fab } }

= n n— ’
abINNLO abIN LO ) qu NT-1LO qu N"-2L.O

(81)
In our study of the transverse-momentum spectrum of the Higgs boson at NNLL accuracy (see

Section3), we use Eq(80)to obtain a numerical value for the corresponding perturbative coef-
ficient H® .

3. Thegr spectrum of the Higgs boson at the LHC

In this section we apply the resummation formalism described in Seztiorthe production
of the SM Higgs boson at the LHC.

We consider the gluon fusion production mechanigm- H, whose Born level cross section
in Egs.(15) and (60)s

0
0Dy (s, Myp) = 8cg0:4030 O (My: My, M), (82)

whereM; and M;, denote the masses of the top and bottom quark, which circulate in the heavy-
quark loop that couples to the Higgs boson. In our numerical study wafuse175 GeV and
My, =4.75 GeV. The expression of Q' (My: M,, M) can be found, for instance, in Eq. (3) of
Ref.[17]. Though the Born cross section is evaluated exactly, i.e., including its dependence on
the top— and bottom—quark masses, the computation of the higher-order QCD corrections is per-
formed in the framework of the largkf, approximation. More precisely, we proceed as in Ref.
[17]: we first computeloy /dgr in the larged; limit and then we rescale the result by the factor
o O My My, Mp) /o2, wheres Y is obtained froms @ (My; M,, Mj,) by settingM), = 0 and
M,/Mp — oo. As recalled in Sectiod, this implementation of the largkf, approximation is
expected to produce an uncertainty that is smaller than the uncertainties from yet uncalculated
perturbative terms from higher orders.

We compute the Higgs boson differential cross sect#iepdqr at the LHC (pp collisions at
/s = 14 TeV) and present quantitative results at NEILO and NNLL+ NLO accuracy.

As discussed in SectioR.2, at NLL + LO accuracy the resummed component in ER)
is evaluated by including the function$? and g(2> in Eq. (14) and the coefﬁmenHF(l)
Eqg. (15), and then it is matched with the fixed-order contribution evaluated at the LO (i.e., at
O(O‘s)) in the largeg7 region. The functiong® andg(z) are process independent and given in

terms of the universal coefficients”, A? and 3 (see Sectio.3). The flavour off-diagonal
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p_art ongg(iub’N is also process independent and given by(B); settingur = Q = My, we
simply have
1
H(1) —_HD 1)
Moo lgqn =Heogqon = Coqn = 2(N + 1) > v 1, CF (83)

where the coefficien€ q) v is the Mellin transformation of E(55). Of course, these process-
independent coefficients are exact, i.e., they are not affected by theM&rgpproximation. The
flavour diagonal coefﬁmer‘ﬂt(ml) ZoaN is instead process dependent; therefore it dependg,on
and, in the largeM, apprOX|mat|on it is given bj35,39]

1 1
Heg e = Hy' @ +2C)y = S[(5+ 7%)Ca —3Cr] = 5 (114 377), (84)

where, for simplicity, the scale-dependent terms have been dropped (i.e., we haye-sgty =
0 = My in EQ.(65)).

AtNNLL +NLO accuracy the functiog}f) and the coefficierﬁi,i,“z) have also to be included
in the resummed component of the cross section, and the finite component has to include the
fixed-order contribution to the cross section evaluated at the NLO (i.é)(@‘sl)) in the large-
gr region. The process-independent functgﬁ'? depends on the universal coefficiedts) and
B}Vz) (see Sectiorz.3). The scale-independent part of the coeffic'reﬁf(z) (its scale-dependent
part can be obtained from E{70)) is not known in analytic form. We thus exploit E(B0),
which follows from the constraint of perturbative unitarity, to extract the numerical value of
H]f,l(z) from the knowledge of the total cross section at the NNIL@]. The scale-independent

F(2) i
part of 1, . . y can be written as
H(2) _gH® ) @ HQ~O
Mg gon nr=nr=0=My ~ Hg = F 2Cye.N (ng N) +2H T Che (85)
19 1 MZ
=Ny |)In— , 86
(16 +3 ) M2 +cn (86)

where theM,-dependent contribution on the right-hand side is obtained from the results in Refs.
[16,68], andcy does not depend oM, in the largea, approximation. Since from E¢84) we

know thatC(l)N is actually independent ao¥, the N dependence afy can only follow from

that of C;?N in Eqg. (85). Using Eq.(80) and the NNLO total cross section, we find that the

flavour off-diagonal terms iﬂ-lfg(fabw can numerically be neglected, and that the coefficient

¢y in EqQ. (86) can numerically be approximated by akindependent value;y ~ 2325. This
numerical approximation is pretty good, since the integral of the NNLNLO spectrum re-
produces the NNLO total cross section to better than 1% accuracy in a wide Higgs mass range,
100< My <300 GeV, at the LHC.

We recall that the functiongl(\’,‘) (A) are singular when — 1 (see Eqs(22)—(24). The sin-
gular behaviour is related to the presence of the Landau pole in the perturbative running of the
QCD couplingas(¢?). As mentioned at the end of Secti@r?, a practical implementation of
the resummation procedure requires a prescription to deal with these singularities. In our numer-
ical study we follow Ref[62] and deform the integration contour in the complespace. In
particular we choose the two integration branches as

b= (cosp £ising)t, te{0,o0}. (87)
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We have checked that the result is very mildly dependent on the choiteVi#é have also used

the simpler procedure of integrating over the riealxis, using a sharp cut-off at a large value of

b, and checking the independence of the actual value of the cut-off. We found that the numerical
differences between the results obtained by these two procedures are negligible.

Our complete calculation of thg- spectrum of the Higgs boson at the LHC is implemented in
the numerical codeiqT, which can be downloaded frof@9] together with some accompanying
notes. This code is a slightly modified and numerically improved version of the code used in Ref.
[1]: the most important difference regards the computation of the finite component. IfiLRef.
we used the Monte Carlo program of RE0] to compute the fixed-order contribution to the
gt cross section at LO and NLO. Here we have implemented the analytic calculation of Glosser
and Schmidf{22]. Although the two methods are in principle equivalent, the use of the analytic
calculation allows us to achieve a faster numerical stability in the sqpatkgion. In the next
subsection we present a selection of numerical results that can be obtained with our code. We
also include a discussion of theoretical uncertainties.

