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Abstract
In this article, we present a new strategy to determine an unmanned aerial vehicle
trajectory that minimizes its flight time in presence of avoidance areas and obsta-
cles. The method combines classical results from optimal control theory, i.e. the
Euler-Lagrange Theorem and the Pontryagin Minimum Principle, with a continua-
tion technique that dynamically adapts the solution curve to the presence of obstacles.
We initially consider the two-dimensional path planning problem and then move to
the three-dimensional one, and include numerical illustrations for both cases to show
the efficiency of our approach.

Keywords Path planning · Minimum-time trajectory · Obstacle avoidance ·
Pontryagin minimum principle · Continuation technique · UAV
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1 Introduction

Unmanned aerial vehicle (UAV) path planning is a current research topic having the
purpose of making the UAV capable of performing a given mission autonomously.
This topic has recently attracted the attention of many researchers due to the increas-
ing number of potential civilian and military UAV applications, e.g. environmental
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monitoring, monitoring of areas affected by natural disasters such as earthquakes,
floods, and fires, search and rescue operations in emergency situations, and remote
sensing to create maps identifying areas of interest. Modern mission planning tools
require the optimization of different UAV performances, according to the given mis-
sion specifications, e.g. the flight time or the energy consumption in terms of fuel or
battery power energy. A common issue in almost every path generation strategy is
the presence of interdicted areas or obstacles in urban or orographic environments.
Therefore, obstacle avoidance methods turn out to be crucial in UAV path planning
(some details may be found in [1–3]). Recent techniques include cell decomposition,
roadmap, artificial potential field, potential flow and optimal control methods, among
others.

In cell decomposition methods, the operational area is partitioned into non-
overlapping similar shaped small regions called cells. The trajectory is generated
connecting by straight lines the cell centres from the starting point to the arrival point
using search algorithms like A*, PSO (Particle Swarm Optimization), RRT (Rapidly-
exploring Random Tree) [4–7]. The cells occupied by obstacles are excluded in the
trajectory generation process. In roadmap methods, a network of straight lines con-
necting the starting point to the arrival point without passing through any obstacle (a
roadmap) is generated. Then a search algorithm is employed to find the path which
best fits the criteria required by the given mission [7, 8]. In artificial potential field
methods, the arrival point is treated as an attractive potential and the obstacles are
treated as repulsive potentials. An artificial potential force is then computed and
applied to the UAV as a control input. Therefore, the UAV is attracted towards the
arrival point and repelled by the obstacles [9–11]. In potential flow methods, obsta-
cle avoidance path planning is based on the concept that a uniform fluid flow creates
a natural path around an obstacle [12].

Optimal control methods form an important framework to address obstacle avoid-
ance path planning problems. They are divided into two main categories: direct
methods and indirect methods [13–15]. We will recall the ideas behind them in the
next section. In this paper, we focus our attention on the indirect approach which
relies on two results — the Euler-Lagrange Theorem and the Pontryagin Minimum
Principle [13, 16] — stating necessary conditions for the optimal solution. Using
these conditions, a Hamiltonian boundary value problem (BVP) is built, and among
its solutions there is the optimal one. In more detail, the problem of our interest is the
determination of a UAV trajectory that minimizes the associated flight time in pres-
ence of avoidance areas and obstacles. An example addressing a similar problem via
the indirect approach is [17], where the constrained optimal control equations have
been cast as an unconstrained system formulated in such a way as to preserve the
information on the constraints. However, the numerical solutions presented, obtained
by means of the MATLAB code bvp4c, do not completely satisfy the constraints.

It should be noticed that the general purpose solvers available in most numerical
computing environments often lack robustness and efficiency in handling the Hamil-
tonian BVPs emerging from the above procedure. A further delicate aspect concerns
the choice of the initial guess to be used during the solution of the nonlinear prob-
lems arising from the discretization of the BVP, especially in presence of multiple
local solutions. These drawbacks have somehow discouraged the study of indirect
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methods in favour of direct ones. Our approach with the indirect method is motivated
by a consolidated experience in the computer simulation of Hamiltonian dynami-
cal systems and in the numerical solution of BVPs [18–25]. We propose the use
of the code bvptwp, available in MATLAB [26], Fortran and R [27–30], to effi-
ciently solve BVPs arising from the application of indirect methods. Furthermore, we
employ a new homotopy continuation technique to overcome the problem of select-
ing a suitable initial profile to get the optimal trajectory. The combination of these
tools allows us to efficiently deal with several involved scenarios.

