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Abstract

We consider the transverse-momentum (qT ) distribution of generic high-mass systems (lepton pairs, v
tor bosons, Higgs particles, . . . ) produced in hadron collisions. At smallqT , we concentrate on the all-ord
resummation of the logarithmically-enhanced contributions in QCD perturbation theory. We elabo
theb-space resummation formalism and introduce some novel features: the large logarithmic contri
are systematically exponentiated in a process-independent form and, after integration overqT , they are
constrained by perturbative unitarity to give a vanishing contribution to the total cross section. At in
diate and largeqT , resummation is consistently combined with fixed-order perturbative results, to o
predictions with uniform theoretical accuracy over the entire range of transverse momenta. The for
is applied to Standard Model Higgs boson production at LHC energies. We combine the most ad
perturbative information available at present for this process: resummation up to next-to-next-to-
logarithmic accuracy and fixed-order perturbation theory up to next-to-leading order. The results
high stability with respect to perturbative QCD uncertainties.
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1. Introduction

This paper is devoted to study the transverse-momentum (qT ) spectrum of high-mass system
produced by hard-scattering of partons in hadron–hadron collisions. In Ref.[1] we presented
some quantitative results on theqT spectrum of the Standard Model (SM) Higgs boson, produ
via the gluon fusion mechanism, at LHC energies. The formalism used in Ref.[1] is quite genera
and applies to the transverse-momentum distribution of generic high-mass systems (lepto
vector bosons, Higgs particles, . . . ) produced in hadron collisions. The purpose of the pre
paper is twofold. Owing to its general applicability, we find it useful to first describe and di
the formalism with quite some details. We then perform a more systematic phenomeno
analysis of theqT distribution of the Higgs boson at the LHC.

In this introductory section, rather than illustrating the resummation formalism in ge
terms, we mainly consider the explicit case of theqT spectrum of the Higgs boson. This al
serves for underlying some general features of the formalism in concrete, rather than a
terms.

Within the SM of electroweak interactions, the Higgs boson[2] is responsible for the mech
anism of the electroweak symmetry breaking, but this particle has so far eluded experi
discovery. Direct searches at LEP have established a lower bound of 114.4 GeV[3] on the mass
MH of the SM Higgs boson, whereas SM fits of electroweak precision data lead to the
limit MH < 260 GeV at 95% CL[4]. The next search for Higgs boson(s) will be carried ou
hadron colliders, namely, the Fermilab Tevatron[5,6] and the CERN LHC[7,8].

The main production mechanism of the SM Higgs bosonH at hadron colliders is the gluo
fusion processgg → H , through a heavy-quark (mainly, top-quark) loop. When combined
the decay channelsH → γ γ , H → WW andH → ZZ, this production mechanism is one
the most important for Higgs boson searches and studies over the entire mass range, 10�
MH � 1 TeV, to be investigated at the LHC[7]. To fully exploit the physics potential of the gluo
fusion process, it is relevant to provide reliable theoretical predictions for the correspondin
cross section and for the associated distributions, such as, for instance, the HiggsqT distribution.
The dominant source of theoretical uncertainties on these quantities is the effect of QCD ra
corrections, which, therefore, have to be carefully investigated.

The total cross section for Higgs boson production by gluon fusion has been computed i
perturbation theory at the leading order (LO),O(α2

S), at the next-to-leading order (NLO)[9,10]
and at the next-to-next-to-leading order (NNLO)[11–14] in the QCD couplingαS. The NNLO
computation of the rapidity distribution of the Higgs boson has recently been completed[15].
A key point of this theoretical activity is that the origin of the dominant perturbative contribu
to the total cross section has been identified and understood: the bulk of the radiative corr
is due to virtual and soft-gluon terms[12]. This point has a twofold relevance. On one side
explains the observation[16] of the validity of the large-Mt approximation (Mt being the mas
of the top quark) in the calculation at the NLO, and, therefore, it justifies the use of the
approximation at and beyond the NNLO. On the other side, it allows to estimate higher
QCD contributions by supplementing the NNLO calculation with an all-order resummati
the logarithmically-enhanced terms due to multiple soft-gluon emission[17]. Having these term
under control allows us to reliably predict the value of the cross section and, more impor
to reduce the associated perturbative uncertainty at the level of about±10%[17].

When studying theqT distribution of the Higgs boson in QCD perturbation theory, it is c
venient to start by considering separately the large-qT and small-qT regions.
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The large-qT region is identified by the conditionqT ∼ MH . In this region, the perturbativ
series is controlled by a small expansion parameter,αS(M2

H ), and calculations based on the tru
cation of the series at a fixed order inαS are theoretically justified. SM Higgs boson production
largeqT via gluon fusion has to be accompanied by the radiation of at least one recoiling p
so the LO term for this observable is ofO(α3

S). The LO calculation was reported in Ref.[18]; it
shows that the large-Mt approximation works well as long asMH � 2Mt andqT � Mt . Similar
results on the validity of the large-Mt approximation were obtained in the case of the associ
production of a Higgs boson plus 2 jets (2 recoiling partons at large transverse momenta[19].
In the framework of the large-Mt approximation, the NLO QCD corrections to the transve
momentum distribution of the SM Higgs boson were computed in Refs.[20–23]. Corrections to
the large-Mt approximation are considered in Ref.[24]. The numerical programs of Refs.[20,23]
can also be used to evaluate arbitrary infrared- and collinear-safe observables up to NLO
large-qT region and, in the case of Ref.[23], up to NNLO whenqT = 0.

In the small-qT region (qT � MH ), where the bulk of events is produced, the convergenc
the fixed-order expansion is spoiled, since the coefficients of the perturbative series inαS(M2

H )

are enhanced by powers of large logarithmic terms, lnm(M2
H /q2

T ). To obtain reliable perturbativ
predictions, these terms have to be resummed to all orders inαS. The method to systemat
cally perform all-order resummation of classes of logarithmically-enhanced terms at smqT

is known[25–33]. In the case of the SM Higgs boson, resummation has been explicitly wo
out at leading logarithmic (LL), next-to-leading logarithmic (NLL)[34,35]and next-to-next-to
leading logarithmic (NNLL)[36] level.

The fixed-order and resummed approaches at small and large values ofqT can then be matche
at intermediate values ofqT , to obtain QCD predictions for the entire range of transverse
menta. Phenomenological studies of the SM Higgs bosonqT distribution have been performed
Refs.[1,35,37–46], by combining resummed and fixed-order perturbation theory at differen
els of theoretical accuracy. A comparison of theoretical calculations[1,40,42,44]and of results
from parton shower Monte Carlo generators[47–50]is presented in Ref.[51].

In the present paper we compute the Higgs bosonqT distribution at the LHC by combining th
most advanced perturbative information that is available at present: NNLL resummation a
qT and NLO perturbation theory at largeqT . The first results of our calculation were presente
Refs.[1,52]. Here we perform a more complete phenomenological study and present a disc
of theoretical uncertainties.

The formalism used to obtain these results was briefly described in Refs.[1,33] and is il-
lustrated in detail in the present paper. Three distinctive features are anticipated her
resummation is performed at the level of the partonic cross section; this implies that th
ton distributions are evaluated at the factorization scaleµF , which has to be chosen of the ord
of the hard scaleM . The resummed terms are embodied in a form factor that is univers
depends only on the flavour of the partons that initiate the hard-scattering subprocess at t
level (e.g.,qq̄ annihilation in the case of Drell–Yan lepton pair production, andgg fusion in
the case of Higgs boson production). A constraint of perturbative unitarity is imposed o
resummed terms, to the purpose of reducing the effect of unjustified higher-order contrib
at large values ofqT and, especially, at intermediate values ofqT . The constraint implies tha
the total cross section at the nominal fixed-order accuracy (NLO or NNLO) is recovered
integration overqT of the transverse-momentum spectrum (at NLL+ LO or NNLL + NLO).

The paper is organized as follows. In Section2 the resummation formalism is discussed in
tail. After illustrating the general aspects of our approach in Section2.1, we discuss the structur
of the resummed cross section in Section2.2. The relation to the standardb-space resummatio
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is given in Section2.3. Section2.4 is devoted to the finite component of the cross section
Section3 we apply the resummation formalism to the production of the SM Higgs boson
LHC. In Section4 we draw our conclusions. InAppendix A we discuss the details of the e
ponentiation in the general multiflavour case. InAppendix Bwe illustrate the calculation of th
Bessel integrals required in the computation of the perturbative expansion of the resumme
section.

2. Transverse-momentum resummation

The formalism[1,33] that we use to compute theqT distribution of the Higgs boson applie
to more general hard-scattering processes. Therefore, we describe it in general terms.

2.1. The resummation formalism: from small to large values ofqT

We consider the inclusive hard-scattering process

(1)h1(p1) + h2(p2) → F(M,qT ) + X,

where the collision of the two hadronsh1 andh2 with momentap1 andp2 produces the trig
gered final-state systemF , accompanied by an arbitrary and undetected final stateX. We denote
by

√
s the centre-of-mass energy of the colliding hadrons(s = (p1 + p2)

2 � 2p1p2). The ob-
served final stateF is a generic system of non-QCD partons such asoneor morevector bosons
(γ ∗,W,Z, . . .), Higgs particles, Drell–Yan (DY) lepton pairs and so forth. We do not cons
the production of strongly interacting particles (hadrons, jets, heavy quarks,. . . ), since in this
case the resummation formalism of small-qT logarithms has not yet been fully developed.

Throughout the paper we limit ourselves to considering the case in which only the to
variant massM and transverse momentumqT of the systemF are measured. According to th
QCD factorization theorem (see Ref.[53] and references therein), the corresponding transv
momentum differential cross section1 dσ̂F /dq2

T can be written as

dσF

dq2
T

(qT ,M, s)

(2)

=
∑
a,b

1∫
0

dx1

1∫
0

dx2 fa/h1

(
x1,µ

2
F

)
fb/h2

(
x2,µ

2
F

)dσ̂Fab

dq2
T

(
qT ,M, ŝ;αS(µ2

R),µ2
R,µ2

F

)
,

where fa/h(x,µ2
F ) (a = qf , q̄f , g) are the parton densities of the colliding hadrons at

factorization scaleµF , dσ̂Fab/dq2
T are the partonic cross sections,ŝ = x1x2s is the partonic

centre-of-mass energy, andµR is the renormalization scale. Throughout the paper we use p
densities as defined in theMS factorization scheme, andαS(q2) is the QCD running coupling in
theMS renormalization scheme.

The partonic cross section is computable in QCD perturbation theory as a power ser
pansion inαS. We assume that at the parton level the systemF is produced with vanishingqT

(i.e., with no accompanying final-state radiation) in the lowest-order approximation, so th

1 To be precise, when the systemF is not a single on-shell particle of massM , what we denote bydσ̂F /dq2
T

is actually

the differential cross sectionM2 dσ̂F /dM2 dq2
T

.
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corresponding cross section isdσ̂
(0)
Fcc̄/dq2

T ∝ δ(q2
T ). SinceF is colourless, the lowest-order pa

tonic subprocess,c + c̄ → F , is eitherqq̄ annihilation (c = q), as in the case ofγ ∗,W andZ

production, orgg fusion (c = g), as in the case of the production of the SM Higgs bosonH .
As recalled in Section1, higher-order perturbative contributions to the partonic cross se

dσ̂Fab/dq2
T contain logarithmic terms of the type lnm(M2/q2

T ) that become large in the sma
qT region (qT � M). Therefore, we introduce the following decomposition of the partonic c
section in Eq.(2):

(3)
dσ̂Fab

dq2
T

= dσ̂
(res.)
Fab

dq2
T

+ dσ̂
(fin.)
Fab

dq2
T

.

The distinction between the two terms on the right-hand side is purely theoretical. Th
term, dσ̂

(res.)
Fab , on the right-hand side contains all the logarithmically-enhanced contribut

(αn
S/q2

T ) lnm(M2/q2
T ), at smallqT , and has to be evaluated by resumming them to all orde

αS. The second term,dσ̂
(fin.)
Fab , is free of such contributions, and can be computed by fixed-o

truncation of the perturbative series. More precisely, we define the ‘finite’ componentdσ̂
(fin.)
Fab in

such a way that we have2

(4)lim
QT →0

Q2
T∫

0

dq2
T

[
dσ̂

(fin.)
Fab

dq2
T

]
f.o.

= 0,

where the right-hand side vanishesorder-by-orderin perturbation theory. In particular, this im
plies that any perturbative contributions proportional toδ(q2

T ) have been removed fromdσ̂
(fin.)
Fab

and included indσ̂
(res.)
Fab .

The ‘resummed’ componentdσ̂
(res.)
Fab of the partonic cross section cannot, of course, be e

uated by computing all the logarithmic contributions in the perturbative series. Howev
discussed in Section2.2, these contributions can systematically be organized in classes o
NLL, . . . terms and, then, this logarithmic expansion can be truncated at a given logar
accuracy.

In summary, theqT distribution in Eq.(2) is evaluated, in practice, by replacing the parto
cross section on the right-hand side as follows

(5)
dσ̂Fab

dq2
T

→
[
dσ̂

(res.)
Fab

dq2
T

]
l.a.

+
[
dσ̂

(fin.)
Fab

dq2
T

]
f.o.

.

The first and second terms on the right-hand side denote the truncation of the resumm
finite components at a given logarithmic accuracy and at a given fixed order, respective
resummed component gives the dominant contribution in the small-qT region, while the finite
component dominates at large values ofqT . The two components have to be consistently matc
at intermediate values ofqT , so as to obtain a theoretical prediction with uniform formal accur
over the entire range ofqT , from qT � M up toqT ∼ M . To this aim, we compute[dσ̂

(fin.)
ab ]f.o.

starting from[dσ̂ab]f.o., the usual perturbative series for the partonic cross section trunca
a given fixed order inαS, and subtracting from it the perturbative truncation of the resum

2 The notation[X]f.o. means that the quantityX is computed by truncating its perturbative expansion at a given fi
order inαS.
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(6)

[
dσ̂

(fin.)
Fab

dq2
T

]
f.o.

=
[
dσ̂Fab

dq2
T

]
f.o.

−
[
dσ̂

(res.)
Fab

dq2
T

]
f.o.

.

Moreover, we impose the condition:

(7)

[[
dσ̂

(res.)
Fab

dq2
T

]
l.a.

]
f.o.

=
[
dσ̂

(res.)
Fab

dq2
T

]
f.o.

.

This matching procedure guarantees that the replacement in Eq.(5) retains the full information o
the perturbative calculation up to the specified fixed order plus resummation of logarithm
enhanced contributions from higher orders. Eqs.(6) and (7)indeed imply that the matching
perturbatively exact, in the sense that the fixed-order truncation of the right-hand side of(5)
exactly reproduces the customary fixed-order truncation of the partonic cross section in E(2).
The (small-qT ) resummed and (large-qT ) fixed-order approaches are thus consistently comb
without double-counting (or neglecting) of perturbative contributions and by avoiding the
duction of ad-hoc boundaries (such as, for instance, the choice of some intermediate valuqT

as ‘switching’ point between the resummed and fixed-order calculations) between the laqT

and small-qT regions.
The resummed contributions that are present in the term[dσ̂

(res.)
Fab ]l.a. of Eq. (5) are necessar

and fully justified at smallqT . Nonetheless they can lead to sizeable higher-order perturb
effects also at largeqT , where the small-qT logarithmic approximation is not valid. To reduce t
impact of these unjustified higher-order terms, we require that they give no contributions
most basic quantity, namely the total cross section, that is not affected by small-qT logarithmic
terms. We thus impose that the integral overqT of Eq. (5) exactly reproduces the fixed-ord
calculation of the total cross section. Sincedσ̂

(fin.)
Fab is evaluated in fixed-order perturbation th

ory, the perturbative constraint on the total cross section is achieved by imposing the fol
condition:

(8)

∞∫
0

dq2
T

[
dσ̂

(res.)
Fab

dq2
T

]
l.a.