3.1. Numerical results at the LHC

To compute the hadronic cross section, we use the MRST20(4Qaif parton distribution
functions. As for the perturbative order of the parton densitiesogndt variance with Refl1],
we adopt here the following choice. At Nt LO we use NLO parton densities and 2-logg
whereas at NNLI+ NLO we use NNLO parton densities and 3-lagg This choice is perfectly
consistent in the smadly region, since the corresponding partonic cross section is dominated by
the resummed component evaluated at NLL and NNLL accuracy, respectively. The choice is fully
justified also at intermediate valuesgf, where the calculation of the partonic cross section is
driven by the small; resummation and strongly constrained by the total cross section at NLO
and NNLO, respectively. At large values @f, gr ~ My, our evaluation of the partonic cross
section is dominated by the fixed-order contributions at LO and NLO, respectively. Therefore,
our choice introduces a formal mismatch with respect to the customary use of parton densities
andas. However, as shown and discussed later in this subsection, this formal mismatch does not
lead to any inconsistencies at the quantitative level.

The NLL + LO spectrum withMy = 125 GeV is shown irFig. 1 In the left-hand side, the
full NLL + LO result (solid line) is compared with the LO one (dashed line) at the default scales
ur =ugr = Q = Mpy. We see that the LO calculation divergestteo asqr — 0. The effect
of the resummation, which is relevant belgw ~ 100 GeV, leads to a physically well-behaved
distribution: it has a kinematical peak @t ~ 12 GeV and vanishes ag — 0. The LO finite
component of the spectrum (dotted line), which is defined in(&8), is also shown: as expected
it dominates wher; ~ My and vanishes agr — 0. Note, however, that the contribution of
the finite component is sizeable in the intermedigteregion (about 20% ajr ~ 50 GeV) and
not yet negligible at small values gfr (about 8% around the peak region). This underlies the
importance of a careful and consistent matching between the resummed and fixed-order calcu-
lations. In the right-hand side &fig. 1 we show the NLL+ LO band as obtained by varying
wr andug simultaneously and independently in the randggMy < ur, ugp < 2Mpy with the
constraint b < ur/ur < 2 (the resummation scale is kept fixedat My). The scale depen-
dence increases from abatitl5% at the peak to abodt20% atqgy = 100 GeV. The integral
overgr of the NLL+ LO spectrum is in agreement with the value of the NLO total cross section
to better than 1%, thus proving the numerical accuracy of the code.
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Fig. 1. Thegy spectrum at the LHC witli/ g = 125 GeV: (left) settingeg = up = Q = My, the results at NLL+ LO
accuracy are compared with the LO spectrum and the finite component of the LO spectrum; (right) the uncertainty band
from variations of the scalgsg andu g at NLL + LO accuracy.

The NNLL + NLO results at the LHC are shown kfig. 2 In the left-hand side, the full result
(solid line) is compared with the NLO one (dashed line) at the default spales ug = Q =
My . The NLO result diverges te-co asqr — 0 and, at small values @fr, it has an unphysical
peak (the top of the peak is above the vertical scale of the plot) that is produced by the numerical
compensation of negative leading logarithmic and positive subleading logarithmic contributions.
The resummed result is physically well-behaved at sgallThe NLO finite component of the
spectrum (dotted line), which is defined in E§9), vanishes smoothly agr — 0; its contri-
bution amounts to about 10% in the peak region, about 17§% at 25 GeV and about 35% at
qgr ~ 50 GeV. This shows both the quality and the relevance of the matching procedure.

We find that the contribution oA® (recall from Sectior2.3 that we are using an educated
guess on the value of the coefficient®) to the resummed component can safely be neglected.
The coefficien'erj @ contributes significantly, and enhancesghealistribution by roughly 20%
in the region of intermediate and small valueg;pf The NNLL resummation effect starts to be
visible belowgr ~ 100 GeV, and it increases the NLO result by about 25%-at 50 GeV.

The right-hand side dFig. 2 shows the scale dependence computed &gnl The scale
dependence is now about 8% at the peak and increases to about 20% 400 GeV.

To better illustrate the main features of the dependence on the gcalasd .z, we present
numerical results at two fixed values @f in Figs. 3 and 4In Fig. 3 we show our results at
gr =50 GeV andvy = 125 GeV. The scale dependence is analysed by varying the factorization
and renormalization scales around the default vafye The plot on the left corresponds to the
simultaneous variation of both scalgsy = ug = x My, whereas the plot in the centre (on
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Fig. 2. Thegy spectrum at the LHC withMy = 125 GeV: (left) settingugp = ur = Q = My, the results at
NNLL + NLO accuracy are compared with the NLO spectrum and the finite component of the NLO spectrum; (right)
the uncertainty band from variations of the scalgsandu r at NNLL + NLO accuracy.

the right) corresponds to the variation of the factorization (renormalization) ggaie xr My
(ng = xr Mpy) by fixing the other scale at the default valug; .

As expected from the QCD running ok, the cross sections typically decrease when
increases around the characteristic hard stfle at fixedur = My. In the case of variations
of up at fixed ug = My, we observe the opposite behaviour. This is not unexpected, since
whenMpy = 125 GeV the cross section is mainly sensitive to partons with momentum fraction
x ~ 1072, and in thisx-range scaling violations of the parton densities are (moderately) positive.
Varying the two scales simultaneously £ = z) leads to a partial compensation of the two
different behaviours. As a result, the scale dependence is mostly driven by the renormalization
scale, because the lowest-order contribution to the process is proportim@l aq(relatively)
high power ofws.

Comparing the LO with the NLI+ LO results and the NLO with the NNLE- NLO results,
we see that the scale dependence of the resummed results (solid lines) is smaller than that of
the corresponding fixed-order results (dashed lines): the LO and{NLO curves have a com-
parable slope, but the NLi LO results are higher; the NLO and NNLk NLO results have
smaller differences, but the slope of the NNEINLO curve is flatter. In summary, resummation
reduces the scale dependence of the fixed-order calculations also in the region of intermediate
values ofgr.