With this premise, the paper is organized as follows. In Section 2, we recall those
concepts of optimal control theory that will be exploited later in deriving the Hamil-
tonian BVP. In Section 3, we study the two-dimensional path planning problem,
the method we have realized to solve it, and the corresponding simulation results.
Section 4 deals with a generalization to the three-dimensional path planning problem.
Finally, in Section 5, we have summarized our findings.

2 Background

2.1 Optimal control problem definition

Let us consider a controlled dynamical system given by the set of ordinary differential
equations

ẋ(t) = f(t, x(t),u(t)), (1a)

coupled with separated boundary conditions

x(t0) = x0, (1b)

Ψ (tf , x(tf )) = 0, (1c)

where

- t is the time variable; t0 and tf are the initial and final times respectively — notice
that tf may be unknown since, for example, it is what we want to minimize;

- x(t) ∈ R
n is the vector of the state variables; x0 and x(tf ) are the system initial

and final states respectively — notice that x(tf ) may be implicitly defined, since
Ψ in (1c) may be a nonlinear function;

- u(t) ∈ R
m is the vector of the control variables, i.e. time functions provided as

input to the system to control its evolution over time, hereafter simply referred to
as the control;

- f : [t0, tf ] × R
n × R

m → R
n is a suitably regular function defining the vector

field of the controlled dynamical system.

The control u(t) influences the performance of the dynamical system by means of
the functional

J (u) = φ(tf , x(tf )) +
∫ tf

t0

L(t, x(t),u(t))dt, (2)

called cost functional or performance index. This functional consists of the sum of
two terms: the first one solely depends on the system final state, while the second one
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takes into account the overall system evolution over time. The integrand function L

in the second term is called Lagrangian function. An optimal control problem is an
optimization problem which consists in determining the control u∗(t) that minimizes
or maximizes the performance index. Without loss of generality, we can always think
of an optimal control problem as a minimization problem:

min
u

φ(tf , x(tf )) +
∫ tf

t0

L(t, x(t),u(t))dt,

where the state variables x(t), for a given control u(t), must satisfy (1a)–(1c).

2.2 Methods for solving optimal control problems

The best known methods in the literature to solve an optimal control problem are
divided into two categories: direct and indirect methods.

The basic idea of direct methods consists in transforming the original problem
into a standard nonlinear programming problem. This is achieved in two sequential
phases, according to the discretize then optimize paradigm. First, the problem is dis-
cretized by introducing a temporal mesh and approximating the solution x(t) and
the control u(t) by means of predetermined piecewise polynomial functions. Then,
appropriate collocation conditions are imposed on them in order to obtain a solu-
tion that accurately approximates the continuous model. The collocation conditions
define a finite set of equality constraints which, together with the cost functional,
constitute a nonlinear programming problem. For more information on direct meth-
ods, we recommend a paper by Matthew Kelly [15], that covers all of the basics
required to understand and implement direct collocation methods and collects a num-
ber of interesting references. Recent results about convergence of direct methods can
be found in [31]. Interesting comparisons between direct and indirect methods are
presented in [32, 33].

Indirect methods, on the other hand, follow the optimize then discretize paradigm.
They are based on the variational calculus and build a Hamiltonian BVP, whose set
of solutions includes the optimal one. Below, we recall the resolution procedure.

Let us introduce the Hamiltonian function

H(t, x(t),u(t), λ(t)) = L(t, x(t),u(t)) + λ(t) · f(t, x(t),u(t)),

where λ(t) = (λ1(t), λ2(t), . . . , λn(t)) is the vector of the so-called costate variables.
Let us denote by Hx, Hu the gradient of H with respect to x and u, respectively, and
by u∗(t) the optimal control and by x∗(t) the corresponding state. Then the Euler-
Lagrange theorem [16, pp. 45–56] states that, if f, L, φ and Ψ are sufficiently smooth,
then λ(t) is the solution of the adjoint differential equation

λ̇(t) = −Hx(t, x∗(t),u∗(t), λ(t)), (3)

and u∗(t) and x∗(t) satisfy the algebraic equation system

Hu(t, x∗(t),u∗(t), λ(t)) = 0, (4)

from which we derive the optimal control u∗(t), and the transversality condition

H(tf )dtf − λ(tf ) · dxf + dφf = 0, (5)
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that yields the boundary conditions for the costate variables. Here, to simplify the
notation, we have set

H(tf ) = H(tf , x∗(tf ),u∗(tf ), λ(tf )), and φf = φ(tf , x∗(tf )).