=
∞∫

0

dq2
T

[
dσ̂

(res.)
Fab

dq2
T

]
f.o.

.

Eq. (8) can be regarded, in some sense, as a unitarity constraint. As a matter of fact, th
rithmic contributions that are resummed indσ̂

(res.)
Fab are, precisely speaking, plus distributions

the type[(αn
S/q2

T ) lnm(M2/q2
T )]+. Therefore, it is quite natural to require that these resum

terms give a vanishing contribution to the total cross section. Note that the bulk of theqT distrib-
ution is in the regionqT � MH . Since resummed and fixed-order perturbation theory control
small-qT and large-qT regions respectively, the total cross section constraint mainly acts o
size of the higher-order contributions introduced in the intermediate-qT region by the matching
procedure.

Another distinctive feature of the formalism illustrated so far is that we implement pe
bative QCD resummation at the level of the partonic cross section. In the factorization fo
(2), the parton densities are thus evaluated at the factorization scaleµF , as in the customary pe
turbative calculations at largeqT . Although we are dealing with a process characterized by
distinct hard scales,qT andM , the dominant effects from the scale regionqT � M are explicitly
taken into account through all-order resummation. Therefore, the central value ofµF andµR has
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to be set equal toMH , the ‘remaining’ typical hard scale of the process. Then the theoretica
curacy of the resummed calculation can be investigated as in customary fixed-order calcu
by varyingµF andµR around this central value.

At small values ofqT , the perturbative QCD approach has to be supplemented with
perturbative contributions, since they become relevant asqT decreases. A discussion on no
perturbative effects on theqT distribution of the SM Higgs boson is presented in Section3.1.

The resummation and matching formalism, which we have so far illustrated in quite g
terms, is set up to deal with the transverse-momentum region whereqT � M . Resummation o
small-qT logarithms cannot lead to any theoretical improvements in the large-qT region, where
those logarithms are not the dominant contributions. WhenqT � M , the use of the resummatio
formalism is no longer justified (recommended), and we have to use the customary fixed
perturbative expansion.

2.2. The resummed component

The method to systematically resum the logarithmically-enhanced contributions at
qT was set up[26–30] shortly after the first resummed calculation of the DYqT spectrum
to double logarithmic accuracy[25]. The resummation procedure has to be carried out in
impact-parameter space, to correctly take into account the kinematics constraint of tran
momentum conservation. The resummed component of the transverse-momentum cross
in Eq.(3) is then obtained by performing the inverse Fourier (Bessel) transformation with re
to the impact parameterb. We write3

dσ̂
(res.)
Fab

dq2
T

(
qT ,M, ŝ;αS

(
µ2

R

)
,µ2

R,µ2
F

)

(9)= M2

ŝ

∫
d2b
4π

eib·qT WF
ab

(
b,M, ŝ;αS

(
µ2

R

)
,µ2

R,µ2
F

)

(10)= M2

ŝ

∞∫
0

db
b

2
J0(bqT )WF

ab

(
b,M, ŝ;αS

(
µ2

R

)
,µ2

R,µ2
F

)
,

whereJ0(x) is the 0th-order Bessel function.
The perturbative and process-dependent factorWF

ab embodies the all-order dependence on
large logarithms lnM2b2 at largeb, which correspond to theqT -space terms lnM2/q2

T that are
logarithmically enhanced at smallqT (the limit qT � M corresponds toMb 	 1, sinceb is the
variable conjugate toqT ). Resummation of these large logarithms is better expressed by de
theN -moments4 WN of W with respect toz = M2/ŝ at fixedM :

(11)

WF
ab,N

(
b,M;αS

(
µ2

R

)
,µ2

R,µ2
F

) ≡
1∫

0

dz zN−1WF
ab

(
b,M, ŝ = M2/z;αS

(
µ2

R

)
,µ2

R,µ2
F

)
.

3 The subscriptb, which labels the parton flavour, should not be confused with the impact parameterb.
4 Throughout the paper, theN -moments hN of any function h(z) of the variable z are defined ashN =∫ 1
0 dz zN−1h(z).
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The resummation structure ofWF
ab,N can indeed be organized in exponential form, as discu

below.
In the following of this subsection, the subscripts denoting the flavour indices are under

More precisely, we present the resummation formulae in a simplified form, which is valid
there is a single species of partons. This simplified form illustrates more clearly the key str
and the main features of the resummed partonic cross section. The generalization to con
more species of partons does not require any further conceptual steps: it just involves al
complications, which are discussed in Section2.3and inAppendix A.

The logarithmic terms embodied inWF
ab,N are due to final-state radiation of partons that

soft and/or collinear to the incoming partons. Their all-order resummation can be organize[33]
in close analogy to the cases of soft-gluon resummed calculations for hadronic event
in hard-scattering processes[54–57] and for threshold contributions to hadronic cross sect
[58,59]. We write

WF
N

(
b,M;αS

(
µ2

R

)
,µ2

R,µ2
F

)
=HF

N

(
M,αS

(
µ2

R

);M2/µ2
R,M2/µ2

F ,M2/Q2)
(12)× exp

{
GN

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2)}.
The functionHF

N does not depend on the impact parameterb and, therefore, it contains all th
perturbative terms that behave as constants in the limitb → ∞. The functionG includes the
complete dependence onb and, in particular, it contains all the terms that order-by-order inαS
are logarithmically divergent whenb → ∞. This factorization between constant and logarith
terms involves some degree of arbitrariness[56], since the argument of the large logarithms c
always be rescaled as lnM2b2 = lnQ2b2 + lnM2/Q2, provided thatQ is independent ofb and
that lnM2/Q2 = O(1) whenbM 	 1. To parametrize this arbitrariness, on the right-hand
of Eq. (12) we have introduced the scaleQ, such thatQ ∼ M , and we have defined the larg
logarithmic expansion parameter,L, as

(13)L ≡ ln
Q2b2

b2
0

,

where the coefficientb0 = 2e−γE (γE = 0.5772. . . is the Euler number) has a kinematical orig
(the use ofb0 in Eq.(13) in purely conventional: it simplifies the algebraic expression ofG).

The role played by the auxiliary scaleQ (which we name the ‘resummation scale’) in t
context of the resummation program is analogous to the role played by the renormalizatio
torization) scale in the context of renormalization (factorization). Although the resummed
sectionWF

N does not depend onQ when evaluated to all perturbative orders, its explicit dep
dence onQ appears whenWF

N is computed by truncation of the resummed expression at s
level of logarithmic accuracy (see below). As in the case ofµR andµF , we should setQ at
the central valueQ = M ; variations of the resummation scaleQ around this central value ca
then be used to estimate the uncertainty from yet uncalculated logarithmic corrections at
orders. Note that the resummation scale dependence ofWF

N should not be confused with th
‘resummation scheme’ dependence considered in Ref.[33]. In fact, as shown in Section2.3, WF

N

is exactly independent of the resummation scheme.
All the large logarithmic termsαn

SLm with 1� m � 2n are included in the form factor exp{G}.
More importantly, all the logarithmic contributions toG with n + 2 � m � 2n are vanishing
This property, which is called exponentiation, follows[26–30]from the perturbative dynamics o
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(Abelian and non-Abelian) gauge theories and from kinematics factorization in impact para
space. Thus, the exponentG can systematically be expanded as

GN

(
αS,L;M2/µ2

R,M2/Q2)
= Lg(1)(αSL) + g

(2)
N

(
αSL;M2/µ2

R,M2/Q2) + αS

π
g

(3)
N

(
αSL;M2/µ2

R,M2/Q2)

(14)+
+∞∑
n=4

(
αS

π

)n−2

g
(n)
N

(
αSL;M2/µ2

R,M2/Q2),
whereαS = αS(µ2

R) and the functionsg(n)(αSL) are defined such thatg(n) = 0 whenαSL = 0.
Thus the termLg(1) collects the LL contributionsαn

SLn+1; the functiong(2) resums the NLL
contributionsαn

SLn; g(3) controls the NNLL termsαn
SLn−1, and so forth. Note that in the conte

of the resummation approach, the parameterαSL is formally considered as being of order uni
Thus, the ratio of two successive terms in the expansion(14) is formally of O(αS) (with no L

enhancement). In this respect, the resummed logarithmic expansion in Eq.(14) is as systematic
as any customary fixed-order expansion in powers ofαS.

The functionHF
N in Eq.(12)does not contain large logarithmic terms to be resummed. It

be expanded in powers ofαS = αS(µ2
R) as

HF
N

(
M,αS;M2/µ2

R,M2/µ2
F ,M2/Q2)

= σ
(0)
F (αS,M)

[
1+ αS

π
HF(1)

N

(
M2/µ2

R,M2/µ2
F ,M2/Q2)

+
(

αS

π

)2

HF(2)
N

(
M2/µ2

R,M2/µ2
F ,M2/Q2)

(15)+
+∞∑
n=3

(
αS

π

)n

HF(n)
N

(
M2/µ2

R,M2/µ2
F ,M2/Q2)],

whereσ
(0)
F = α

p

Sσ
(LO)
F is the lowest-order partonic cross section for the hard-scattering pr

in Eq.(1).
Two other general aspects of the resummed partonic cross sectionWF

N are the factorization
scale (and scheme) dependence and the process dependence. As discussed below, the f
exp{G} doesnot depend on both the factorization scale (and scheme) and the specific
scattering process.

The hadronic cross section on the left-hand side of Eq.(2) is a physical observable and cann
depend on the factorization scaleµF . In practice, the evaluation of the right-hand side at a cer
perturbative accuracy introduces theµF dependence of the partonic cross sectiondσ̂Fab. This de-
pendence is perturbatively balanced by theµF dependence of the parton densitiesfa/h(x,µ2

F ).
Note that the parton densities in Eq.(2) do not depend on the transverse momentumqT (or on
the impact parameterb). Recall also that we implement transverse-momentum resummat
the level of the partonic cross sectiondσ̂Fab, by using Eqs.(9) and (12). Therefore, anyµF de-
pendence of the parton densities cannot introduce anylogarithmicdependence onb in the form
factor exp{G}. In other words, the perturbative expansion(15) of the functionHF

N depends on

µF , while the exponentG of the form factor and its corresponding logarithmic functionsg
(n)
N in

Eq.(14)do not depend onµF and on the factorization scheme used to define the parton den
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As explicitly shown in Section2.3, the form factor exp{G} in Eq.(12)does not depend on th
final-state systemF produced in the hard-scattering process of Eq.(1). The form factor is proces
independent: it is produced by universal soft and collinear radiation from the QCD partons
ing the hard-scattering process (when the simplification of considering a single parton sp
removed, there are various process-independent form factors for the various partonic ch
The dependence on the process is fully taken into account by the hard-scattering functioHF

N ,
which embodies contributions produced by virtual corrections at transverse-momentum
qT ∼ M .

The truncation[WF
N ]l.a. of the resummed cross section at a given logarithmic accura

defined as follows. At LL accuracy, we include the functiong(1) in the exponentG and we
approximateHF

N by the Born cross sectionσ (0)
F . At NLL accuracy, we include the function

g(1) andg
(2)
N and the coefficientHF(1)

N . At NNLL accuracy, we also includeg(3)
N andHF(2)

N . The

reason for including bothHF(1)
N andg

(2)
N at NLL accuracy is that the combined effect ofαSHF(1)

N

andLg(1)(αSL) leads to logarithmic contributions,αn
SLn, that are of the same order as those

g
(2)
N (αSL). An analogous observation applies to the inclusion of bothg

(3)
N andHF(2)

N at NNLL
accuracy.

The logarithmic truncation of the resummed component of the cross section can then b
bined, as in Eq.(5), with the fixed-order expansion of the finite component in Eq.(6). The
NLL + LO result is obtained by supplementing NLL resummation with the LO expansio5 at
large qT . The NNLL + NLO result combines NNLL resummation with the NLO expans
at largeqT . This procedure for combining the resummed and fixed-order approaches e
satisfies the matching conditions in Eqs.(4) and (7). Note that the fulfillment of the matchin
conditions is not completely trivial. For instance, ifHF(1)

N was not included indσ̂
(res.)
F at NLL

accuracy, the matching condition in Eq.(7) would be violated at LO (in other words, Eq.(4)
would be violated since theqT integral of[dσ̂

(fin.)
Fab ]LO would lead to a non-vanishing finite valu

whenQT → 0).
To reduce the impact of unjustified resummed logarithms in the large-qT region, we use a

procedure inspired by that introduced in Ref.[55] to deal with kinematical constraints whe
performing soft-gluon resummation ine+e− event shapes. We consider the exponentG(αS,L)

of the form factor in Eqs.(12) and (14)and we perform the replacement

(16)G(αS,L) −→ G(αS, L̃).

In other words, in the argument ofG(αS,L) we replace the logarithmic variableL with the
variableL̃ defined as

(17)L̃ ≡ ln

(
Q2b2

b2
0

+ 1

)
.

Comparing the definitions in Eqs.(13) and (17), we see that in the resummation regionQb 	 1
we haveL̃ = L + O(1/(Qb)2), and thus the replacement in Eq.(16) is fully legitimate6 to
arbitrary logarithmic accuracy. Although the variablesL and L̃ are equivalent to organize th

5 We recall that there is a mismatch of notation between theqT distribution atqT ∼ M and the total cross section. Th
LO (NLO) term of the finite component of theqT distribution contributes to the total cross section at NLO (NNLO).

6 Note that the replacement in Eq.(16) introduces an explicit dependence ofdσ̂
(res.)
F

on the resummation scaleQ.

Owing to the matching procedure in Eq.(6), this dependence is balanced by theQ dependence of thedσ̂
(fin.)
F

.
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resummation formalism in the regionQb 	 1, they lead to a different behaviour of the for
factor at small values ofb (i.e., large values ofqT ): when Qb � 1, we haveL̃ → 0 and
exp{G(αS, L̃)} → 1. Therefore, performing the replacement in Eq.(16), we reduce the effec
produced by the resummed contributions in the small-b region, where the use of the largeb
resummation approach is not justified.

In particular, since exp{G(αS, L̃)} = 1 atb = 0, using Eqs.(9) and (12)we obtain the relation

∞∫
0

dq2
T

dσ̂
(res.)
F

dq2
T

(
qT ,M, ŝ;αS

(
µ2

R

)
,µ2

R,µ2
F ,Q2)

(18)= M2

ŝ
HF

(
M, ŝ,αS

(
µ2

R

);M2/µ2
R,M2/µ2

F ,M2/Q2),
which simply follows from the fact that the value atb = 0 of the (b-space) Fourier transformatio
of theqT distribution is equal to the integral overqT of theqT distribution itself. Since the har
cross sectionHF is evaluated in fixed-order perturbation theory, the relation(18) implies that the
replacement in Eq.(16) also allows us to implement the perturbative constraint(8) on the total
cross section. More precisely, the integral overqT of theqT distributiondσ̂F /dqT at NLL + LO
(NNLL + NLO) accuracy exactly reproduces the calculation of the total cross section at
(NNLO).