In Fig. 4 we report analogous results at a smaller valuggafnamelygy = 15 GeV. The
gualitative behaviour is similar to the onehiig. 3. In this region of small transverse momenta
the fixed-order result is no longer reliable ($6gs. 1 and 2, but its relative scale dependence
does not increase and is even smaller thajyat 50 GeV. This is due to the fact that the fixed-
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Fig. 3. Scale dependence of the LHC cross section for Higgs boson produkfign=(125 GeV) atgy = 50 GeV.
Results at (upper) LO, NLE- LO and (lower) NLO, NNLL+ NLO accuracy.

order cross section is much larger than at higher values of he slope of the resummed results
(solid lines) is sizeably flatter than that of the corresponding fixed-order results (dashed lines).
We also notice a slight reduction in the scale dependence of the resummed results compared to
Fig. 3 especially at NNLL+ NLO accuracy.

In Fig. 5the NLL 4+ LO and NNLL+ NLO bands shown iifrigs. 1 and Zare compared. We
see that the NNLE- NLO band (solid lines) is smaller than the NELLO one (dashed lines) and
overlaps with the latter ajr < 100 GeV. This suggests a good convergence of the resummed
perturbative expansion. This result is confirmed by the inset plot, that shows the MMLO
band normalized to the NLE- LO result at central value of the scales. This-dependenk
factor,

doNNLL+NLO(LF, UR)

K(qr) = ,
doNLL+Lo(WF = ugr = Mpy)

(88)



102 G. Bozzi et al. / Nuclear Physics B 737 (2006) 73-120

1.50 - -
[ dr=15 GeV Mp=X My T My=125 GeV  up=xp Myt
125 Mr=X My Mp=My 1
> 1.00
o :
g [
8 075}
2 i
& 0.50F
< ; :
© 0.285 —— NLL+LO T T n
© [ -~ 1o 1 1 MRST2004
0.00 bliolinbuuludull (R IO A DO R R Y PP Y FOV: Y DOV TV AP P T Y R B
0.3 05071.0 2.0 3.0 0.3 050.71.0 2.0 3.0 0.3 050.71.0 2.0 3.0
X Xr Xr
1.50 - -
[ qr=15 GeV Mp=X My T Mp=125 GeV  pp=xp Myl ~ _ Hp=My
125 =~ Mr=X My L MR=My L HMR=Xr Mg
= i BRI 1 I ..
© [ ~. L - [ N
O 1.00 AN - T DR N
~ i ~._ 1 [ <.
Q i i S S~
& owsh + + .
- r r [
g [ I I
N T T ]
5 [ 1 1
S [ T [
0.25 —— NNLL+NLO T T -
r ———- NLO T r MRSTZ2004
0.00 Elorbinluludulull I [TV R TR R A I [TV R TOT A A I I

0.3 050710 2030 03 050710 2030 03 050710 20 3.0
X XF XR

Fig. 4. Scale dependence of the LHC cross section for Higgs boson produkfign=125 GeV) atg; = 15 GeV.
Results at (upper) LO, NLE- LO and (lower) NLO, NNLL+ NLO accuracy.

is stable, around the values 1.1-1.2, in the central region of the inset plot, and it increases (de-
creases) drastically wheqyr = 50 GeV gr < 2 GeV). In the largeyr region, the effect of
perturbative higher-order corrections is known to be impoif2bt22] At very small values of
gt , non-perturbative effects are definitely expected to be relevant. We observe that a naive rescal-
ing of the NLL+ LO result by a constant (i.e., independent@) K factor would not reproduce
the NNLL + NLO result over the entirgr-range.

The nice convergence of the resummed perturbative expansion suggesigd ghould be
contrasted with the results frig. 6, where the corresponding fixed-order bands, computed as
in Fig. 5, are shown. The results Fig. 6 have no physical significance in the smgH-region,
owing to the non-convergence of the fixed-order expansion herein. \When25 GeV, we see
that the scale dependence of the NLO (LO) result is larger than the one of the corresponding
NNLL + NLO (NLL + LO) result inFig. 5. More importantly, we see that the LO and NLO
bands do not overlap. This implies that the scale dependence enclosed by these bands certainly
underestimates the true theoretical uncertainty from missing higher-order terms. Equivalently,
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Fig. 5. Comparison of the NL¥ LO and NNLL+ NLO bands ¢/ = 125 GeV). The inset plot shows the NNELNLO
band normalized to the central value of the NiLLO result.

we can say that the uncertainty of these fixed-order calculations is more reliably estimated by
performing scale variations over a range of scales that is wider than that usegd @ All this
indicates a poor convergence of the fixed-order perturbative expansion at intermediate values
of qr .-

As mentioned at the beginning of this subsection, in our resummed calculations at NLL
LO and NNLL + NLO accuracy we use parton densities argat perturbative orders that are
different from those customarily used in fixed-order calculations at LO and NLO, respectively.
Indeed, the consistent procedure at large valueg -afiould be to use LO densities with 1-loop
as at the LO, and NLO densities with 2-loags at the NLO. We have also explained why our
procedure is justified in the intermediaje-region, and we have postponed the discussion on the
largeqr region. To come back to this point, Fig. 7we compare our NLIz+ LO and NNLL +
NLO results with the customary NLO results, which are obtained by using NLO parton densities
and 2-loopxs. We also include the corresponding bands, computed from scale variations. In the
left-hand side we see that in the intermedigieregion our NLL+ LO result catches the bulk
of the NLO effect. Obviously, at larggr, the inclusion of NLO corrections is necessary. In the
right-hand side, the calculations at NNELNLO accuracy and at the NLO are compared. In spite
of the fact that the two calculations use different parton densitieggrttie corresponding bands
show a very good overlap whenr ~ My . We thus conclude that, within the NLO theoretical
uncertainty, the two calculations are perfectly compatible at the quantitative level in thejjarge-
region,qgr ~ My.
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In Fig. 8 (Fig. 9 we plot the NLL+ LO (NNLL + NLO) spectra for different choices of
the resummation scal@. We remind the reader that the resummation s¢aleas to be cho-
sen of the order ofMy. Variations of the resummation scale arouM; can be studied to
estimate the uncertainty of the resummed calculation arising from not yet computed terms at
higher logarithmic accuracy. In our quantitative study we consider four different valugs of
Q=2My, My, My /2, My /4.