Equation (4) admits, in general, multiple solutions but, exploiting the Pontryagin
Minimum Principle [16, pp. 95–101], the optimal control u∗(t) must minimize the
Hamiltonian function, evaluated at x∗(t), among all the admissible controls u(t):

H(t, x∗(t),u∗(t), λ(t)) ≤ H(t, x∗(t),u(t), λ(t)).

Equations (3) and (4) are called Euler-Lagrange equations. Once the optimal control
u∗(t) is determined from (4), its expression is plugged into (1a) and (3) to obtain a
system of ordinary differential equations for the state and the costate variables

ẋ(t) = f(t, x(t),u∗(t)),
λ̇(t) = −Hx(t, x(t),u∗(t), λ(t)),

with the boundary conditions given by (1b), (1c) and (5)

x(t0) = x0, Ψ (tf , x(tf )) = 0,

H(tf )dtf − λ(tf ) · dxf + dφf = 0.

Thus, we have got a Hamiltonian BVP that we can solve numerically. In our applica-
tion context, the above BVP will be integrated with a set of constraints representing
interdicted areas that the solution trajectory should not cross. A penalty function
approach is then exploited to incorporate these additional requirements inside the
original cost functional (2). As we will see in the next section, these penalty func-
tions add singularities in the problem, so that its numerical solution has to be handled
with care. Hereafter, we give a brief description of the code we have considered for
this purpose.

2.3 Numerical solution of the boundary value problem

It is well known that the two most involved implementation issues in devising general
purpose codes for BVPs are the mesh selection strategy and the efficient solution
of the nonlinear system arising from the discretization of the continuous problem
by means of a suitable numerical method. The presence of singularities makes such
aspects even more relevant, since they heavily influence the behaviour of the resulting
procedure.

For our numerical simulations, we have considered the MATLAB environment
[34] and the code bvptwp, which is a MATLAB translation of the Fortran codes
twpbvpc, twpbvplc and acdcc [26, 30, 35]. The code bvptwp allows the user
to choose between two techniques, one of which gets information about the con-
ditioning of the problem (see [21, 25] for a complete description). This particular
feature is exploited in the mesh selection strategy, which is able to adapt the mesh
points in order to cope with specific conditioning issues that may emerge during the
solution of the BVP, especially when the trajectory gets close to a singular point.
The code incorporates two deferred correction schemes, the former based on Mono-
Implicit Runge-Kutta (MIRK) methods and the latter on Lobatto formulae. In our
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simulations, we have used the implementation based on Lobatto formulae, since they
are more efficient for stiff problems and are more appropriate for problems with a
Hamiltonian structure. The MATLAB and Fortran release of the codes are freely
available at the url [36] together with many test examples (see also [28]). An interface
of the Fortran codes in the R environment is also available [29].

For comparison purposes we have also considered the MATLAB built-in func-
tions bvp4c and bvp5c. These latter are very efficient for the solution of smooth
problems, but suffer from lack of robustness when applied to singularly perturbed
problems (see Example 1 in Section 3.4).

Finally, it is worth mentioning that a BVP can admit more than one solution. In
this case, these solutions represent local minima for the original problem, among
which the global minimum is hidden. Since the solution calculated by a numerical
method depends on the initial guess, particular attention must be paid to the choice
of the latter. We give a detailed description of this aspect in the next section.

3 2D path planning problem

Let us turn to the problem of our interest, i.e. to determine a UAV trajectory that min-
imizes the flight time in presence of avoidance areas. In general, the UAV motion is
a three-dimensional motion. However, some salient flight phases occur at a constant
altitude, i.e. in a plane. Therefore, we first consider the two-dimensional case, and
later we will move to the three-dimensional one.

3.1 Problem formulation

The problem we intend to solve is the determination of the two-dimensional trajec-
tory that minimizes the UAV flight time from a starting point (x0, y0) to an end point
(xf , yf ) in presence of avoidance areas. As a working assumption, we neglect the
rigid body structure of the UAV, which we represent as a material point, correspond-
ing to its centre of mass.1 Furthermore, we assume that the UAV motion occurs with
constant velocity in modulus V . Without loss of generality, we suppose that the ini-
tial time is t0 = 0. Thus, the UAV motion is described by the ordinary differential
equations

ẋ = V cos θ,

ẏ = V sin θ,

with boundary conditions

x(0) = x0, y(0) = y0,

x(tf ) = xf , y(tf ) = yf ,

where

1This assumption is appropriate, for example, when the UAV has a symmetrical structure with respect to
its centre of mass.
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– x = x(t), y = y(t), respectively the abscissa and the ordinate of the UAV in an
appropriate Cartesian reference, are the state variables;

– θ = θ(t) ∈ [−π, π ], the yaw angle (Fig. 1), which describes the UAV rotation
around the vertical axis passing through its centre of mass, is the control variable.