The purpose of the transverse-momentum resummation program[26–30]is to explicitly eval-
uate the logarithmic functionsg(n)

N of Eq.(14) in terms of few coefficients that are perturbative
computable. As illustrated in Section2.3, this goal is achieved by showing that the all-ord
resummation formula(14)has the following integral representation:

(19)

GN

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2) = −
Q2∫

b2
0/b2

dq2

q2

[
A

(
αS

(
q2)) ln

M2

q2
+ B̃N

(
αS

(
q2))],

whereA(αS) andB̃N (αS) are perturbative functions

(20)A(αS) = αS

π
A(1) +

(
αS

π

)2

A(2) +
(

αS

π

)3

A(3) +
∞∑

n=4

(
αS

π

)n

A(n),

(21)B̃N (αS) = αS

π
B̃

(1)
N +

(
αS

π

)2

B̃
(2)
N +

∞∑
n=3

(
αS

π

)n

B̃
(n)
N .

The coefficientsA(n) and B̃
(n)
N are related to the customary coefficients of the Sudakov f

factors and of the parton anomalous dimensions. This relation is discussed in Section2.3.
Using Eq.(9), the resummed componentdσ̂

(res.)
F /dq2

T of the qT distribution is fully deter-
mined by the functionsHF

N andGN in Eq. (12). These functions are in turn specified by t

perturbative coefficientsHF(n)
N (see Eq.(15)), A(n) andB̃

(n)
N (see Eqs.(19)–(21)), which can be

extracted from the logarithmic terms in the perturbative expansion of theqT distribution at the
n-th relative order inαS. Therefore, the customary fixed-order computation of theqT distribution
is sufficient to obtain the full information that is necessary to explicitly perform resummati
the required logarithmic accuracy.
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By inspection of theq2 integration in Eq.(19), it is evident that the exponentGN of the
process-independent form factor in Eq.(12) has the logarithmic structure of Eq.(14). The func-
tions g

(n)
N depend on the coefficients in Eqs.(20) and (21), and the functional dependence

completely specified by Eq.(19). More precisely (see Eqs.(22)–(24)), the LL functiong
(1)
N de-

pends onA(1), the NLL functiong
(2)
N depends also onA(2) and B̃

(1)
N , the NNLL functiong

(3)
N

depends also onA(3) andB̃
(2)
N , and so forth. Starting from the integral representation in Eq.(19),

the explicit functional form of the functionsg(n)
N (for arbitrary values ofn) can easily be com

puted by using the method that is described in Appendix C of Ref.[17].
The LL, NLL and NNLL functionsg(1)

N , g(2)
N andg

(3)
N have the following explicit expressions7:

(22)g(1)(αSL) = A(1)

β0

λ + ln(1− λ)

λ
,

g
(2)
N

(
αSL; M2

µ2
R

,
M2

Q2

)

= B̄
(1)
N

β0
ln(1− λ) − A(2)

β2
0

(
λ

1− λ
+ ln(1− λ)

)
+ A(1)

β0

(
λ

1− λ
+ ln(1− λ)

)
ln

Q2

µ2
R

(23)+ A(1)β1

β3
0

(
1

2
ln2(1− λ) + ln(1− λ)

1− λ
+ λ

1− λ

)
,

g
(3)
N

(
αSL; M2

µ2
R

,
M2

Q2

)

= −A(3)

2β2
0

λ2

(1− λ)2
− B̄

(2)
N

β0

λ

1− λ
+ A(2)β1

β3
0

(
λ(3λ − 2)

2(1− λ)2
− (1− 2λ) ln(1− λ)

(1− λ)2

)

+ B̄
(1)
N β1

β2
0

(
λ

1− λ
+ ln(1− λ)

1− λ

)
− A(1)

2

λ2

(1− λ)2
ln2 Q2

µ2
R

+ ln
Q2

µ2
R

(
B̄

(1)
N

λ

1− λ
+ A(2)

β0

λ2

(1− λ)2
+ A(1) β1

β2
0

(
λ

1− λ
+ 1− 2λ

(1− λ)2
ln(1− λ)

))

+ A(1)

(
β2

1

2β4
0

1− 2λ

(1− λ)2
ln2(1− λ) + ln(1− λ)

[
β0β2 − β2

1

β4
0

+ β2
1

β4
0(1− λ)

]

(24)+ λ

2β4
0(1− λ)2

(
β0β2(2− 3λ) + β2

1λ
))

,

where

(25)λ = 1

π
β0αS

(
µ2

R

)
L,

(26)B̄
(n)
N = B̃

(n)
N + A(n) ln

M2

Q2
,

7 Note that the functional form of the functionsg(n)
N

is exactly the same as that of the functions that appear in
calculation of the energy–energy correlation ine+e− annihilation[60].
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andβn are the coefficients of the QCDβ function:

(27)
d lnαS(µ2)

d lnµ2
= β

(
αS

(
µ2)) = −

+∞∑
n=0

βn

(
αS

π

)n+1

.

The explicit expression of the first three coefficients,β0, β1 andβ2, is [61]

β0 = 1

12
(11CA − 2Nf ), β1 = 1

24

(
17C2

A − 5CANf − 3CF Nf

)
,

(28)

β2 = 1

64

(
2857

54
C3

A − 1415

54
C2

ANf − 205

18
CACF Nf + C2

F Nf + 79

54
CAN2

f + 11

9
CF N2

f

)
,

whereNf is the number of QCD massless flavours and theSU(Nc) colour factors areCA = Nc

andCF = (N2
c − 1)/(2Nc).

Note that the functionsg(n)
N (αSL) in Eqs.(22)–(24)are singular at the pointλ = 1, which in

terms of the impact parameter corresponds to the valueb2 = b2
L = (b2

0/Q
2)exp{π/(β0αS(µ2

R))}
(i.e., bL ∼ 1/ΛQCD, whereΛQCD is the momentum scale of the Landau pole in QCD). Th
singularities, which are related (see Eq.(19) whenb ∼ 1/ΛQCD) to the divergent behaviour o
the perturbative running couplingαS(q2)/π ∼ [β0 ln(q2/Λ2

QCD)]−1 near the Landau pole, sign
the onset of non-perturbative phenomena at very large values ofb or, equivalently, in the region
of very small transverse momenta.

This type of singularities8 is a common feature of all-order resummation formulae of s
gluon contributions. Within a perturbative framework, these singularities have to be regula
A possible regularization procedure consists in introducing a ‘minimal prescription’, su
those introduced in Ref.[59] (in the case of threshold resummation) and[44,62] (in the case
of b-space or joint resummation). In the case ofb-space resummation, other procedures ar
use the ‘b∗ prescription’ of Ref.[29], by freezing the integration overb below a fixed uppe
limit, or more simply, to introduce a cut-off at a very large (but smaller thanbL) value of b
[63]. Admittedly, when the non-perturbative contributions are sizeable, they have to be pr
included, according to the prescription used to regularize the singularities.

2.3. Sudakov form factor, universal form factor and perturbative coefficients

The b-space resummation approach was fully formalized by Collins, Soper and Ste
[28,32] in terms of perturbative coefficients. Considering the generic hard-scattering proc
Eq.(1), the transverse-momentum differential cross section in Eq.(2) is written as

(29)
dσF

dq2
T

(qT ,M, s) = M2

s

∞∫
0

db
b

2
J0(bqT )WF (b,M, s) + · · · ,

where the dots on the right-hand side stand for terms that are not logarithmically enhan
small qT (largeb). Note that Eq.(29) regards the hadronic cross section (and not the part
cross section in Eq.(10)). Therefore, theb-space functionWF (b,M, s), which embodies the

8 Note that these singularities are not related to the presence of factorially-growing coefficients, such as thos
renormalon singularities, at very high perturbative orders. A concise discussion on this point can be found in Se
of Ref. [59], in the related context of threshold resummation.
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all-order resummation of the large logarithms ln(M2b2) in the regionMb 	 1 is accomplished
by showing that theN -momentsWN(b,M) of W(b,M, s) with respect toz = M2/s at fixedM

can be recast in the following form[32,33]:

WF
N (b,M)

=
∑

c

σ
(0)
cc̄,F

(
αS

(
M2),M)

HF
c

(
αS

(
M2))Sc(M,b)

(30)×
∑
a,b

Cca,N

(
αS

(
b2

0/b
2))Cc̄b,N

(
αS

(
b2

0/b
2))fa/h1,N

(
b2

0/b
2)fb/h2,N

(
b2

0/b
2),

wherefa/h,N (µ2) are theN -moments of the parton densityfa/h(z,µ
2), andσ

(0)
cc̄,F is the lowest-

order cross section for the partonic subprocessc+ c̄ → F . The functionSc(M,b) is the Sudakov
form factor of the quark (c = q, q̄) or of the gluon (c = g), and it has the following expression9:

(31)Sc(M,b) = exp

{
−

M2∫
b2

0/b2

dq2

q2

[
Ac

(
αS

(
q2)) ln

M2

q2
+ Bc

(
αS

(
q2))]}

.

The functionsA,B,C andHF in Eqs.(30) and (31)are perturbative series inαS:

(32)Ac(αS) =
∞∑

n=1

(
αS

π

)n

A(n)
c ,

(33)Bc(αS) =
∞∑

n=1

(
αS

π

)n

B(n)
c ,

(34)Cab(αS, z) = δabδ(1− z) +
∞∑

n=1

(
αS

π

)n

C
(n)
ab (z),

(35)HF
c (αS) = 1+

∞∑
n=1

(
αS

π

)n

HF(n)
c .

The functionsAc,Bc andCab are process independent, whileHF
c depends on the specific har

scattering process.
The resummation formulae(30) and (31)are invariant under the following ‘resummatio

scheme’ transformations[33]:

HF
c (αS) → HF

c (αS)
[
h(αS)

]−1
,

Bc(αS) → Bc(αS) − β(αS)
d lnh(αS)

d lnαS
,

(36)Cab(αS, z) → Cab(αS, z)
[
h(αS)

]1/2
.

9 In Ref. [32] the upper limit of the integral in Eq.(31) is set toC2M2, whereC2 is an arbitrary factor. The sca

C2M2 is thus related to the resummation scaleQ2 in Eq.(19).
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The invariance can easily be proven by using the following renormalization-group id
(see Eq.(27)):

(37)h
(
αS

(
b2

0/b
2)) = h

(
αS

(
M2))exp

{
−

M2∫
b2

0/b2

dq2

q2
β
(
αS

(
q2))d lnh(αS(q2))

d lnαS(q2)

}
,

which is valid for any perturbative functionh(αS).
The physical origin of the resummation scheme invariance of Eq.(30) is discussed in Ref

[33]. The invariance implies that the factorsHF
c ,Sc (more precisely, the functionBc) andCab

are not unambiguously computable order by order in perturbation theory. In other words
factors can be unambiguously defined only by choosing a ‘resummation scheme’. The cho
resummation scheme amounts to definingHF

c (or Cab) for asingleprocess. More precisely,HF
c

has to be defined for two processes: one process that is controlled, at the lowest perturbativ
by qq̄ annihilation(c = q, q̄) and another process that is controlled bygg fusion(c = g). Having
done that, the process-dependent factorHF

c and the universal (process-independent) factorSc

andCab are unambiguously determined for any other process of the type in Eq.(1).
Note that Eq.(30) is usually presented in a form whereHF

c (αS) = 1. Such a form is certainl
consistent since, by choosingh(αS) = HF

c (αS) and using the invariance under the transform
tion in Eq. (36), it is always possible to setHF

c (αS) = 1 on a process-dependent basis. N
that this procedure does not correspond to the definition of a resummation scheme. Inde
corresponding Sudakov form factorSF

c and the functionsCF
ab turn out to be process-depende

quantities, as pointed out by the explicit and general calculation ofB
(2)
c andC

(1)
ab (z) in Ref. [36].

For example, in the case ofgg fusion processes, the Sudakov form factors for the produc
of a scalar and a pseudoscalar Higgs boson turn out to be different and to have even a d
dependence on the mass of the top quark.

Comparing the partonic and the hadronic cross sections in Eqs.(10) and (30), we see that the
resummed factorsWF

ab andWF (b,M) are related by

(38)WF
N (b,M) =

∑
a,b

WF
ab,N

(
b,M;αS

(
µ2

R

)
,µ2

R,µ2
F

)
fa/h1,N

(
µ2

F

)
fb/h2,N

(
µ2

F

)
.

To express the resummed partonic cross sectionWF
ab in terms of the perturbative coefficients

Eqs.(32)–(35), we have to use Eq.(30)and substitute the parton densitiesfa/h,N (b2
0/b

2) for the
same parton densities evaluated at the factorization scaleµF . The substitution can be done b
using

(39)fa/h,N

(
µ2) =

∑
b

Uab,N

(
µ2,µ2

0

)
fb/h,N

(
µ2

0

)
,

where the QCD evolution operatorUab,N (µ2,µ2
0) fulfills the evolution equations

(40)
dUab,N (µ2,µ2

0)

d lnµ2
=

∑
c

γac,N

(
αS

(
µ2))Ucb,N

(
µ2,µ2

0

)
,

andγab,N (αS) are the parton anomalous dimensions or, more precisely, theN -moments of the
customary Altarelli–Parisi splitting functionsPab(αS, z) [64]:

(41)γab,N (αS) =
1∫
dz zN−1Pab(αS, z) =

∞∑
n=1

(
αS

π

)n

γ
(n)
ab,N .
0
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We finally obtain[33]

WF
ab,N

(
b,M;αS

(
µ2

R

)
,µ2

R,µ2
F

)
=

∑
c

σ
(0)
cc̄,F

(
αS

(
M2),M)

HF
c

(
αS

(
M2))Sc(M,b)

×
∑
a1,b1

Cca1,N

(
αS

(
b2

0/b
2))Cc̄b1,N

(
αS

(
b2

0/b
2))

(42)× Ua1a,N

(
b2

0/b
2,µ2

F

)
Ub1b,N

(
b2

0/b
2,µ2

F

)
,

which relates the resummed partonic cross section in Eq.(10) to the perturbative coefficients
Eqs.(32)–(35)and the anomalous dimensions coefficients in Eq.(41).

In the following we explicitly show how Eq.(42) is related to the exponential structure
Eq. (12) in the case with a single species of partons. The general case with partons of d
flavours is discussed inAppendix A. Here we only anticipate that the generalization of Eq.(12)
to the multiflavour case10 simply involves a sum of exponential terms, namely

WF
ab,N

(
b,M;αS

(
µ2

R

)
,µ2

R,µ2
F

)
=

∑
{I }

H{I },F
ab,N

(
M,αS

(
µ2

R

);M2/µ2
R,M2/µ2

F ,M2/Q2)

(43)× exp
{
G{I },N

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2)},
where the index{I } labels a set of flavour indices (which is precisely specified inAppendix A).