We first comment on the behaviour at large transverse momenta, which is best visible looking
at the plots on the right dfigs. 8 and 9We see that the NLE- LO cross section can become
negative ifQ = 2My. This behaviour should not be regarded as particularly worrisome: it takes
place wheryr > My, where the use of the resummation formalism is not anymore justified.
In general, the cross section has a better behaviour at grgehen the resummation scale
has the value®) = My, My /2, My /4. In particular, at large the results of the fixed-order
calculation at LO (NLO) accuracy are very well approximated by the MO (NNLL + NLO)
calculation withQ = My /2; the line corresponding to the LO (NLO) results is not shown in
the plot on the right ofFig. 8 (Fig. 9), since it is hardly distinguishable from the dotted and dot-
dashed lines. The fact that the fixed-order behaviour at large approximated better when is
smaller is not unexpected. By varyiigy we smoothly set the transverse-momentum scale below
which the resummed logarithmic terms are mostly effective; whéssmaller, the resummation
effects are confined to a range of smaller valueg;of

To quantify the resummation-scale uncertainty on the cross section at small and intermediate
values ofgr, we proceed as in the case of the renormalization and factorization scales, and we
vary Q by a factor of 2 up and down from a reference value. We choose the reference value
0 = My /2, because of the better quality of the behaviour of the corresponding cross section at
largegr. FromFig. 8 we see that at NLE- LO accuracy a scale variation betweetd My and
My produces a variation of the cross section of alblib% in the region around the peak. At
NNLL + NLO accuracy Fig. 9) the resummation-scale dependence is much reduced: @hen
varies betweery /4 and My the change in the cross section at the peak is a9, i.e.,
smaller than the corresponding uncertainty from variations of the renormalization and factoriza-
tion scales (seEig. 2).

Throughout this section we used the MRST2004[86} of parton distribution functions at
NLO and NNLO. The NLO and NNLO parton densities from Alekhin are currently being up-
dated[71]. The CTEQ[72] and GRV[73] groups do not include sets of NNLO parton densities.
The parton distribution sets of MRST, Alekhin and CTEQ include estimates of experimental un-
certainties, which lead to effects below to about 5% on the total cross section for Higgs boson
production at the LHC. We do not expect significantly different results in the case ¢f ttr®ss
section at the LHC, and we refer to R§E7] for results and discussions about the effects of
available parton densities on the total cross section.

The numerical results presented so far refer to the védye= 125 GeV of the Higgs boson
mass. By varying\/y, the typical features of the results are unchanged, the main difference be-
ing the decrease of the cross sectionlgg increases. IrFig. 10 we plot the NNLL+ NLO
spectra, normalized to the total cross section, for different values of the Higgs boson mass,
My = 125 165 200 and 300 GeV. For reference, the corresponding values of the NNLO total
cross sections arey o = 38.43,24.37,17.78 and 10.03 pb. As expected, the distribution
becomes harder a¥y increases. The average valuyegy), of the transverse momentum in-
creases almost linearly with increasimfy;, and it is very roughly approximated by an effective
lowest-order expressiotyr) ~ CAaS(MIZi)MH.
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Fig. 10. NNLL+ NLO spectra for different values of the Higgs boson mass. The scales are set at the default value
up=pnr=0=Mg.

The quantitative predictions presented up to now are obtained in a purely perturbative frame-
work. It is known (see, e.g., Ref29] and references therein) that the transverse-momentum
distribution is affected by non-perturbative (NP) effects, which become importanptlascomes
small. In impact parameter space, these effects are associated to the tagien. In our per-
turbative study the integral over the impact parameter turns out to be dominated by the region
whereb < 0.1-02 GeV 1, larger values ob being strongly suppressed by the resummation
of the logarithmic terms in the gluon form factor. Thus we do not expect particularly-large NP
effects in the case of Higgs boson production at the LHC. This expectation is in agreement with
the findings in Refg40—-44]

A customary way of modeling NP effects in the case of DY lepton-pair production is to
introduce an NP transverse-momentum smearing of the distribution. This is implemented by
multiplying theb-space perturbative form factor by an NP form factor. Several different parame-
trizations of the NP form factor are available in the literati@®,74—77] the corresponding NP
parameters are obtained from global fits to DY data.

In the case of Higgs boson production, the estimate of NP effects is obviously more uncertain,
since we cannot exploit available experimental data. In F&f] we studied the impact of NP
contributions on thgr spectrum of the Higgs boson, by applying the DY NP corrections of Refs.
[74—76]to our resummed results at NLL accuracy. We also considered the effect of rescaling the
DY NP coefficients by the factaf 4 / CFr, to take into account the different colour charges of the
initial-state partonsgg in the DY processgg in Higgs boson production) in the hard-scattering
subprocess. Alternatively, we used the NP coefficients extracted ifi43¢from a fit of data on
T production, a production process that is more sensitive to the gluon content of the colliding
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hadrons. All these different quantitative implementations of NP corrections, although certainly
not fully justified, can give an idea of the size of the NP effects on the Higgs boson spectrum.

The results of Ref[78] show that the impact of the NP effects on the NLL resummed distri-
bution is definitely below 10% fog7 = 10 GeV, and it decreases very rapidlygsincreases.
Moreover, wheryr < 10 GeV, different parametrizations of the NP terms can lead to sizeably
different relative effects, as a consequence of our present ignorance on the absolute value of the
NP contributions.