Hence, we do not consider neither the pitch angle, which describes the UAV rota-
tion around the transverse axis passing through its centre of mass, the motion being
two-dimensional, nor the roll angle, which describes the UAV rotation around the
longitudinal axis passing through its centre of mass, since we are neglecting the rigid
body structure of the UAV. For simplicity, we will not introduce constraints on the
control variable.

The performance index to be minimized is the flight time (observe that the final
time tf dependence on the control is not explicit)

J (θ) =
∫ tf (θ)

0
dt = tf (θ).

Regarding the avoidance areas, since we are working in the two-dimensional space
R

2, we enclose them in ellipses in order to obtain sufficiently regular constraints.
Therefore, the set of constraints with which we approximate the avoidance areas is

gi(x, y) ≥ 0, i = 1, . . . , p,

where

gi(x, y) = (x − xi)
2

a2
i

+ (y − yi)
2

b2
i

− 1,

and xi , yi , ai and bi are, respectively, the centre coordinates and the axis lengths
of the i-th ellipse. Furthermore, we also consider ellipses whose first axis is

Fig. 1 Yaw and pitch angles governing the motion of a UAV (the roll angle is not illustrated, since the
UAV is assimilated to a material point)
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rotated counterclockwise by an angle α with respect to the x-axis applying the
transformation

x′ = x cos α + y sin α,

y′ = −x sin α + y cos α.

In conclusion, the problem of our interest is the following:

min
θ

∫ tf (θ)

0
dt,

where the state variables x(t) and y(t), given a control θ(t), must satisfy the
equations

ẋ = V cos θ,

ẏ = V sin θ,

x(0) = x0, y(0) = y0,

x(tf ) = xf , y(tf ) = yf ,

and the additional constraints

gi(x, y) ≥ 0, i = 1, . . . , p. (6)

This problem is a constrained optimal control problem because of the additional alge-
braic constraints (6), so we cannot solve it directly using the Euler-Lagrange Theorem
and the Pontryagin Minimum Principle. Let us frame an auxiliary unconstrained opti-
mal control problem formulated in such a way as to preserve the information on the
additional constraints, with which we approximate the above-mentioned problem.
After that, we shall devise a continuation technique to solve the auxiliary problem.

3.2 Auxiliary problem formulation

For each constraint, let us define the function

hi(x, y; ki) = ki

gi(x, y)
, i = 1, . . . , p,

where ki > 0 is a parameter. The function hi has a singularity on the boundary of the
i-th ellipse, is positive outside the ellipse and negative inside it, and is close to zero
outside a neighbourhood of the ellipse. We can adjust the size of this neighbourhood
by tuning the parameter ki . Then, let us define the function

P(x, y; k1, . . . , kp) =
p∑

i=1

hi(x, y; ki),

and the augmented Lagrangian function

L(x, y; k1, . . . , kp) = 1 + P(x, y; k1, . . . , kp),

and let us consider the unconstrained optimal control problem

min
θ

∫ tf (θ)

0

(
1 + P(x(t), y(t); k1, . . . , kp)

)
dt, (7)
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where the state variables x(t) and y(t), given a control θ(t), must satisfy the
equations

ẋ = V cos θ,

ẏ = V sin θ,

x(0) = x0, y(0) = y0,

x(tf ) = xf , y(tf ) = yf .

(8)

Hereafter, to keep the notation simple, we will omit the explicit dependence of hi ,
i = 1, . . . , p, and P on the parameters k1, . . . , kp. The new cost functional (7)
approximates the flight time where P(x, y) ≈ 0, i.e. away from the ellipses, is far
greater than the flight time in a narrow neighbourhood of the ellipses, outside them,
where P(x, y) 	 0, and has singularities on the boundary of each ellipse.