Within the simplified treatment in which there is a single species of partons, the resu
partonic cross section in Eq.(42) can easily be recast in the factorized exponential form
Eqs.(12) and (19). To this aim, we first use the identity(37) with h(αS) = CN(αS) to replace
CN(αS(b2

0/b
2)) in Eq. (42) in terms ofCN(αS(M2)). Then, we insert in Eq.(42) the solution of

the evolution equation(40):

(44)UN

(
b2

0/b
2,µ2

F

) = exp

{
−

µ2
F∫

b2
0/b2

dq2

q2
γN

(
αS

(
q2))}.

We finally obtain the exponential form in Eq.(19), where the perturbative functionA(αS) is
exactly the perturbative function in Eq.(32), and the functionB̃N (αS) is given as follows in
terms of the perturbative functions in Eqs.(27), (33), (34) and (41):

(45)B̃N (αS) = B(αS) + 2β(αS)
d lnCN(αS)

d lnαS
+ 2γN(αS).

10 In the multiflavour case, Eq.(12) directly applies to the flavour non-singlet components of the resummed pa
cross section.
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The expression of the hard-process functionHF
N in Eq.(12) is

(46)

HF
N

(
M,αS

(
µ2

R

);M2/µ2
R,M2/µ2

F ,M2/Q2)
= σ

(0)
F

(
αS

(
M2),M)

HF
(
αS

(
M2))C2

N

(
αS

(
M2))

× exp

{ Q2∫
M2

dq2

q2

[
A

(
αS

(
q2)) ln

M2

q2
+ B̃N

(
αS

(
q2))] +

M2∫
µ2

F

dq2

q2
2γN

(
αS

(
q2))}.

Note that, as discussed in Section2.2, the form factor exp{G} and, hence, the perturbativ
functionsA(αS) andB̃N (αS) in Eq. (19) do not depend on the factorization scaleµF . As a con-
sequence, the functionsA(αS) andB̃N (αS) are also independent of the factorization scheme u
to define the parton densities. Since, as is well known, the anomalous dimensionsγab,N (αS) do
depend on the factorization scheme, the relation(45) implies that both the perturbative functio
Bc(αS) andCab(αS) depend on the factorization scheme in such a way thatB̃N (αS) turns out to
be factorization-scheme independent.

As anticipated in Section2.2, the form factor exp{G} does not depend on the final-state syst
F produced in the hard-scattering process. From Eqs.(19) and (45), this independence is a simp
consequence of the process independence of each of the perturbative functionsAc(αS), Bc(αS),
Cab(αS) andγab,N (αS).

The relation(45) also implies that the form factor exp{G} does not depend on the resumm
tion scheme used to express the various factors in the resummation formulae(30) and (31)(we
recall that the customary Sudakov form factorSc(M,b) in Eq. (31) does instead depend on t
resummation scheme). It is indeed straightforward to show that the functionB̃N (αS) in Eq. (45)
is invariant under the resummation-scheme transformations in Eq.(36).

Unlike the form factor exp{G}, the non-logarithmic functionHF
N in Eq.(46)explicitly depends

on the factorization scaleµF , on the factorization scheme (throughCab,N (αS) andγab,N (αS))
and on the final-state systemF (throughσ

(0)
F andHF ). Nonetheless,HF

N does not depend on th
resummation scheme, since the factorHF (αS)C2

N(αS) is invariant under the transformations
Eq.(36).

The universal (i.e., independent of the process and of the factorization and resum
schemes) perturbative functionAc(αS) in Eqs. (20) and (32)is known up toO(α2

S). The LL

and NLL coefficientsA(1)
c andA

(2)
c are[30,34]

(47)A(1)
c = Cc, A(2)

c = 1

2
Cc

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
,

whereCc = CF if c = q, q̄ andCc = CA if c = g. The NNLL coefficientA(3)
c is not yet known. In

our quantitative study of transverse-momentum resummation at NNLL accuracy (see Sec3),
we assume that the value ofA

(3)
c is the same as the one[65,66] that appears in resummed calc

lations of soft-gluon contributions near partonic threshold. This assumption is based on t
that the two coefficientsA(1)

c andA
(2)
c in Eq.(47)are exactly equal to those of the related per

bative function that controls threshold resummation[58] in theMS factorization scheme. Note
however, that the two soft-gluon functionsAc(αS) do not necessarily coincide at high perturb
tive orders since, for instance, the soft-gluon function for transverse-momentum resumm
universal while the soft-gluon function for threshold resummation depends on the factori
scheme.



90 G. Bozzi et al. / Nuclear Physics B 737 (2006) 73–120

neral

nt

d

e

on
r

heme is
The first-order coefficient̃B(1)
c,N of the universal perturbative functioñBN(αS) in Eqs.(21) and

(45) is

(48)B̃
(1)
c,N = B(1)

c + 2γ
(1)
cc,N ,

where[30,34]

(49)B(1)
q = B

(1)
q̄ = −3

2
CF , B(1)

g = −1

6
(11CA − 2Nf ).

Note that, since the LO anomalous dimensionsγ
(1)
cc,N are universal, the NLL coefficientsB(1)

c in
Eq.(49)are themselves independent of the factorization and resummation schemes.

The universal second-order coefficientB̃
(2)
c,N in Eq.(45) is

(50)B̃
(2)
c,N = B(2)

c − 2β0C
(1)
cc,N + 2γ

(2)
cc,N ,

or, equivalently, by performing the inverse Mellin transformation toz-space:

(51)B̃(2)
c (z) = δ(1− z)B(2)

c − 2β0C
(1)
cc (z) + 2P (2)

cc (z).

The value of the quark coefficient̃B(2)
q can be obtained by using the results of Ref.[67] for

the coefficientsB(2)
q andC

(1)
qq (z) of the DY process. These results are confirmed by the ge

(process-independent) calculation of Ref.[36], which considers both theqq̄-annihilation and the
gluon fusion channels. From the results of Ref.[36] we obtain the value of the gluon coefficie
B̃

(2)
g , and we can also explicitly check the universality of bothB̃

(2)
q andB̃

(2)
g . To write down the

expression ofB̃(2)
c , we recall that the second-order termP (2)

cc (z) of the Altarelli–Parisi splitting
functionsPcc(αS, z) has the following general dependence onz:

(52)P (2)
cc (z) = 1

(1− z)+
A(2)

c + δ(1− z)
1

2
γ (2)
c + P

(2)reg
cc (z),

whereA
(2)
c is the coefficient in Eq.(47), 1/(1 − z)+ is the customary ‘plus’-distribution an

P
(2)reg
cc (z) denotes all the remaining and less singular (whenz → 1) contributions toP (2)

cc (z).
The explicit expressions ofP (2)reg

cc (z) and of the constantsγ (2)
c can be found in the literatur

(see, e.g., Ref.[64]). Using the notation of Eq.(52), the universal NNLL coefficient̃B(2)
c is [36]

(53)B̃(2)
c (z) = 2

(1− z)+
A(2)

c + δ(1− z)β0Cc

π2

6
+ 2P

(2)reg
cc (z) + 2β0P̂

ε
cc(z),

where

(54)P̂ ε
qq(z) = −1

2
CF (1− z), P̂ ε

gg(z) = 0.

The first-order coefficientsC(1)
qg andC

(1)
gq in Eq. (34) do not depend on the process and

the resummation scheme, and were first computed in Refs.[67] and [35], respectively. Thei
expressions in theMS factorization scheme are

(55)C(1)
qg (z) = C

(1)
q̄g (z) = 1

2
z(1− z), C(1)

gq (z) = C
(1)
gq̄ (z) = 1

2
CF z.

The flavour-diagonal first-order coefficientsC(1)
qq and C

(1)
gg and the coefficientsHF(1)

q and

H
F(1)
g depend on the resummation scheme. The dependence on the resummation sc
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canceled in the perturbative coefficients of the hard-process functionHF
N . For example, by ex

panding Eq.(46) in powers ofαS(µ2
R), we obtain the following expression for the first-ord

coefficientHF(1)
N of Eq.(15):

HF(1)
N

(
M2/µ2

R,M2/µ2
F ,M2/Q2)

(56)= HF(1) + 2C
(1)
N − pβ0
R + 2γ

(1)
N 
F −

(
1

2
A(1)
Q + B̃

(1)
N

)

Q,

where we have defined

(57)
R = ln
M2

µ2
R

, 
F = ln
M2

µ2
F

, 
Q = ln
M2

Q2
.

The coefficientHF(1)
N depends on the process and is explicitly known for several processe

Ref. [36] and references therein).
To complete the resummation program at NNLL, the coefficientHF(2)

N is also needed. Thi
coefficient is not known in analytic form for any hard-scattering process. Nonetheless,
our resummation formalism, it can be determined for any hard-scattering process whose
sponding total cross section is known at NNLO. This point is discussed in detail at the e
Section2.4.

2.4. The finite component

The finite componentdσ̂
(fin.)
Fab /dq2

T of the transverse-momentum cross section is comp
at a given fixed order inαS according to Eq.(6). To implement Eq.(6), we have to subtrac
[dσ̂

(res.)
Fab ]f.o. from [dσ̂Fab]f.o..

As discussed in Sections2.1 and 2.2, the finite componentdσ̂
(fin.)
Fab /dq2

T does not con-
tain any perturbative contributions proportional toδ(q2

T ) (these contributions and all th

logarithmically-enhanced terms at smallqT are included indσ̂
(res.)
Fab /dq2

T ). Therefore, when com

puting[dσ̂
(fin.)
Fab ]f.o. according to the subtraction procedure in Eq.(6), we can consistently negle

any terms proportional toδ(q2
T ) both in [dσ̂Fab]f.o. and in[dσ̂

(res.)
Fab ]f.o.. This is formally equiv-

alent to the evaluation of both[dσ̂Fab]f.o. and [dσ̂
(res.)
Fab ]f.o. in the large-qT region (or, more

precisely, in the region whereqT �= 0). The expansions of[dσ̂
(fin.)
Fab ]f.o. at the first and at the

second perturbative order thus give

(58)

[
dσ̂

(fin.)
Fab

dq2
T

]
LO

=
[
dσ̂Fab

dq2
T

]
LO

−
[
dσ̂

(res.)
Fab

dq2
T

]
LO

,

(59)

[
dσ̂

(fin.)
Fab

dq2
T

]
NLO

=
[
dσ̂Fab

dq2
T

]
NLO

−
[
dσ̂

(res.)
Fab

dq2
T

]
NLO

,

where the subscript LO (NLO) denotes the perturbative truncation of the various cross sec
the leading order (next-to-leading order) in the region whereqT �= 0. The extension of Eqs.(58)
and (59)at still higher perturbative order is straightforward.

The contributions[dσ̂Fab]f.o. on the right-hand side of Eqs.(58) and (59)are obtained by
computing the customary perturbative series for the partonic cross section at a given fixe
(f.o. = LO, NLO, . . . ) inαS. The fixed-order truncation[dσ̂

(res.)]f.o. of the resummed compone
Fab
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is obtained by perturbatively expanding the resummed componentdσ̂
(res.)
ab in Eq. (10). To this

purpose, we define the perturbative coefficientsΣ̃(n) as follows:

WF
ab

(
b,M, ŝ;αS,µ2

R,µ2
F ,Q2)

=
∑

c

σ
(0)
cc̄,F (αS,M)

{
δcaδc̄bδ(1− z)

(60)

+
∞∑

n=1

(
αS

π

)n[
Σ̃

F(n)
cc̄←ab

(
z, L̃; M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
+HF(n)

cc̄←ab

(
z; M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)]}
,

wherez = M2/ŝ, αS = αS(µ2
R), σ

(0)
cc̄,F (αS,M) = α

pcF

S σ
(LO)
cc̄,F (M) and, in general, the powerpcF

depends on the lowest-order partonic subprocessc + c̄ → F . In Eq.(60), WF
ab is the resummed

cross section on the right-hand side of Eq.(10). Note, however, that Eq.(60) depends on the re
summation scaleQ2. The dependence on the resummation scale has been introduced in Eq(10)
and (12)through the replacement in Eq.(16). The perturbative coefficient̃Σ(n) on the right-hand
side of Eq.(60) is a polynomial of degree 2n in the logarithmic variablẽL defined in Eq.(17).
The coefficientsΣ̃(n) vanish by definition wheñL = 0 (i.e., whenb = 0), and theb-independen
part ofWF

ab,N (b,M) is embodied in the coefficientsH(n).
The perturbative expansion of Eq.(12)or, more precisely, of Eq.(42)gives

(61)Σ̃
F(1)
cc̄←ab(z, L̃) = Σ

F(1;2)
cc̄←ab(z)L̃

2 + Σ
F(1;1)
cc̄←ab(z)L̃,

(62)Σ̃
F(2)
cc̄←ab(z, L̃) = Σ

F(2;4)
cc̄←ab(z)L̃

4 + Σ
F(2;3)
cc̄←ab(z)L̃

3 + Σ
F(2;2)
cc̄←ab(z)L̃

2 + Σ
F(2;1)
cc̄←ab(z)L̃,

where the dependence on the scale ratiosM2/µ2
R,M2/µ2

F andM2/Q2 is understood. The exten

sion of Eqs.(61) and (62)to the higher order terms̃ΣF(n)
cc̄←ab(z, L̃) with n � 3, is straightforward

The b-independent coefficientsΣF(1;k)(z),HF(1)(z),ΣF(2;k)(z) andHF(2)(z) are more easily
presented by considering theirN -moments with respect to the variablez. We have

(63)Σ
F(1;2)
cc̄←ab,N = −1

2
A(1)

c δcaδc̄b,

(64)Σ
F(1;1)
cc̄←ab,N

(
M2/Q2) = −[

δcaδc̄b

(
B(1)

c + A(1)
c 
Q

) + δcaγ
(1)
c̄b,N + δc̄bγ

(1)
ca,N

]
,

HF(1)
cc̄←ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)

= δcaδc̄b

[
HF(1)

c −
(

B(1)
c + 1

2
A(1)

c 
Q

)

Q − pcF β0
R

]

(65)+ δcaC
(1)
c̄b,N + δc̄bC

(1)
ca,N + (

δcaγ
(1)
c̄b,N + δc̄bγ

(1)
ca,N

)
(
F − 
Q),

(66)Σ
F(2;4)
cc̄←ab,N = 1

8
(A(1)

c )2δcaδc̄b,

(67)Σ
F(2;3)
cc̄←ab,N

(
M2/Q2) = −A(1)

c

[
1

3
β0δcaδc̄b + 1

2
Σ

F(1;1)
cc̄←ab,N

(
M2/Q2)],
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(68)

Σ
F(2;2)
cc̄←ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)

= −1

2
A(1)

c

[
HF(1)

cc̄←ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
− β0δcaδc̄b(
R − 
Q)

]

− 1

2

∑
a1,b1

Σ
F(1;1)
cc̄←a1b1,N

(
M2/Q2)[δa1aγ

(1)
b1b,N + δb1bγ

(1)
a1a,N

]

− 1

2

[
A(2)

c δcaδc̄b + (
B(1)

c + A(1)
c 
Q − β0

)
Σ

F(1;1)
cc̄←ab,N

(
M2/Q2)],

Σ
F(2;1)
cc̄←ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)

= Σ
F(1;1)
cc̄←ab,N

(
M2/Q2)β0(
Q − 
R)

−
∑
a1,b1

HF(1)
cc̄←a1b1,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)

× [
δa1aδb1b

(
B(1)

c + A(1)
c 
Q

) + δa1aγ
(1)
b1b,N + δb1bγ

(1)
a1a,N

]
(69)− [

δcaδc̄b

(
B(2)

c + A(2)
c 
Q

) − β0
(
δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N

) + δcaγ
(2)
c̄b,N + δc̄bγ

(2)
ca,N

]
,

HF(2)
cc̄←ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)

= δcaδc̄bH
F(2)
c + δcaC

(2)
c̄b,N + δc̄bC

(2)
ca,N + C

(1)
ca,NC

(1)
c̄b,N

+ HF(1)
c

(
δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N

) + 1

6
A(1)

c β0

3
Qδcaδc̄b

+ 1

2

[
A(2)

c δcaδc̄b + β0Σ
F(1;1)
cc̄←ab,N

(
M2/Q2)]
2

Q

− [
δcaδc̄b

(
B(2)

c + A(2)
c 
Q

) − β0
(
δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N

) + δcaγ
(2)
c̄b,N + δc̄bγ

(2)
ca,N

]

Q

+ 1

2
β0

(
δcaγ

(1)
c̄b,N + δc̄bγ

(1)
ca,N

)

2
F + (

δcaγ
(2)
c̄b,N + δc̄bγ

(2)
ca,N

)

F

−HF(1)
cc̄←ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
β0
R

+ 1

2

∑
a1,b1

[
HF(1)

cc̄←a1b1,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
+ δca1δc̄b1H

F(1)
c + δca1C

(1)
c̄b1,N

+ δc̄b1C
(1)
ca1,N

][(
δa1aγ

(1)
b1b,N + δb1bγ

(1)
a1a,N

)
(
F − 
Q)

− δa1aδb1b

((
B(1)

c + 1

2
A(1)

c 
Q

)

Q + pcF β0
R

)]

(70)− δcaδc̄bpcF

(
1

2
β2

0
2
R + β1
R

)
.