In view of these results, in the present paper we limit ourselves to considering a sim-
ple parametrization of the NP contributions. We multiply thepace resummed component
Wﬁ(b, M, §) on the right-hand side of E@10) by a NP factorSyp, which includes a Gaussian
smearing of the form

Snp = exp| —gnpb?}. (89)

The NP coefficientgnp is varied in the range suggested by the study of R&3]: gnp =
1.67-564 Ge\2. Note that this procedure, with these valuega$, well approximates the quan-
titative spread of NP effects found in R§T8] at NLL accuracy. IrFig. 11we plot the effect of
the NP smearing on our best perturbative predictions, as given by the results at-NNLD
accuracy. The inner plot shows the relative deviation from the NNINIL O perturbative result,
as defined by the ratio

_ do{\{ L +nLo — dONNLL 4NLO

: (90)
dONNLL4NLO

wheredo\§ | .nLo iS the NNLL + NLO cross sectiondonniL +nLO, Supplemented with the
NP form factor. We see that the NP effects give deviations from the purely perturbative result
that are below 10% fogr = 5 GeV. Comparing the inset plots kigs. 5 and 11we also notice
that the inclusion of higher-order contributions (going from NEILO to NNLL + NLO) and of
NP contributions have a qualitatively similar effect at intermediate and small values of transverse
momenta: both contributions make the distribution harder. At the quantitative kevsimuch
smaller thank — 1 whengr 2 10 GeV, whileA andK — 1 are comparable whepr < 10 GeV.
This points towards a non-trivial interplay between higher-order perturbative effects and NP
effects at fixed value of the Higgs boson mass.

In summary, the comparison of the NELLO and NNLL+ NLO results from small (around
the peak region) to intermediate (say, roughly,< My /3) values of transverse momenta shows
a nice convergence of the resummed QCD predictions fogthspectrum of the Higgs boson
at the LHC. From this comparison and from the effects of variations of the renormalization, fac-
torization and resummation scales, we conclude that the perturbative QCD uncertainty of the
NNLL + NLO results isuniformly of about 10%over this range of transverse momenta. The
perturbative and NP uncertainty increases at smaller valugs (deeFigs. 5 and 1}, the per-
turbative uncertainty increases also at larger valueg d20—22] The perturbative uncertainty
on the NNLO cross sectiofi4], as estimated in the same manner (i.e., by comparing the NLO
and NNLO results, and performing scale variations), is about B8 Our results on thegr
spectrum are thus fully consistent with those on the total cross section, since the bulk of the
events is concentrated at small and intermediate values of the Higgs ppson



G. Bozzi et al. / Nuclear Physics B 737 (2006) 73—-120 109

1.0 T T T | T T ‘ T T ‘ T T T ‘ T T 1
B 0.2,\|\||\|\\||\||‘|H||\|H, 7
- My=125 GeV - 3
B A1 =
> 0.8 — 00— =
o i 1]
Q N -0.1F =l
o - O ] B
~ L —0.2 \|\||\|H||\||‘|H||\|\r _
. .
50.6— 0 10 20 30 40 50|
E i dr (GeV)
o]
0.4
0.2 MRSTZ2004 —
NNLL+NLO -~
0.07| TR | 1 [ ‘ [ | ‘ [ | ‘ [ \7
0 10 20 30 40 50

dr (GeV)

Fig. 11. The NNLL+ NLO perturbative results supplemented with the NP form factor in(B@). The upper (lower)
curve at smallyy is obtained withgnp = 1.67 Ge\2(gnp = 5.64 GeVP).

4. Conclusions

In this paper we have considered the transverse-momentum spectrum of generic systems of
high-massV produced in hadron—hadron collisions. Following our previous work on the subject
[1,33], we have illustrated and discussed in detail a perturbative QCD formalism that allows us to
resum the large logarithmic contributions in the smgllregion 7 <« M) and to consistently
match the ensuing result to the fixed-order contributions in the lgrgesgion g7 ~ M). The
main features of our approach, that make it different from other implementatiohspdce
resummation presented in the literature, are summarized below.

e The resummation is performed at the level of the partonic cross section. The parton dis-
tributions are thus evaluated at the factorization sgale which has to be chosen of the order
of the hard scalé/. The resummation formula is then organized in a form that is in close anal-
ogy with the case of event shapes variables in hard-scattering pro¢g4s63]and threshold
resummation in hadronic collisiotj58,59] the various classes of logarithmic contributions are
controlled by the QCD couplings(ufe) evaluated at the renormalization scalg. This proce-
dure naturally allows us to perform a systematic study of renormalization- and factorization-scale
dependence, as is customarily done in fixed-order calculations. This should be compared with the
other implementations d@f-space resummation, where the scale at which the parton distributions
are evaluated is of the order ofi4, which also necessarily requires an extrapolation of the parton
distributions in the NP region.
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e The large logarithmic contributions are exponentiated in the form factd&g¥pwhere the
function Gy (see Eq(14)) is universal: it does not depend on the produced high-mass system,
and it only depends on the flavour of the partons involved in the hard-scattering subprocess.
More precisely (sedppendix A), various process-independent form factors control the various
partonic channels. The process dependence, as well as the factorization-scale and factorization-
scheme dependence is fully included in the hard-scattering coeffidigrisee Eq(12)).

e We impose a constraint of perturbative unitarity through the replacement {1 &qthe b-
space form factor ey (L)} is equal to unity ab = 0. This constraint has a twofold purpose.

On one hand, it avoids the introduction of unjustified higher-order contributions in the small-
b region, which are presefit9] in standard implementations éfspace resummation. On the
other hand, it allows us to recover the total cross section at the nominal fixed-order accuracy
upon integration ovegr. Note that, as a consequence, perturbative uncertainties at intermediate
values ofgr are reduced.