The right-hand side of Eqs.(63)–(70)is expressed in terms of the resummation-scheme inde
dent coefficients given in Section2.3 and of the logarithms
Q, 
F and
R defined in Eq.(57).
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To explicitly exhibit the independence of the resummation scheme we can, for example,
the contribution in the third line of Eq.(69) in terms of the resummation-scheme independ
coefficientsB̃(2)

cN (see Eq.(50)) andC
(1)
ab,N with a �= b (see Eq.(55)):

[
δcaδc̄b

(
B(2)

c + A(2)
c 
Q

) − β0
(
δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N

) + δcaγ
(2)
c̄b,N + δc̄bγ

(2)
ca,N

]
= δcaδc̄b

(
B̃

(2)
cN + A(2)

c 
Q

) + δca(1− δc̄b)
(
γ

(2)
c̄b,N − β0C

(1)
c̄b,N

)
(71)+ δc̄b(1− δca)

(
γ

(2)
ca,N − β0C

(1)
ca,N

)
.

Inserting Eqs.(60)–(62)in Eq. (10), performing the integral over the impact parameteb,
and removing the contributions proportional toδ(q2

T ) (for example, all the contributions comin

from HF(n)
cc̄←ab in Eq. (60)), we obtain the following expressions for the fixed-order contribut

[dσ̂
(res.)
Fab ]f.o. on the right-hand side of Eqs.(58) and (59):

[
dσ̂

(res.)
Fab

dq2
T

(
qT ,M, ŝ = M2

z
;αS

(
µ2

R

)
,µ2

R,µ2
F ,Q2

)]
LO

= αS(µ2
R)

π

z

Q2

∑
c

σ
(0)
cc̄,F

(
αS

(
µ2

R

)
,M

)

(72)×
[
Σ

F(1;2)
cc̄←ab(z)Ĩ2(qT /Q) + Σ

F(1;1)
cc̄←ab

(
z; M2

Q2

)
Ĩ1(qT /Q)

]
,

[
dσ̂

(res.)
Fab

dq2
T

(
qT ,M, ŝ = M2

z
;αS

(
µ2

R

)
,µ2

R,µ2
F ,Q2

)]
NLO

=
[
dσ̂

(res.)
Fab

dq2
T

(
qT ,M, ŝ;αS

(
µ2

R

)
,µ2

R,µ2
F ,Q2)]

LO

+
(

αS(µ2
R)

π

)2
z

Q2

∑
c

σ
(0)
cc̄,F

(
αS

(
µ2

R

)
,M

)

(73)×
4∑

k=1

Σ
F(2;k)
cc̄←ab

(
z; M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
Ĩk(qT /Q).

On the right-hand side of Eqs.(72) and (73), the dependence onqT is fully embodied in the
functionsĨn(qT /Q), which are obtained by the following Bessel transformation:

(74)Ĩn(qT /Q) = Q2

∞∫
0

db
b

2
J0(bqT ) lnn

(
Q2b2

b2
0

+ 1

)
.

The term lnn(1 + Q2b2/b2
0) = L̃n in the integrand comes from the replacementL → L̃ (see

Eq.(16)). In customary implementations ofb-space resummation, one has to consider the Be
transformation of powers of lnn(Q2b2/b2

0) = Ln, which can be expressed in terms of pow
of lnn(Q2/q2

T ). The functionsĨn(qT /Q) have instead a more involved functional depende
on qT . As shown inAppendix B, this functional dependence can be expressed in term
Kν(qT /Q), the modified Bessel function of imaginary argument that is defined by the follo
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integral representation:

(75)Kν(x) =
∞∫

0

dt e−x cosht coshνt.

We conclude this section with some observations on the hard-scattering functionHF
cc̄←ab.

This function is resummation-scheme independent, but it depends on the specific hard-sc
subprocessc + c̄ → F . The coefficientsHF(n)

cc̄←ab of its perturbative expansion can be determin
by performing a customary perturbative calculation of theqT distribution in the limitqT → 0.
Moreover, as discussed in Section2.2, within our resummation formalismHF controls the strict
perturbative normalization of the corresponding total cross section (i.e., the integral of tqT

distribution). This property can be exploited to determine the coefficientsHF(n)
cc̄←ab in a different

manner, that is, from the perturbative calculation of the total cross section.
To illustrate this point we consider the total cross section,σ̂ tot

Fab, at the partonic level,

(76)σ̂ tot
Fab

(
M, ŝ;αS

(
µ2

R

)
,µ2

R,µ2
F

) =
∞∫

0

dq2
T

dσ̂Fab

dq2
T

(
qT ,M, ŝ;αS

(
µ2

R

)
,µ2

R,µ2
F

)
,

and we evaluate theqT spectrum on right-hand side according to the decomposition in t
of ‘resummed’ and ‘finite’ components (see Eq.(3)). Then we use Eq.(18) to integrate the
resummed component overqT , and we obtain

(77)σ̂ tot
Fab = M2

ŝ
HF

ab +
∞∫

0

dq2
T

dσ̂
(fin.)
Fab

dq2
T

.

This expression is valid order by order in QCD perturbation theory. Once the perturbative
ficients of the fixed-order expansions ofσ̂ tot

Fab, HF
ab anddσ̂

(fin.)
Fab /dq2

T are all known, the relation
(77)has to be regarded as an identity, which can explicitly be checked. Note, however, tha
the fixed-order truncation[dσ̂

(fin.)
Fab /dq2

T ]f.o. does not contain any contributions proportional

δ(q2
T ), [dσ̂

(fin.)
Fab /dq2

T ]LO does not explicitly depend on the coefficientHF(1)
ab (see Eqs.(58) and

(72)). Analogously,[dσ̂
(fin.)
Fab /dq2

T ]NLO does not explicitly depend on the coefficientHF(2)
ab (see

Eqs.(59) and (73)), and so forth. Therefore, Eq.(77)can be used to determine the NnLO coeffi-
cientHF(n)

ab from the knowledge of̂σ tot
Fab at NnLO and ofdσ̂

(fin.)
Fab /dq2

T at Nn−1LO, without the
need of explicitly computing the small-qT behaviour of the spectrumdσ̂Fab/dq2

T at NnLO. For
example, at NLO Eq.(77)gives

αS

π

M2

ŝ

∑
c

σ
(0)
cc̄,F (αS,M)HF(1)

cc̄←ab

(
M2

ŝ
; M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)

= [
σ̂ tot

Fab

(
M, ŝ;αS,µ2

R,µ2
F

)]
NLO − [

σ̂ tot
Fab(M, ŝ;αS)

]
LO

(78)−
∞∫

0

dq2
T

[
dσ̂

(fin.)
Fab

dq2
T

(
qT ,M, ŝ;αS,µ2

R,µ2
F ,Q2)]

LO
,

whereαS = αS(µ2
R) and we have used

(79)
[
σ̂ tot

Fab

(
M, ŝ;αS

)]
LO = δ

(
1− M2/ŝ

)∑
σ

(0)
cc̄,F (αS,M)δcaδc̄b.
c
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At NNLO Eq. (77)gives(
αS

π

)2
M2

ŝ

∑
c

σ
(0)
cc̄,F (αS,M)HF(2)

cc̄←ab

(
M2

ŝ
; M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)

(80)= {[
σ̂ tot

Fab

]
NNLO − [

σ̂ tot
Fab

]
NLO

} −
∞∫

0

dq2
T

{[
dσ̂

(fin.)
Fab

dq2
T

]
NLO

−
[
dσ̂

(fin.)
Fab

dq2
T

]
LO

}
,

and the generalization at still higher ordersn (n > 2) is(
αS

π

)n
M2

ŝ

∑
c

σ
(0)
cc̄,F (αS,M)HF(n)

cc̄←ab

(81)

= {[
σ̂ tot

Fab

]
NnLO − [

σ̂ tot
Fab

]
Nn−1LO

} −
∞∫

0

dq2
T

{[
dσ̂

(fin.)
Fab

dq2
T

]
Nn−1LO

−
[
dσ̂

(fin.)
Fab

dq2
T

]
Nn−2LO

}
.

In our study of the transverse-momentum spectrum of the Higgs boson at NNLL accurac
Section3), we use Eq.(80) to obtain a numerical value for the corresponding perturbative c
ficientH(2).

3. The qT spectrum of the Higgs boson at the LHC

In this section we apply the resummation formalism described in Section2 to the production
of the SM Higgs boson at the LHC.

We consider the gluon fusion production mechanismgg → H , whose Born level cross sectio
in Eqs.(15) and (60)is

(82)σ
(0)
cc̄,H (αS,MH ) = δcgδc̄gα

2
Sσ (0)(MH ;Mt,Mb),

whereMt andMb denote the masses of the top and bottom quark, which circulate in the h
quark loop that couples to the Higgs boson. In our numerical study we useMt = 175 GeV and
Mb = 4.75 GeV. The expression ofσ (0)(MH ;Mt,Mb) can be found, for instance, in Eq. (3)
Ref. [17]. Though the Born cross section is evaluated exactly, i.e., including its depende
the top– and bottom–quark masses, the computation of the higher-order QCD corrections
formed in the framework of the large-Mt approximation. More precisely, we proceed as in R
[17]: we first computedσH /dqT in the large-Mt limit and then we rescale the result by the fac
σ (0)(MH ;Mt,Mb)/σ

(0)∞ , whereσ
(0)∞ is obtained fromσ (0)(MH ;Mt,Mb) by settingMb = 0 and

Mt/MH → ∞. As recalled in Section1, this implementation of the large-Mt approximation is
expected to produce an uncertainty that is smaller than the uncertainties from yet uncal
perturbative terms from higher orders.

We compute the Higgs boson differential cross sectiondσ/dqT at the LHC (pp collisions at√
s = 14 TeV) and present quantitative results at NLL+ LO and NNLL+ NLO accuracy.
As discussed in Section2.2, at NLL + LO accuracy the resummed component in Eq.(12)

is evaluated by including the functionsg(1) andg
(2)
N in Eq. (14) and the coefficientHF(1)

N in
Eq. (15), and then it is matched with the fixed-order contribution evaluated at the LO (i.
O(α3

S)) in the large-qT region. The functionsg(1) andg
(2)
N are process independent and given

terms of the universal coefficientsA(1),A(2) andB̃
(1) (see Section2.3). The flavour off-diagona
N
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part ofHH(1)
gg←ab,N is also process independent and given by Eq.(65); settingµF = Q = MH , we

simply have

(83)HH(1)
gg←gq,N =HH(1)

gg←qg,N = C
(1)
gq,N = 1

2(N + 1)
CF ,

where the coefficientC(1)
gq,N is the Mellin transformation of Eq.(55). Of course, these proces

independent coefficients are exact, i.e., they are not affected by the large-Mt approximation. The
flavour diagonal coefficientHH(1)

gg←gg,N is instead process dependent; therefore it depends oMt

and, in the large-Mt approximation, it is given by[35,39]

(84)HH(1)
gg→gg,N = HH(1)

g + 2C
(1)
gg,N = 1

2

[(
5+ π2)CA − 3CF

] = 1

2

(
11+ 3π2),

where, for simplicity, the scale-dependent terms have been dropped (i.e., we have setµR = µF =
Q = MH in Eq.(65)).

At NNLL +NLO accuracy the functiong(3)
N and the coefficientHH(2)

N have also to be include
in the resummed component of theqT cross section, and the finite component has to include
fixed-order contribution to the cross section evaluated at the NLO (i.e., atO(α4

S)) in the large-

qT region. The process-independent functiong
(3)
N depends on the universal coefficientsA(3) and

B̃
(2)
N (see Section2.3). The scale-independent part of the coefficientHH(2)

N (its scale-dependen
part can be obtained from Eq.(70)) is not known in analytic form. We thus exploit Eq.(80),
which follows from the constraint of perturbative unitarity, to extract the numerical valu
HH(2)

N from the knowledge of the total cross section at the NNLO[14]. The scale-independe

part ofHF(2)
gg←gg,N can be written as

(85)HH(2)
gg←gg,N

∣∣
µR=µF =Q=MH

= HH(2)
g + 2C

(2)
gg,N + (

C
(1)
gg,N

)2 + 2HH(1)
g C

(1)
gg,N

(86)=
(

19

16
+ 1

3
Nf

)
ln

M2
H

M2
t

+ cN,

where theMt -dependent contribution on the right-hand side is obtained from the results in
[16,68], andcN does not depend onMt in the large-Mt approximation. Since from Eq.(84) we
know thatC(1)

gg,N is actually independent ofN , theN dependence ofcN can only follow from

that of C(2)
gg,N in Eq. (85). Using Eq.(80) and the NNLO total cross section, we find that

flavour off-diagonal terms inHF(2)
cc̄←ab,N can numerically be neglected, and that the coeffic

cN in Eq. (86) can numerically be approximated by anN -independent value,cN � 232.5. This
numerical approximation is pretty good, since the integral of the NNLL+ NLO spectrum re-
produces the NNLO total cross section to better than 1% accuracy in a wide Higgs mass
100� MH � 300 GeV, at the LHC.

We recall that the functionsg(k)
N (λ) are singular whenλ → 1 (see Eqs.(22)–(24)). The sin-

gular behaviour is related to the presence of the Landau pole in the perturbative running
QCD couplingαS(q2). As mentioned at the end of Section2.2, a practical implementation o
the resummation procedure requires a prescription to deal with these singularities. In our
ical study we follow Ref.[62] and deform the integration contour in the complexb space. In
particular we choose the two integration branches as

(87)b = (cosφ ± i sinφ)t, t ∈ {0,∞}.
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We have checked that the result is very mildly dependent on the choice ofφ. We have also use
the simpler procedure of integrating over the realb-axis, using a sharp cut-off at a large value
b, and checking the independence of the actual value of the cut-off. We found that the num
differences between the results obtained by these two procedures are negligible.

Our complete calculation of theqT spectrum of the Higgs boson at the LHC is implemente
the numerical codeHqT, which can be downloaded from[69] together with some accompanyin
notes. This code is a slightly modified and numerically improved version of the code used
[1]: the most important difference regards the computation of the finite component. In R[1]
we used the Monte Carlo program of Ref.[20] to compute the fixed-order contribution to t
qT cross section at LO and NLO. Here we have implemented the analytic calculation of G
and Schmidt[22]. Although the two methods are in principle equivalent, the use of the ana
calculation allows us to achieve a faster numerical stability in the small-qT region. In the nex
subsection we present a selection of numerical results that can be obtained with our co
also include a discussion of theoretical uncertainties.

3.1. Numerical results at the LHC

To compute the hadronic cross section, we use the MRST2004 set[70] of parton distribution
functions. As for the perturbative order of the parton densities andαS, at variance with Ref.[1],
we adopt here the following choice. At NLL+ LO we use NLO parton densities and 2-loopαS,
whereas at NNLL+ NLO we use NNLO parton densities and 3-loopαS. This choice is perfectly
consistent in the smallqT region, since the corresponding partonic cross section is dominat
the resummed component evaluated at NLL and NNLL accuracy, respectively. The choice
justified also at intermediate values ofqT , where the calculation of the partonic cross sectio
driven by the small-qT resummation and strongly constrained by the total cross section at
and NNLO, respectively. At large values ofqT , qT ∼ MH , our evaluation of the partonic cro
section is dominated by the fixed-order contributions at LO and NLO, respectively. Ther
our choice introduces a formal mismatch with respect to the customary use of parton de
andαS. However, as shown and discussed later in this subsection, this formal mismatch d
lead to any inconsistencies at the quantitative level.

The NLL + LO spectrum withMH = 125 GeV is shown inFig. 1. In the left-hand side, th
full NLL + LO result (solid line) is compared with the LO one (dashed line) at the default s
µF = µR = Q = MH . We see that the LO calculation diverges to+∞ asqT → 0. The effect
of the resummation, which is relevant belowqT ∼ 100 GeV, leads to a physically well-behav
distribution: it has a kinematical peak atqT ∼ 12 GeV and vanishes asqT → 0. The LO finite
component of the spectrum (dotted line), which is defined in Eq.(58), is also shown: as expecte
it dominates whenqT ∼ MH and vanishes asqT → 0. Note, however, that the contribution
the finite component is sizeable in the intermediate-qT region (about 20% atqT ∼ 50 GeV) and
not yet negligible at small values ofqT (about 8% around the peak region). This underlies
importance of a careful and consistent matching between the resummed and fixed-orde
lations. In the right-hand side ofFig. 1 we show the NLL+ LO band as obtained by varyin
µF andµR simultaneously and independently in the range 0.5MH � µF ,µR � 2MH with the
constraint 0.5� µF /µR � 2 (the resummation scale is kept fixed atQ = MH ). The scale depen
dence increases from about±15% at the peak to about±20% atqT = 100 GeV. The integra
overqT of the NLL+ LO spectrum is in agreement with the value of the NLO total cross se
to better than 1%, thus proving the numerical accuracy of the code.
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Fig. 1. TheqT spectrum at the LHC withMH = 125 GeV: (left) settingµR = µF = Q = MH , the results at NLL+ LO
accuracy are compared with the LO spectrum and the finite component of the LO spectrum; (right) the uncertai
from variations of the scalesµR andµF at NLL + LO accuracy.

The NNLL+ NLO results at the LHC are shown inFig. 2. In the left-hand side, the full resu
(solid line) is compared with the NLO one (dashed line) at the default scalesµF = µR = Q =
MH . The NLO result diverges to−∞ asqT → 0 and, at small values ofqT , it has an unphysica
peak (the top of the peak is above the vertical scale of the plot) that is produced by the nu
compensation of negative leading logarithmic and positive subleading logarithmic contribu
The resummed result is physically well-behaved at smallqT . The NLO finite component of th
spectrum (dotted line), which is defined in Eq.(59), vanishes smoothly asqT → 0; its contri-
bution amounts to about 10% in the peak region, about 17% atqT ∼ 25 GeV and about 35% a
qT ∼ 50 GeV. This shows both the quality and the relevance of the matching procedure.

We find that the contribution ofA(3) (recall from Section2.3 that we are using an educat
guess on the value of the coefficientA(3)) to the resummed component can safely be neglec
The coefficientHH(2)

N contributes significantly, and enhances theqT distribution by roughly 20%
in the region of intermediate and small values ofqT . The NNLL resummation effect starts to b
visible belowqT ∼ 100 GeV, and it increases the NLO result by about 25% atqT = 50 GeV.

The right-hand side ofFig. 2 shows the scale dependence computed as inFig. 1. The scale
dependence is now about 8% at the peak and increases to about 20% atqT = 100 GeV.

To better illustrate the main features of the dependence on the scalesµR andµF , we presen
numerical results at two fixed values ofqT in Figs. 3 and 4. In Fig. 3 we show our results a
qT = 50 GeV andMH = 125 GeV. The scale dependence is analysed by varying the factoriz
and renormalization scales around the default valueMH . The plot on the left corresponds to t
simultaneous variation of both scales,µF = µR = χMH , whereas the plot in the centre (o
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Fig. 2. TheqT spectrum at the LHC withMH = 125 GeV: (left) settingµR = µF = Q = MH , the results a
NNLL + NLO accuracy are compared with the NLO spectrum and the finite component of the NLO spectrum;
the uncertainty band from variations of the scalesµR andµF at NNLL + NLO accuracy.

the right) corresponds to the variation of the factorization (renormalization) scaleµF = χF MH

(µR = χRMH ) by fixing the other scale at the default valueMH .
As expected from the QCD running ofαS, the cross sections typically decrease whenµR

increases around the characteristic hard scaleMH , at fixedµF = MH . In the case of variation
of µF at fixed µR = MH , we observe the opposite behaviour. This is not unexpected,
whenMH = 125 GeV the cross section is mainly sensitive to partons with momentum fra
x ∼ 10−2, and in thisx-range scaling violations of the parton densities are (moderately) pos
Varying the two scales simultaneously (µF = µR) leads to a partial compensation of the t
different behaviours. As a result, the scale dependence is mostly driven by the renorma
scale, because the lowest-order contribution to the process is proportional toα3

S, a (relatively)
high power ofαS.

Comparing the LO with the NLL+ LO results and the NLO with the NNLL+ NLO results,
we see that the scale dependence of the resummed results (solid lines) is smaller than
the corresponding fixed-order results (dashed lines): the LO and NLL+ LO curves have a com
parable slope, but the NLL+ LO results are higher; the NLO and NNLL+ NLO results have
smaller differences, but the slope of the NNLL+ NLO curve is flatter. In summary, resummati
reduces the scale dependence of the fixed-order calculations also in the region of inter
values ofqT .

In Fig. 4 we report analogous results at a smaller value ofqT , namelyqT = 15 GeV. The
qualitative behaviour is similar to the one inFig. 3. In this region of small transverse momen
the fixed-order result is no longer reliable (seeFigs. 1 and 2), but its relative scale dependen
does not increase and is even smaller than atqT = 50 GeV. This is due to the fact that the fixe
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Fig. 3. Scale dependence of the LHC cross section for Higgs boson production (MH = 125 GeV) atqT = 50 GeV.
Results at (upper) LO, NLL+ LO and (lower) NLO, NNLL+ NLO accuracy.

order cross section is much larger than at higher values ofqT . The slope of the resummed resu
(solid lines) is sizeably flatter than that of the corresponding fixed-order results (dashed
We also notice a slight reduction in the scale dependence of the resummed results com
Fig. 3, especially at NNLL+ NLO accuracy.

In Fig. 5 the NLL + LO and NNLL+ NLO bands shown inFigs. 1 and 2are compared. We
see that the NNLL+NLO band (solid lines) is smaller than the NLL+LO one (dashed lines) an
overlaps with the latter atqT � 100 GeV. This suggests a good convergence of the resum
perturbative expansion. This result is confirmed by the inset plot, that shows the NNLL+ NLO
band normalized to the NLL+ LO result at central value of the scales. ThisqT -dependentK
factor,

(88)K(qT ) = dσNNLL+NLO(µF ,µR)

dσNLL+LO(µF = µR = MH )
,
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Fig. 4. Scale dependence of the LHC cross section for Higgs boson production (MH = 125 GeV) atqT = 15 GeV.
Results at (upper) LO, NLL+ LO and (lower) NLO, NNLL+ NLO accuracy.

is stable, around the values 1.1–1.2, in the central region of the inset plot, and it increas
creases) drastically whenqT � 50 GeV (qT � 2 GeV). In the large-qT region, the effect o
perturbative higher-order corrections is known to be important[20–22]. At very small values o
qT , non-perturbative effects are definitely expected to be relevant. We observe that a naive
ing of the NLL+ LO result by a constant (i.e., independent ofqT ) K factor would not reproduc
the NNLL+ NLO result over the entireqT -range.

The nice convergence of the resummed perturbative expansion suggested byFig. 5should be
contrasted with the results inFig. 6, where the corresponding fixed-order bands, compute
in Fig. 5, are shown. The results inFig. 6 have no physical significance in the small-qT region,
owing to the non-convergence of the fixed-order expansion herein. WhenqT � 25 GeV, we see
that the scale dependence of the NLO (LO) result is larger than the one of the corresp
NNLL + NLO (NLL + LO) result inFig. 5. More importantly, we see that the LO and NL
bands do not overlap. This implies that the scale dependence enclosed by these bands
underestimates the true theoretical uncertainty from missing higher-order terms. Equiva
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Fig. 5. Comparison of the NLL+LO and NNLL+NLO bands (MH = 125 GeV). The inset plot shows the NNLL+NLO
band normalized to the central value of the NLL+ LO result.

we can say that the uncertainty of these fixed-order calculations is more reliably estima
performing scale variations over a range of scales that is wider than that used inFig. 6. All this
indicates a poor convergence of the fixed-order perturbative expansion at intermediate
of qT .

As mentioned at the beginning of this subsection, in our resummed calculations at N+
LO and NNLL+ NLO accuracy we use parton densities andαS at perturbative orders that a
different from those customarily used in fixed-order calculations at LO and NLO, respec
Indeed, the consistent procedure at large values ofqT would be to use LO densities with 1-loo
αS at the LO, and NLO densities with 2-loopαS at the NLO. We have also explained why o
procedure is justified in the intermediate-qT region, and we have postponed the discussion on
large-qT region. To come back to this point, inFig. 7we compare our NLL+ LO and NNLL+
NLO results with the customary NLO results, which are obtained by using NLO parton den
and 2-loopαS. We also include the corresponding bands, computed from scale variations.
left-hand side we see that in the intermediate-qT region our NLL+ LO result catches the bul
of the NLO effect. Obviously, at largeqT , the inclusion of NLO corrections is necessary. In
right-hand side, the calculations at NNLL+NLO accuracy and at the NLO are compared. In s
of the fact that the two calculations use different parton densities andαS, the corresponding band
show a very good overlap whenqT ∼ MH . We thus conclude that, within the NLO theoretic
uncertainty, the two calculations are perfectly compatible at the quantitative level in the larqT

region,qT ∼ MH .
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Fig. 6. Comparison of the LO and NLO bands (MH = 125 GeV).

Fig. 7. Comparison of the NLL+ LO (left) and NNLL+ NLO (right) bands with the NLO band computed by using NL
parton densities and 2-loopαS.
O
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Fig. 8. NLL+ LO spectra for different choices of the resummation scaleQ at fixedµR = µF = MH .

Fig. 9. NNLL+ NLO spectra for different choices of the resummation scaleQ at fixedµR = µF = MH .
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In Fig. 8 (Fig. 9) we plot the NLL+ LO (NNLL + NLO) spectra for different choices o
the resummation scaleQ. We remind the reader that the resummation scaleQ has to be cho
sen of the order ofMH . Variations of the resummation scale aroundMH can be studied to
estimate the uncertainty of the resummed calculation arising from not yet computed te
higher logarithmic accuracy. In our quantitative study we consider four different valuesQ,
Q = 2MH ,MH ,MH /2,MH /4.

We first comment on the behaviour at large transverse momenta, which is best visible l
at the plots on the right ofFigs. 8 and 9. We see that the NLL+ LO cross section can becom
negative ifQ = 2MH . This behaviour should not be regarded as particularly worrisome: it
place whenqT > MH , where the use of the resummation formalism is not anymore just
In general, the cross section has a better behaviour at largeqT when the resummation sca
has the valuesQ = MH ,MH /2,MH /4. In particular, at large-qT the results of the fixed-orde
calculation at LO (NLO) accuracy are very well approximated by the NLL+LO (NNLL +NLO)
calculation withQ = MH /2; the line corresponding to the LO (NLO) results is not shown
the plot on the right ofFig. 8 (Fig. 9), since it is hardly distinguishable from the dotted and d
dashed lines. The fact that the fixed-order behaviour at largeqT is approximated better whenQ is
smaller is not unexpected. By varyingQ, we smoothly set the transverse-momentum scale b
which the resummed logarithmic terms are mostly effective; whenQ is smaller, the resummatio
effects are confined to a range of smaller values ofqT .

To quantify the resummation-scale uncertainty on the cross section at small and interm
values ofqT , we proceed as in the case of the renormalization and factorization scales, a
vary Q by a factor of 2 up and down from a reference value. We choose the reference
Q = MH /2, because of the better quality of the behaviour of the corresponding cross sec
largeqT . FromFig. 8, we see that at NLL+ LO accuracy a scale variation between 1/4MH and
MH produces a variation of the cross section of about±15% in the region around the peak.
NNLL + NLO accuracy (Fig. 9) the resummation-scale dependence is much reduced: whQ

varies betweenMH /4 andMH the change in the cross section at the peak is about±5%, i.e.,
smaller than the corresponding uncertainty from variations of the renormalization and fac
tion scales (seeFig. 2).

Throughout this section we used the MRST2004 set[70] of parton distribution functions a
NLO and NNLO. The NLO and NNLO parton densities from Alekhin are currently being
dated[71]. The CTEQ[72] and GRV[73] groups do not include sets of NNLO parton densit
The parton distribution sets of MRST, Alekhin and CTEQ include estimates of experiment
certainties, which lead to effects below to about 5% on the total cross section for Higgs
production at the LHC. We do not expect significantly different results in the case of theqT cross
section at the LHC, and we refer to Ref.[17] for results and discussions about the effects
available parton densities on the total cross section.