The resummation formalism has been applied to the production of the SM Higgs bgsen in
collisions. We combined the most advanced perturbative information that is available at present
for this process: NNLL resummation at smalt and fixed-order perturbation theory at NLO
at largegr. We developed a numerical code, nantdgil [69], that performs the calculation
at NLL + LO and NNLL 4+ NLO accuracy. In Sectio.1 we have presented a selection of
results that can be obtained by our program at LHC energies. Owing to the unitarity constraint,
the integral of our spectra at NLi LO (NNLL + NLO) correctly reproduces the total NLO
(NNLO) cross sections. The results show a high stability with respect to scale variations and an
increasing stability when going from NL¥ LO to NNLL + NLO accuracy. As summarized at
the end of SectioB.1, this suggests that the uncertainty from missing higher-order perturbative
contributions is under good control.
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Appendix A. Exponentiation in the multiflavour case

In Sections2.2 and 2.3we have discussed the exponentiation structure of the resummed
component of ther distribution. To simplify the notation and the presentation, we have limited
ourselves to illustrating the case in which the partonic scattering involves a single flavour of
partons. This appendix is devoted to generalize the exponentiation to the case with partons of
different flavours.

To obtain Eq(43), the multiflavour analogue of E¢12), we start from the representation in
Eqg. (42) of the resummed partonic cross sectlorcﬁ,y,\,, and then we proceed as in Sectif.

The main difference with respect to the steps in £E44)—(46)is that the solution of the QCD



G. Bozzi et al. / Nuclear Physics B 737 (2006) 73-120 111

evolution equation§40) has the customary forkh
b2/b?

2
Un (bg/b?, Q2)=Pexp{ / “;izm(as(qz))}, (A1)
Q2

where the symboP on the right-hand side denotes the path ordering expansion of the expo-
nential matrix. Because of its matrix structure, the exponential in(&d.) has only a formal
meaning. To recast E@A.1) in a true exponential form, we can perform a systematic logarith-
mic expansion of the solution of the Altarelli-Parisi equations, by using a well-known method
that dates back, at least, to RE0].

The evolution operator in E§A.1) can be written in the following fornj80] (see also Ref.
[81] for technical details):

Uy (b3/6%. %) =V (as(b3/b?)) Uy (as(b3/b%). as(Q%)) Vit (es(Q?).  (A2)

WhereUgbo) is determined by the lowest-order anomalous dimensjdﬁs

dU@s. @) 1 o)
—_— = —— U ,o5), A.3
dInag Bo N TN (s, o) (A.3)
and the operatoV y fulfills the following differential equation:
dVy(es) 1 (1)

yn(@s)Vy(as) + VN(Ots) (A.4)

dinas  Blas) Bo”
The evolution equatiofA.3) can be solved by diagonalizing the anomalous dimensions matrix

yﬁ&), which has three different elgenvalu;q%\, one eigenvalue in the flavour non-singlet sector

(i =NS), and two eigenvalues in the flavour singlet sectot +). The solution of Eq(A.3) is

2 VLN/:B .
UL (os0y/?).as(03) = Y- | 2SR, a9

N5 pLas®g/b?)

WhereE(i) denotes the projector onto the flavour eigenspace corresponding to the eigenvalue

(1) . By inspection of Eq(A.4), we see that it can be solved by performing a perturbative ex-
panS|on

oo n
Vn(as) =1+ Z(%) 144 (A.6)
n=1

and the perturbative coefficienlég(;) are obtained in terms of the anomalous dimensions co-

efficients y("H) and theg function coefficientss; with k < n. For example, the first-order
coefﬁmentVﬁv) is given by
1 ; B
@ _ () ) 1@ ()
D D e d (it P &
ij=NS,+ Yjn —Vin — Bo

11 1n this appendix we use the boldface notati¥nto denote the flavour space matrix whose matrix elements are
Xap = (X)ap-
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We now come back to the right-hand side of E4g). The evolution operatdV y (b 2/b?, MF)
is rewritten asU y (b3/b%, u%) = Uy (b3/b% QAU N(Q?, u2). Then Uy (b3/b?, Q2) is re-
placed by the expression in E@.2). Eq.(42) thus becomes

Wab v (b, M'O‘S(lﬁe) M%vlhzf)
= Zacc F aS M)HLF (aS(MZ))

x Y [v )UN(Q% 1) a [V (@s(02))UN(Q% 13)],.,,

az,br

{S (M, b) Y Coay N (as(b§/b7)) Cany, v (s(b§/%))

ai,by
<UL asl0).as(09) UL s/, es(09) | *9

where we have defined the perturbative function

Cn(as) = Cn(as)Vy(as) =1+ Z(%) ) (A.9)
n=1

and inside the curly brackets we have collected all the fac®rL y and Ug\',‘o), that depend
on the impact parametér These factors contain the logarithmically-enhanced contributions that
have to be resummed and organized in exponential form. The fSct@m be rewritten as

Se(M, b) = Sc(M, bo/ Q) exp| G (as(u%), L; M?/u%, M?/0?)}, (A.10)
where (see E(31))

2
2

dq? M
Ge(as(ug). Ls M?/u%. M?/ Q%) = — / q—qz [Ac(as(qz)) In P Bc(ws(qz))]-
b3/b?
(A.11)

The factorU 5\',‘0) is

Uspnles(bd/b?).as(0d) = > ES) yexp{Gin(as(uk). L M?/u%, M?/Q%)},
i=NS,+
(A.12)

where (see EqA.5))

@ [¢))

0
_ 2\ 7. m2/u2 M2/02) = VN Ots(Qz)_J/,-,N/d2 )
Ginlos(uie). L M2 /1e M1 Q%) = 2 M0 0282 ~ i 7 Plas(a”))
b3/b?
(A.13)

The factorém, N can be written as

éca,N(‘)‘S(b(ZJ/bZ)) = CN‘ca,N(‘XS(QZ)) exp{gca,N(aS(/Li)a L; MZ/M%’ MZ/QZ) }v (A.14)
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where (see E(q37))

0? -
2\ o202 y2in2 [ 44° oy 41N Cea v (@5(q?))
Gea.v(@s(143). Li M2/, M?/0%) = / A Blasle?) el eSO,
b2/b

(A.15)
Note a key point: Eq{A.14) does not regard the flavour mati&y, but rather its matrix element
@ca,N. Therefore, its right-hand side involves a trei@umber exponential instead of a formal
matrix exponential.
Inserting Eqs(A.10), (A.12) and (A.14)n Eq. (A.8), we eventually obtain the final exponen-
tiated result in Eq(43), namely

) 2y 2,2
Wab (b M:as(ug), wk, u%)
{I},F
_ZHab}N M, as(ug); M?/u%, M? /1%, M?/ Q)
{1}
X exp{g{l},N(as(/x%), L; M?/u2, MZ/QZ)},
where the sum extends over the following set of flavour indices:

{I}=c,c,i,j, a1, b1 (A.16)

The exponengy, v of the universal form factor and the process-dependent hard fb(céfnéﬁ
are

G N=Gc+GiN+GjN+Gear,N + Geb, N, (A.17)

HYw (M, as(uk); M2/ 1%, M?/ %, M/ Q?)
=00 (as(M?). M)H] (as(M?))Se(M. bo/ Q) Ceay n (a5(Q?)) Cany. v (25(0?))

< [ERY V3 (es(0%)Un(Q% 13)],, [EN Vit (es(@2)Un (0% 1)),
(A.18)

From Egs.(A.11), (A.13) and (A.15we see thay;; x in Eq. (A.17) has exactly the integral
representation of Eq19). The logarithmic expansion (see E34)) of G. andg; x starts at
LL and NLL accuracy, respectively. The terfh, y starts at NLL accuracy in the flavour off-
diagonal caséc # a) and at NNLL accuracy in the flavour diagonal cage= a). The hard
funcnonH“ I does not depend on the impact paramétét can be perturbatively expanded in
powers ofas(MR) (with ug ~ M), since the various factors on the right-hand side of(Bdl8)
involve only scalesM, Q, ur) that are of the order of the hard-scattering sddle

We conclude this appendix with a comment on the solufff) of the Altarelli—Parisi evolu-
tion equations and its relation with the resummation in #4) of the logarithmic contributions
to the impact-parameter form factor €gjp; v (os, L)}.

The evolution operatol/ y (b3/b2, 0?) does not contribute to the LL functiogfV (asL) in
Eq. (14). It starts to contribute to the resummation at the level of the NLL funcgij@?(agL)

Indeed, from Egs(A.12) and (A.13)we see thaU(LO)(ozs(b /b%), as(0?)), the solution of
the evolution equations at the lowest-perturbative order, contnbutes to the NLL tgrhts
The higher-order corrections to the evolution equations are taken into account by the operator
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Vn(as) in EQ. (A.2). The role of these corrections can be examined by organizing them in
classes of logarithmic contributioné(asL)". Using the expansion in EGA.6), Eq.(A.2) gives

Un (b3/b%, 0%) = U (as(b3/b?), as(0?)) + O(a£T2L" 1Y) (0> 0), (A.19)
Un (6362, 0%) = UNO (as(b3/b?), as(0?)) + O(«3L"™Y)  (n>0), (A.20)

WhereUﬁ\',\“‘o) is the customary solutiof80,81] of the evolution equations at NLO:
U0 (18 09
=v© (as(b3/b?), as(0?)) + % vQu© (as(b3/b?), as(0?))
- %QZ) U (as(b3/b?), as(Q?))V). (A.21)

The terms denoted b@(ag’”L"“) on the right-hand side of E@A.19) contribute at NNLL
accuracy (they are of the same logarithmic accuracy as those in the fun@@é}\(asm in
Eq.(14)). Analogously, the terms denoted mag+3L"+1) on the right-hand side of E¢A.19)
contribute at NNNLL accuracy (they are of the same logarithmic accuracy as those in the function
aég,(\‘,‘) (asL) in Eq.(14)). Therefore, to resum the NLL (NNLL) contributions to the form factor

is sufficient to implement the solution of the evolution equations at the LO (NLO). Note, however,
that, to be consistent with the resummed logarithmic expansion, the scale dependence of the
running couplingsrs(b3/b?) andas(Q?) in Eq. (A.19) (Eg. (A.20)) has to be evaluated at the

NLO (NNLO).

Appendix B. Bessel transformation of logarithmic contributions
This appendix is devoted to the computation of the Bessel transformation of logarithmic con-

tributions. 5
We recall the definition of the functionis (¢r/ Q) introduced in Eq(74).

. T b 22
I,(qr/Q) = QZ/db EJo(qu)In”<Q + 1). (B.1)
0

b

These integrals are easily evaluated in terms of derivatives of the corresponding generating func-
tion I(x; €):

. 9N\,
In(x)zelino(£> I(x;e), (B.2)
where
- 1 .
I(x;¢e)= Z ;e”ln(x). (B.3)
n=0 "

Inserting Eq{(B.1) in the right-hand side of E¢B.3), we have

[e%e] 2 P
I(x;€) :/d;ijo(tx)<t—2 +1> , (B.4)
0 2 b
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and this integral can be expresg8d] as follows in terms oK, (x), the modified Bessel function
of imaginary argument (see E.5)):

I(x;€) = —<i)l+€iKl+e(b0X)- (B.5)
box 2(1—¢)
Inserting Eq(B.5) in Eq. (B.2) and using the relation
1
F(l—e):exp{yEe—i—kZz%{kek}, (B.6)

where¢, is the Riemann zeta-functioft, = 72/6 = 1.645..., 3 = 1.202...), the integrals

I, (x) can straightforwardly be expressed in terms of the derivatﬂé@,(z), of the Bessel func-
tion with respect to its index:

n
K" (z) = [a ;”n(Z)]Vﬂ. (B.7)
These derivatives have the following integral representation:
o
K (2) = / dt 121¢=30S cogty, (B.8)
0
o
KPP (@) = —2”;’ ! / dr 12 ¢2e0SM (B.9)
0

which can simply be obtained from E.5).