The numerical results presented so far refer to the valueMH = 125 GeV of the Higgs boso
mass. By varyingMH , the typical features of the results are unchanged, the main differenc
ing the decrease of the cross section asMH increases. InFig. 10 we plot the NNLL+ NLO
spectra, normalized to the total cross section, for different values of the Higgs boson
MH = 125,165,200 and 300 GeV. For reference, the corresponding values of the NNLO
cross sections areσNNLO = 38.43,24.37,17.78 and 10.03 pb. As expected, theqT distribution
becomes harder asMH increases. The average value,〈qT 〉, of the transverse momentum i
creases almost linearly with increasingMH , and it is very roughly approximated by an effect
lowest-order expression,〈qT 〉 ∼ CAαS(M2 )MH .
H
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Fig. 10. NNLL + NLO spectra for different values of the Higgs boson mass. The scales are set at the defau
µF = µR = Q = MH .

The quantitative predictions presented up to now are obtained in a purely perturbative
work. It is known (see, e.g., Ref.[29] and references therein) that the transverse-momen
distribution is affected by non-perturbative (NP) effects, which become important asqT becomes
small. In impact parameter space, these effects are associated to the large-b region. In our per-
turbative study the integral over the impact parameter turns out to be dominated by the
whereb � 0.1–0.2 GeV−1, larger values ofb being strongly suppressed by the resumma
of the logarithmic terms in the gluon form factor. Thus we do not expect particularly-larg
effects in the case of Higgs boson production at the LHC. This expectation is in agreeme
the findings in Refs.[40–44].

A customary way of modeling NP effects in the case of DY lepton-pair production
introduce an NP transverse-momentum smearing of the distribution. This is implemen
multiplying theb-space perturbative form factor by an NP form factor. Several different par
trizations of the NP form factor are available in the literature[63,74–77]; the corresponding NP
parameters are obtained from global fits to DY data.

In the case of Higgs boson production, the estimate of NP effects is obviously more unc
since we cannot exploit available experimental data. In Ref.[78] we studied the impact of NP
contributions on theqT spectrum of the Higgs boson, by applying the DY NP corrections of R
[74–76]to our resummed results at NLL accuracy. We also considered the effect of rescal
DY NP coefficients by the factorCA/CF , to take into account the different colour charges of
initial-state partons (qq̄ in the DY process,gg in Higgs boson production) in the hard-scatter
subprocess. Alternatively, we used the NP coefficients extracted in Ref.[43] from a fit of data on
Υ production, a production process that is more sensitive to the gluon content of the co
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hadrons. All these different quantitative implementations of NP corrections, although ce
not fully justified, can give an idea of the size of the NP effects on the Higgs boson spectr

The results of Ref.[78] show that the impact of the NP effects on the NLL resummed di
bution is definitely below 10% forqT � 10 GeV, and it decreases very rapidly asqT increases
Moreover, whenqT � 10 GeV, different parametrizations of the NP terms can lead to size
different relative effects, as a consequence of our present ignorance on the absolute valu
NP contributions.

In view of these results, in the present paper we limit ourselves to considering a
ple parametrization of the NP contributions. We multiply theb-space resummed compone
WH

ab(b,M, ŝ) on the right-hand side of Eq.(10) by a NP factor,SNP, which includes a Gaussia
smearing of the form

(89)SNP = exp
{−gNPb2}.

The NP coefficientgNP is varied in the range suggested by the study of Ref.[43]: gNP =
1.67–5.64 GeV2. Note that this procedure, with these values ofgNP, well approximates the quan
titative spread of NP effects found in Ref.[78] at NLL accuracy. InFig. 11we plot the effect of
the NP smearing on our best perturbative predictions, as given by the results at NNLL+ NLO
accuracy. The inner plot shows the relative deviation from the NNLL+ NLO perturbative result
as defined by the ratio

(90)� = dσNP
NNLL+NLO − dσNNLL+NLO

dσNNLL+NLO
,

wheredσNP
NNLL+NLO is the NNLL+ NLO cross section,dσNNLL+NLO, supplemented with th

NP form factor. We see that the NP effects give deviations from the purely perturbative
that are below 10% forqT � 5 GeV. Comparing the inset plots inFigs. 5 and 11, we also notice
that the inclusion of higher-order contributions (going from NLL+ LO to NNLL + NLO) and of
NP contributions have a qualitatively similar effect at intermediate and small values of tran
momenta: both contributions make the distribution harder. At the quantitative level,� is much
smaller thanK −1 whenqT � 10 GeV, while� andK −1 are comparable whenqT � 10 GeV.
This points towards a non-trivial interplay between higher-order perturbative effects an
effects at fixed value of the Higgs boson mass.

In summary, the comparison of the NLL+ LO and NNLL+ NLO results from small (aroun
the peak region) to intermediate (say, roughly,qT � MH /3) values of transverse momenta sho
a nice convergence of the resummed QCD predictions for theqT spectrum of the Higgs boso
at the LHC. From this comparison and from the effects of variations of the renormalization
torization and resummation scales, we conclude that the perturbative QCD uncertainty
NNLL + NLO results isuniformly of about 10%over this range of transverse momenta. T
perturbative and NP uncertainty increases at smaller values ofqT (seeFigs. 5 and 11); the per-
turbative uncertainty increases also at larger values ofqT [20–22]. The perturbative uncertaint
on the NNLO cross section[14], as estimated in the same manner (i.e., by comparing the
and NNLO results, and performing scale variations), is about 15%[17]. Our results on theqT

spectrum are thus fully consistent with those on the total cross section, since the bulk
events is concentrated at small and intermediate values of the Higgs bosonqT .
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Fig. 11. The NNLL+ NLO perturbative results supplemented with the NP form factor in Eq.(89). The upper (lower)
curve at smallqT is obtained withgNP = 1.67 GeV2(gNP = 5.64 GeV2).

4. Conclusions

In this paper we have considered the transverse-momentum spectrum of generic sys
high-massM produced in hadron–hadron collisions. Following our previous work on the su
[1,33], we have illustrated and discussed in detail a perturbative QCD formalism that allow
resum the large logarithmic contributions in the small-qT region (qT � M) and to consistently
match the ensuing result to the fixed-order contributions in the large-qT region (qT ∼ M). The
main features of our approach, that make it different from other implementations ofb-space
resummation presented in the literature, are summarized below.

• The resummation is performed at the level of the partonic cross section. The parto
tributions are thus evaluated at the factorization scaleµF , which has to be chosen of the ord
of the hard scaleM . The resummation formula is then organized in a form that is in close
ogy with the case of event shapes variables in hard-scattering processes[54–57]and threshold
resummation in hadronic collisions[58,59]: the various classes of logarithmic contributions
controlled by the QCD couplingαS(µ2

R) evaluated at the renormalization scaleµR . This proce-
dure naturally allows us to perform a systematic study of renormalization- and factorization
dependence, as is customarily done in fixed-order calculations. This should be compared
other implementations ofb-space resummation, where the scale at which the parton distribu
are evaluated is of the order of 1/b, which also necessarily requires an extrapolation of the pa
distributions in the NP region.
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• The large logarithmic contributions are exponentiated in the form factor exp{GN }, where the
functionGN (see Eq.(14)) is universal: it does not depend on the produced high-mass sy
and it only depends on the flavour of the partons involved in the hard-scattering subp
More precisely (seeAppendix A), various process-independent form factors control the var
partonic channels. The process dependence, as well as the factorization-scale and facto
scheme dependence is fully included in the hard-scattering coefficientHN (see Eq.(12)).

• We impose a constraint of perturbative unitarity through the replacement in Eq.(16): theb-
space form factor exp{GN(L̃)} is equal to unity atb = 0. This constraint has a twofold purpos
On one hand, it avoids the introduction of unjustified higher-order contributions in the s
b region, which are present[79] in standard implementations ofb-space resummation. On th
other hand, it allows us to recover the total cross section at the nominal fixed-order ac
upon integration overqT . Note that, as a consequence, perturbative uncertainties at interm
values ofqT are reduced.

The resummation formalism has been applied to the production of the SM Higgs bosonpp

collisions. We combined the most advanced perturbative information that is available at p
for this process: NNLL resummation at smallqT and fixed-order perturbation theory at NL
at largeqT . We developed a numerical code, namedHqT [69], that performs the calculatio
at NLL + LO and NNLL + NLO accuracy. In Section3.1 we have presented a selection
results that can be obtained by our program at LHC energies. Owing to the unitarity con
the integral of our spectra at NLL+ LO (NNLL + NLO) correctly reproduces the total NL
(NNLO) cross sections. The results show a high stability with respect to scale variations
increasing stability when going from NLL+ LO to NNLL + NLO accuracy. As summarized
the end of Section3.1, this suggests that the uncertainty from missing higher-order perturb
contributions is under good control.
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Appendix A. Exponentiation in the multiflavour case

In Sections2.2 and 2.3, we have discussed the exponentiation structure of the resum
component of theqT distribution. To simplify the notation and the presentation, we have lim
ourselves to illustrating the case in which the partonic scattering involves a single flav
partons. This appendix is devoted to generalize the exponentiation to the case with pa
different flavours.

To obtain Eq.(43), the multiflavour analogue of Eq.(12), we start from the representation
Eq. (42) of the resummed partonic cross sectionWF

ab,N , and then we proceed as in Section2.3.
The main difference with respect to the steps in Eqs.(44)–(46)is that the solution of the QCD



G. Bozzi et al. / Nuclear Physics B 737 (2006) 73–120 111

expo-
l
rith-
thod

.

atrix
tor

nvalue

ex-

co-

r

are
evolution equations(40)has the customary form11

(A.1)UN

(
b2

0/b
2,Q2) = P exp

{ b2
0/b2∫

Q2

dq2

q2
γ N

(
αS

(
q2))},

where the symbolP on the right-hand side denotes the path ordering expansion of the
nential matrix. Because of its matrix structure, the exponential in Eq.(A.1) has only a forma
meaning. To recast Eq.(A.1) in a true exponential form, we can perform a systematic loga
mic expansion of the solution of the Altarelli–Parisi equations, by using a well-known me
that dates back, at least, to Ref.[80].

The evolution operator in Eq.(A.1) can be written in the following form[80] (see also Ref
[81] for technical details):

(A.2)UN

(
b2

0/b
2,Q2) = V N

(
αS

(
b2

0/b
2))U (LO)

N

(
αS

(
b2

0/b
2), αS

(
Q2))V −1

N

(
αS

(
Q2)),

whereU
(LO)
N is determined by the lowest-order anomalous dimensionsγ

(1)
N ,

(A.3)
dU

(LO)
N (αS, α′

S)

d lnαS
= − 1

β0
γ

(1)
N U

(LO)
N (αS, α′

S),

and the operatorV N fulfills the following differential equation:

(A.4)
dV N(αS)

d lnαS
= 1

β(αS)
γ N(αS)V N(αS) + V N(αS)

1

β0
γ

(1)
N .

The evolution equation(A.3) can be solved by diagonalizing the anomalous dimensions m
γ

(1)
N , which has three different eigenvaluesγ

(1)
i,N : one eigenvalue in the flavour non-singlet sec

(i = NS), and two eigenvalues in the flavour singlet sector(i = ±). The solution of Eq.(A.3) is

(A.5)U
(LO)
N

(
αS

(
b2

0/b
2), αS

(
Q2)) =

∑
i=NS,±

[
αS(Q2)

αS(b2
0/b

2)

]γ
(1)
i,N /β0

E
(i)
N ,

whereE
(i)
N denotes the projector onto the flavour eigenspace corresponding to the eige

γ
(1)
i,N . By inspection of Eq.(A.4), we see that it can be solved by performing a perturbative

pansion,

(A.6)V N(αS) = 1 +
∞∑

n=1

(
αS

π

)n

V
(n)
N ,

and the perturbative coefficientsV (n)
N are obtained in terms of the anomalous dimensions

efficientsγ
(k+1)
N and theβ function coefficientsβk with k � n. For example, the first-orde

coefficientV (1)
N is given by

(A.7)V
(1)
N =

∑
i,j=NS,±

1

γ
(1)
j,N − γ

(1)
i,N − β0

E
(i)
N

(
γ

(2)
N − β1

β0
γ

(1)
N

)
E

(j)
N .

11 In this appendix we use the boldface notationX to denote the flavour space matrix whose matrix elements
Xab = (X)ab .
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that
We now come back to the right-hand side of Eq.(42). The evolution operatorUN(b2
0/b

2,µ2
F )

is rewritten asUN(b2
0/b

2,µ2
F ) = UN(b2

0/b
2,Q2)UN(Q2,µ2

F ). Then UN(b2
0/b

2,Q2) is re-
placed by the expression in Eq.(A.2). Eq.(42) thus becomes

WF
ab,N

(
b,M;αS

(
µ2

R

)
,µ2

R,µ2
F

)
=

∑
c

σ
(0)
cc̄,F

(
αS

(
M2),M)

HF
c

(
αS

(
M2))

×
∑
a2,b2

[
V −1

N

(
αS

(
Q2))UN

(
Q2,µ2

F

)]
a2a

[
V −1

N

(
αS

(
Q2))UN

(
Q2,µ2

F

)]
b2b

×
{
Sc(M,b)

∑
a1,b1

C̃ca1,N

(
αS

(
b2

0/b
2))C̃c̄b1,N

(
αS

(
b2

0/b
2))

(A.8)× U
(LO)
a1a2,N

(
αS

(
b2

0/b
2), αS

(
Q2))U(LO)

b1b2,N

(
αS

(
b2

0/b
2), αS

(
Q2))},

where we have defined the perturbative function

(A.9)C̃N(αS) = CN(αS)V N(αS) = 1 +
∞∑

n=1

(
αS

π

)n

C̃
(n)

N ,

and inside the curly brackets we have collected all the factors,Sc, C̃N andU
(LO)
N , that depend

on the impact parameterb. These factors contain the logarithmically-enhanced contributions
have to be resummed and organized in exponential form. The factorSc can be rewritten as

(A.10)Sc(M,b) = Sc(M,b0/Q)exp
{
Gc

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2)},
where (see Eq.(31))

(A.11)

Gc

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2) = −
Q2∫

b2
0/b2

dq2

q2

[
Ac

(
αS

(
q2)) ln

M2

q2
+ Bc

(
αS

(
q2))].

The factorU (LO)
N is

(A.12)

U
(LO)
ab,N

(
αS

(
b2

0/b
2), αS

(
Q2)) =

∑
i=NS,±

E
(i)
ab,N exp

{
Gi,N

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2)},
where (see Eq.(A.5))

(A.13)

Gi,N

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2) = γ
(1)
i,N

β0
ln

αS(Q2)

αS(b2
0/b

2)
= γ

(1)
i,N

β0

Q2∫
b2

0/b2

dq2

q2
β
(
αS

(
q2)).

The factorC̃ca,N can be written as

(A.14)C̃ca,N

(
αS

(
b2

0/b
2)) = C̃ca,N

(
αS

(
Q2))exp

{
Gca,N

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2)},
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where (see Eq.(37))

(A.15)

Gca,N

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2) = −
Q2∫

b2
0/b2

dq2

q2
β
(
αS

(
q2))d ln C̃ca,N (αS(q2))

d lnαS(q2)
.