As discussed in Sectiok.4, the computation of the finite component of thg distribution
requires the evaluation of the functiohgx) whenx > 02, In particular, the computation up to
NLO (see Eq(73)) requiresl, (x) with n = 1, 2, 3, 4; these functions are

- b

11(x0) = == K1(box). (B.10)

(x) = %[Kl(box) Inx — K (box)], (B.11)
X

Ia(x) = —% [K1(box)(In?x — ¢2) — 2K " (box) Inx + K2 (box)], (B.12)

- 4b
Ia(x) = 70[K1(b0x)(ln3x — 322Inx + 2¢3) — 3K (box) (I x — ¢2)
+3K2 (box) Inx — K2 (bo)]. (B.13)

The functionsl, (x) diverge whenx — 0. To examine the divergent behaviour at small values
of x, we introduce the functions, (x) and the corresponding generating functign; ¢):

L) = L)1+ 0(x%)], (B.14)
i(x;e):l_(x;e)[l—{— (’)(xz)]. (B.15)

12 The behaviour of,, (x) whenx = 0 is discussed at the end of this appendix.
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Using the smallk behaviour of the Bessel functiokiy . (x) [82] and performing the smak-
limit of Eq. (B.5), we get

I(x;€)= —eD(e)(xz)ilfé, (B.16)
where
_ 2 ZGF(1+€) . > Cok+1 241

Note that the functions, (x) exactly correspond to the following Bessel transformations:

_ ® b 2b2
har/@)= 0% [ db 2 sotbar) In"<Qb2 ) (B.18)
0

0

as can be checked by performing the lignit— 0 of Eq.(B.1) or by verifying that the generating
function in Eq.(B.16) has the following integral representation:

o0

_ 1

I(x;€)= Ebgze / dr Y2 Jo(1x). (B.19)
0

The relation betweei, (g7 /Q) and the smallyr limit of I,,(g7/Q) is not unexpected in view
of the discussion in Sectiod.2 The integral in Eq(B.1) originates from Eq(B.18) after the
replacement. = In(Q?b?/b3) — L = In(1+ Q?b?/b?) at the integrand level: whegpy — 0,
such a replacement has no effects on the singular behaviour at any logarithmic accuracy.

Thoughl,(¢r/Q) and I, (gr/Q) coincide wheryr — 0, they behave quite differently at
very large values of7. Whenx — oo, from Egs.(B.5) and (B.16)we get

I(x) = (—1)";‘/%"0‘?—1’0" In"—1 b%x[u o(%)} (B.20)

_ 2n71 1

o= mlxl1+0(—)| (B.21)
x2 Inx

Note, in particular, thal,, (x) is integrable ovex? whenx — oo, wheread,, (x) it is not.

The functionr,, (x) can easily be computed by performing it derivative of the generating
function(B.16)with respect to the parameterTo present the result, we first exclude the singular
pointx = 0 and consider only the region> 0. Since the generating function dependscanly
through the factotx?)~1-¢, x21, (x) is simply a polynomial of degree— 1 in the variable In-2:

_ 13 n! 1
I ==y — — gt S 0 B.22
n() xzkgc:)k!(n—k—l)! k P (8.22)

where the coefficients, are obtained from EqB.17).

n=[(£) 0] . 629

The value of the first few coefficients is
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do=1, di=d>=0, d3 = —4s3,
ds=0, ds = —48s, ds = 160;2. (B.24)

The result in Eq(B.22) agrees with that in Ref83], where one can find the numerical values
of d, with n <19 (@, = 2"b, (), whereb,,(c0) are given in Table 1 of Ref83]). The smallx
limit of Egs. (B.10)—(B.13)thus gives

. 1 . 2,1 3 3 el 1

. 4 1

Is(x) = ——2(|n3—2 —4;3>. (B.25)
X X

Note that, sincél; = d> = ds4 = 0, I,,(x) can be expressed in a simple form to very high logarith-
mic accuracy. For example, we have

7 __n n— 1i_g (n—1! n— i_g (n—1! n_@i
In(x) = xz{ln 2 3{ ! 4)!In 2 545( sy n N~
= 2(}’1 1) nt— 7i n—Bi
6B oy +(9(In x2>}, x>0, (B.26)

We now discuss how to deal with the region around the singular poia. We first split
thex range in a large- (x > xp) and a smalle (x < xg) region, where the parameteg can be
chosen arbitrarily. Settingg = 1, we have

L(x)=L,x)Ox -1 +1,(x)O(1 —x). (B.27)

In the largex region, which excludes the point= 0, I, (x) is given by Eq(B.22). In the smallx
region, to properly treat the singularity at= 0, we have to consider the generating function in
Eq.(B.16)and use the expansion

(XZ)—l—G@(l—X)Z—;—L(S(xz)-i—|:x—12(x2)_€:| :-%5(X2)+ZZ—’:|:ilnn ii| ’
+ ! N

)CZ x2
n=0
(B.28)

where the plus-distribution is customarily defined by its action onto any funétief) that is
finite atx =0:

1 1
2) _
/dxzh(xz)[izm" iz} E/dﬁwm"iz. (B.29)
0 * 0

X X X X

Therefore the generalization of Ef®.22)to include the poink =0 is

n—1

7 2 n! n—k—-1 1
In(x)zdné(x ) Zmdkl:—ln x—2}+, 0<x < 1. (B30)

The procedure described in Eq8.27) and (B.28)can also be applied to properly define
the integralsl, (x) around the point = 0 in the smallx region. Choosing = oo, the final
result is equivalent to start from, (x > 0), the expression of, (x) whenx = 0 (for example,
Egs.(B.10)—(B.13), and then introduce a generalized plus-prescription that acts in the entire
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range 0< x < oo. Formally we can write
Lix) =[I(x>0)], . (B.31)

where the generalized plus-distribution is defined as

/ dx*h(x?)[I,(x > 0)], = / dx?[h(x?) — h(0)][,(x > 0). (B.32)
0 0

The choicexg = oo to define the plus-prescription in the casd,pfs feasible sincé, (x) (unlike
I,(x)) is integrable over? whenx — oo. This choice simplifies the definition df, since the
right-hand side of Eq(B.31) (unlike Eq.(B.30)) does not contain any contact term proportional
to 8(x2). The contact term vanishes since the integrand facta Q2b2/b(2)) in Eq. (B.1)
vanishes ab = 0. The vanishing of the contact term is thus ultimately related to the unitarity
constraint in Eqs(8) and (18)
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