Note a key point: Eq.(A.14) does not regard the flavour matrixC̃N , but rather its matrix elemen
C̃ca,N . Therefore, its right-hand side involves a truec-number exponential instead of a form
matrix exponential.

Inserting Eqs.(A.10), (A.12) and (A.14)in Eq.(A.8), we eventually obtain the final expone
tiated result in Eq.(43), namely

WF
ab,N

(
b,M;αS

(
µ2

R

)
,µ2

R,µ2
F

)
=

∑
{I }

H{I },F
ab,N

(
M,αS

(
µ2

R

);M2/µ2
R,M2/µ2

F ,M2/Q2)
× exp

{
G{I },N

(
αS

(
µ2

R

)
,L;M2/µ2

R,M2/Q2)},
where the sum extends over the following set of flavour indices:

(A.16){I } = c, c̄, i, j, a1, b1.

The exponentG{I },N of the universal form factor and the process-dependent hard factorH{I },F
ab,N

are

(A.17)G{I },N = Gc + Gi,N + Gj,N + Gca1,N + Gc̄b1,N ,

H{I },F
ab,N

(
M,αS

(
µ2

R

);M2/µ2
R,M2/µ2

F ,M2/Q2)
= σ

(0)
cc̄,F

(
αS

(
M2),M)

HF
c

(
αS

(
M2))Sc(M,b0/Q)C̃ca1,N

(
αS

(
Q2))C̃c̄b1,N

(
αS

(
Q2))

(A.18)

× [
E

(i)
N V −1

N

(
αS

(
Q2))UN

(
Q2,µ2

F

)]
a1a

[
E

(j)
N V −1

N

(
αS

(
Q2))UN

(
Q2,µ2

F

)]
b1b

.

From Eqs.(A.11), (A.13) and (A.15)we see thatG{I },N in Eq. (A.17) has exactly the integra
representation of Eq.(19). The logarithmic expansion (see Eq.(14)) of Gc andGi,N starts at
LL and NLL accuracy, respectively. The termGca,N starts at NLL accuracy in the flavour of
diagonal case(c �= a) and at NNLL accuracy in the flavour diagonal case(c = a). The hard
functionH{I },F

ab,N does not depend on the impact parameterb. It can be perturbatively expanded

powers ofαS(µ2
R) (with µR ∼ M), since the various factors on the right-hand side of Eq.(A.18)

involve only scales(M,Q,µF ) that are of the order of the hard-scattering scaleM .
We conclude this appendix with a comment on the solution(A.2) of the Altarelli–Parisi evolu-

tion equations and its relation with the resummation in Eq.(14) of the logarithmic contributions
to the impact-parameter form factor exp{G{I },N (αS,L)}.

The evolution operatorUN(b2
0/b

2,Q2) does not contribute to the LL functiong(1)(αSL) in

Eq. (14). It starts to contribute to the resummation at the level of the NLL functiong
(2)
N (αSL).

Indeed, from Eqs.(A.12) and (A.13)we see thatU (LO)
N (αS(b2

0/b
2), αS(Q2)), the solution of

the evolution equations at the lowest-perturbative order, contributes to the NLL termsαn
SLn.

The higher-order corrections to the evolution equations are taken into account by the o
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V N(αS) in Eq. (A.2). The role of these corrections can be examined by organizing the
classes of logarithmic contributionsαk

S(αSL)n. Using the expansion in Eq.(A.6), Eq.(A.2) gives

(A.19)UN

(
b2

0/b
2,Q2) = U

(LO)
N

(
αS

(
b2

0/b
2), αS

(
Q2)) +O

(
αn+2

S Ln+1) (n � 0),

(A.20)UN

(
b2

0/b
2,Q2) = U

(NLO)
N

(
αS

(
b2

0/b
2), αS

(
Q2)) +O

(
αn+3

S Ln+1) (n � 0),

whereU
(NLO)
N is the customary solution[80,81]of the evolution equations at NLO:

U
(NLO)
N

(
b2

0/b
2,Q2)

= U
(LO)
N

(
αS

(
b2

0/b
2), αS

(
Q2)) + αS(b2

0/b
2)

π
V

(1)
N U

(LO)
N

(
αS

(
b2

0/b
2), αS

(
Q2))

(A.21)− αS(Q2)

π
U

(LO)
N

(
αS

(
b2

0/b
2), αS

(
Q2))V (1)

N .

The terms denoted byO(αn+2
S Ln+1) on the right-hand side of Eq.(A.19) contribute at NNLL

accuracy (they are of the same logarithmic accuracy as those in the functionαSg
(3)
N (αSL) in

Eq.(14)). Analogously, the terms denoted byO(αn+3
S Ln+1) on the right-hand side of Eq.(A.19)

contribute at NNNLL accuracy (they are of the same logarithmic accuracy as those in the fu
α2

Sg
(4)
N (αSL) in Eq.(14)). Therefore, to resum the NLL (NNLL) contributions to the form fac

is sufficient to implement the solution of the evolution equations at the LO (NLO). Note, how
that, to be consistent with the resummed logarithmic expansion, the scale dependenc
running couplingsαS(b2

0/b
2) andαS(Q2) in Eq. (A.19) (Eq. (A.20)) has to be evaluated at th

NLO (NNLO).

Appendix B. Bessel transformation of logarithmic contributions

This appendix is devoted to the computation of the Bessel transformation of logarithmi
tributions.

We recall the definition of the functions̃In(qT /Q) introduced in Eq.(74):

(B.1)Ĩn(qT /Q) = Q2

∞∫
0

db
b

2
J0(bqT ) lnn

(
Q2b2

b2
0

+ 1

)
.

These integrals are easily evaluated in terms of derivatives of the corresponding generatin
tion Ĩ (x; ε):

(B.2)Ĩn(x) = lim
ε→0

(
∂

∂ε

)n

Ĩ (x; ε),
where

(B.3)Ĩ (x; ε) ≡
∞∑

n=0

1

n!ε
nĨn(x).

Inserting Eq.(B.1) in the right-hand side of Eq.(B.3), we have

(B.4)Ĩ (x; ε) =
∞∫

dt
t

2
J0(tx)

(
t2

b2
0

+ 1

)ε

,

0
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and this integral can be expressed[82] as follows in terms ofKν(x), the modified Bessel functio
of imaginary argument (see Eq.(75)):

(B.5)Ĩ (x; ε) = −
(

2

b0x

)1+ε εb2
0

2�(1− ε)
K1+ε(b0x).

Inserting Eq.(B.5) in Eq.(B.2) and using the relation

(B.6)�(1− ε) = exp

{
γEε +

∞∑
k=2

1

k
ζkε

k

}
,

whereζn is the Riemann zeta-function(ζ2 = π2/6 = 1.645. . . , ζ3 = 1.202. . .), the integrals
Ĩn(x) can straightforwardly be expressed in terms of the derivatives,K

(n)
1 (z), of the Bessel func

tion with respect to its indexν:

(B.7)K
(n)
1 (z) ≡

[
∂nKν(z)

∂νn

]
ν=1

.

These derivatives have the following integral representation:

(B.8)K
(2n)
1 (z) =

∞∫
0

dt t2ne−zcosht cosht,

(B.9)K
(2n+1)
1 (z) = 2n + 1

z

∞∫
0

dt t2ne−zcosht ,

which can simply be obtained from Eq.(75).
As discussed in Section2.4, the computation of the finite component of theqT distribution

requires the evaluation of the functionsĨn(x) whenx > 012. In particular, the computation up t
NLO (see Eq.(73)) requiresĨn(x) with n = 1,2,3,4; these functions are

(B.10)Ĩ1(x) = −b0

x
K1(b0x),

(B.11)Ĩ2(x) = 2b0

x

[
K1(b0x) lnx − K

(1)
1 (b0x)

]
,

(B.12)Ĩ3(x) = −3b0

x

[
K1(b0x)

(
ln2 x − ζ2

) − 2K
(1)
1 (b0x) lnx + K

(2)
1 (b0x)

]
,

(B.13)

Ĩ4(x) = 4b0

x

[
K1(b0x)

(
ln3 x − 3ζ2 lnx + 2ζ3

) − 3K
(1)
1 (b0x)

(
ln2 x − ζ2

)
+ 3K

(2)
1 (b0x) lnx − K

(3)
1 (b0x)

]
.

The functionsĨn(x) diverge whenx → 0. To examine the divergent behaviour at small val
of x, we introduce the functions̄In(x) and the corresponding generating functionĪ (x; ε):

(B.14)Ĩn(x) = Īn(x)
[
1+O

(
x2)],

(B.15)Ĩ (x; ε) = Ī (x; ε)[1+O
(
x2)].

12 The behaviour of̃In(x) whenx = 0 is discussed at the end of this appendix.
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Using the small-x behaviour of the Bessel functionK1+ε(x) [82] and performing the small-x

limit of Eq. (B.5), we get

(B.16)Ī (x; ε) = −εD(ε)
(
x2)−1−ε

,

where

(B.17)D(ε) =
(

2

b0

)2ε
�(1+ ε)

�(1− ε)
= exp

{
−2

∞∑
k=1

ζ2k+1

2k + 1
ε2k+1

}
.

Note that the functions̄In(x) exactly correspond to the following Bessel transformations:

(B.18)Īn(qT /Q) = Q2

∞∫
0

db
b

2
J0(bqT ) lnn

(
Q2b2

b2
0

)
,

as can be checked by performing the limitqT → 0 of Eq.(B.1)or by verifying that the generatin
function in Eq.(B.16)has the following integral representation:

(B.19)Ī (x; ε) = 1

2
b−2ε

0

∞∫
0

dt t1+2εJ0(tx).

The relation between̄In(qT /Q) and the small-qT limit of Ĩn(qT /Q) is not unexpected in view
of the discussion in Section2.2. The integral in Eq.(B.1) originates from Eq.(B.18) after the
replacementL = ln(Q2b2/b2

0) → L̃ = ln(1 + Q2b2/b2
0) at the integrand level: whenqT → 0,

such a replacement has no effects on the singular behaviour at any logarithmic accuracy.
Though Īn(qT /Q) and Ĩn(qT /Q) coincide whenqT → 0, they behave quite differently a

very large values ofqT . Whenx → ∞, from Eqs.(B.5) and (B.16)we get

(B.20)Ĩn(x) = (−1)n
n

x

√
πb0

2x
e−b0x lnn−1 b0x

2

[
1+O

(
1

lnx

)]
,

(B.21)Īn(x) = (−1)n
2n−1n

x2
lnn−1 x

[
1+O

(
1

lnx

)]
.

Note, in particular, that̃In(x) is integrable overx2 whenx → ∞, whereasĪn(x) it is not.
The functionĪn(x) can easily be computed by performing thenth derivative of the generatin

function(B.16)with respect to the parameterε. To present the result, we first exclude the singu
pointx = 0 and consider only the regionx > 0. Since the generating function depends onx only
through the factor(x2)−1−ε , x2Īn(x) is simply a polynomial of degreen−1 in the variable lnx2:

(B.22)Īn(x) = − 1

x2

n−1∑
k=0

n!
k!(n − k − 1)!dk lnn−k−1 1

x2
, x > 0,

where the coefficientsdn are obtained from Eq.(B.17):

(B.23)dn =
[(

d

dε

)n

D(ε)

]
ε=0

.

The value of the first few coefficients is
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d0 = 1, d1 = d2 = 0, d3 = −4ζ3,

(B.24)d4 = 0, d5 = −48ζ5, d6 = 160ζ 2
3 .

The result in Eq.(B.22) agrees with that in Ref.[83], where one can find the numerical valu
of dn with n � 19 (dn = 2nb̄n(∞), whereb̄n(∞) are given in Table 1 of Ref.[83]). The small-x
limit of Eqs.(B.10)–(B.13)thus gives

Ī1(x) = − 1

x2
, Ī2(x) = − 2

x2
ln

1

x2
, Ī3(x) = − 3

x2
ln2 1

x2
,

(B.25)Ī4(x) = − 4

x2

(
ln3 1

x2
− 4ζ3

)
.

Note that, sinced1 = d2 = d4 = 0, Īn(x) can be expressed in a simple form to very high logar
mic accuracy. For example, we have

Īn(x) = − n

x2

{
lnn−1 1

x2
− 2

3
ζ3

(n − 1)!
(n − 4)! lnn−4 1

x2
− 2

5
ζ5

(n − 1)!
(n − 6)! lnn−6 1

x2

(B.26)+ 2

9
ζ 2

3
(n − 1)!
(n − 7)! lnn−7 1

x2
+O

(
lnn−8 1

x2

)}
, x > 0.

We now discuss how to deal with the region around the singular pointx = 0. We first split
thex range in a large-x (x > x0) and a small-x (x � x0) region, where the parameterx0 can be
chosen arbitrarily. Settingx0 = 1, we have

(B.27)Īn(x) = Īn(x)Θ(x − 1) + Īn(x)Θ(1− x).

In the large-x region, which excludes the pointx = 0, Īn(x) is given by Eq.(B.22). In the small-x
region, to properly treat the singularity atx = 0, we have to consider the generating function
Eq.(B.16)and use the expansion

(B.28)

(
x2)−1−ε

Θ(1− x) = −1

ε
δ
(
x2) +

[
1

x2

(
x2)−ε

]
+

= −1

ε
δ
(
x2) +

∞∑
n=0

εn

n!
[

1

x2
lnn 1

x2

]
+
,

where the plus-distribution is customarily defined by its action onto any functionh(x2) that is
finite atx = 0:

(B.29)

1∫
0

dx2 h
(
x2)[ 1

x2
lnn 1

x2

]
+

≡
1∫

0

dx2 h(x2) − h(0)

x2
lnn 1

x2
.

Therefore the generalization of Eq.(B.22) to include the pointx = 0 is

(B.30)Īn(x) = dnδ
(
x2) −

n−1∑
k=0

n!
k!(n − k − 1)!dk

[
1

x2
lnn−k−1 1

x2

]
+
, 0� x � 1.

The procedure described in Eqs.(B.27) and (B.28)can also be applied to properly defi
the integralsĨn(x) around the pointx = 0 in the small-x region. Choosingx0 = ∞, the final
result is equivalent to start from̃In(x > 0), the expression of̃In(x) whenx �= 0 (for example,
Eqs.(B.10)–(B.13)), and then introduce a generalized plus-prescription that acts in the
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range 0� x < ∞. Formally we can write

(B.31)Ĩn(x) = [
Ĩn(x > 0)

]
+∞,

where the generalized plus-distribution is defined as

(B.32)

∞∫
0

dx2 h
(
x2)[Ĩn(x > 0)

]
+∞ ≡

∞∫
0

dx2 [
h
(
x2) − h(0)

]
Ĩn(x > 0).

The choicex0 = ∞ to define the plus-prescription in the case ofĨn is feasible sincẽIn(x) (unlike
Īn(x)) is integrable overx2 whenx → ∞. This choice simplifies the definition of̃In since the
right-hand side of Eq.(B.31) (unlike Eq.(B.30)) does not contain any contact term proportio
to δ(x2). The contact term vanishes since the integrand factor lnn(1 + Q2b2/b2

0) in Eq. (B.1)
vanishes atb = 0. The vanishing of the contact term is thus ultimately related to the unit
constraint in Eqs.(8) and (18).
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