Apart from its regularity features outside the interdicted areas, the reason for
choosing the penalty function P is elucidated in the example in Fig. 2. The left pic-
ture shows the level sets of the function P(x, y) corresponding to an ellipse of centre
(0, 0), axes of length 2, 1, whose first axis is rotated counterclockwise by an angle
of π/4 radians with respect to the x-axis, and to a circumference of centre (2.5, 1)

and radius 0.5, with k1 = k2 = 10−3. We see that P(x, y) assumes small (positive)
values outside a narrow neighbourhood of the two ellipses, while it diverges to infin-
ity when (x, y) approaches the boundary of each ellipse. This latter aspect is better
visible in the right plot of Fig. 2, that shows the graph of the function P along the
straight line joining the centres of the two ellipses parameterized with respect to the
abscissa (x = t, y = t/2.5, t ∈ [0, 1]) and confined to the segment QR lying in
the fly zone. By virtue of (7), the two asymptotes act as barriers to prevent that the
UAV may cross the ellipses while, at the same time, the trajectory may approach the
ellipses closely as far as |P(x, y)| 
 1.

In conclusion, when we apply the Euler-Lagrange Theorem and the Pontryagin
Minimum Principle to minimize the modified cost functional (7) with respect to
the control, we get an optimal control which makes the UAV trajectory to possi-
bly approach an ellipse very closely without touching it, so that the cost functional
essentially returns the flight time, provided that the parameters ki are chosen small
enough.

However, when solving the BVP numerically, the above argument partially evap-
orates due to the discrete nature of the numerical solution. In fact, while a continuous
trajectory (x(t), y(t)) crossing an ellipse would necessarily encounter a singular
point of the cost functional, the same argument does not apply for the discrete orbit
(xj , yj ) ≈ (x(tj ), y(tj )) unless the stepsize of integration is chosen sufficiently
small, which would dramatically affect the efficiency of the overall procedure. In
order to prevent this situation from occurring, we have implemented a continuation
technique, which generates a preliminary trajectory considering null axes for each
ellipse. Subsequently, the axes are gradually increased until they reach their final val-
ues and, at each step, the solution obtained at the previous step is readapted in order
to satisfy the constraints at the current step. A formal description of this continua-
tion technique is reported below. Hereafter we apply the Euler-Lagrange Theorem,
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Fig. 2 Level sets of the function P(x, y) corresponding to an ellipse of centre (0, 0), axes of length 2, 1,
whose first axis is rotated counterclockwise by an angle of π/4 radians with respect to the x-axis, and to
a circumference of centre (2.5, 1) and radius 0.5, with k1 = k2 = 10−3

[16, pp. 45–56], and the Pontryagin Minimum Principle [16, pp. 95–101], to solve
problem (7) and (8). Defining the Hamiltonian function

H = 1 + P(x, y) + λ1V cos θ + λ2V sin θ,

the Euler-Lagrange equations become

λ̇1 = −Hx = −Px(x, y),

λ̇2 = −Hy = −Py(x, y),

Hθ = −λ1V sin θ + λ2V cos θ = 0. (9)

The optimal control is not uniquely defined by (9), since

cos θ = ± λ1√
λ2

1 + λ2
2

, sin θ = ± λ2√
λ2

1 + λ2
2

,

both satisfy (9). Therefore, according to the Pontryagin Minimum Principle, we
choose the optimal control corresponding to the negative solution. The transversality
condition reads

H(tf )dtf − λ1(tf )dxf − λ2(tf )dyf + dφf = 0.

Since the final state is given and φ = 0, we have that dxf = dyf = dφf = 0, and
the transversality condition reduces to H(tf )dtf = 0. It has to be satisfied for all
dtf , thus we arrive at the additional boundary condition H(tf ) = 0 for the costate
variables.

Let us recall that tf = tf (θ) is unknown: indeed, it is the performance index to be
minimized. By setting s = t/tf , the integration interval becomes [0, 1], tf becomes
a further state variable and we obtain the additional equation ˙tf = 0.
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Therefore, the state and the costate variables are the solution of the system of
ordinary differential equations

ẋ = V

(
− λ1√

λ2
1+λ2

2

)
tf ,

ẏ = V

(
− λ2√

λ2
1+λ2

2

)
tf ,

λ̇1 = (−Px(x, y)) tf ,

λ̇2 = (−Py(x, y)
)
tf ,

˙tf = 0,

(10)

coupled with the boundary conditions

x(0) = x0, y(0) = y0, x(1) = xf , y(1) = yf , (11)

and

H(1) = 1 + P(xf , yf ) + λ1(1)

(
− V λ1(1)√

λ1(1)2 + λ2(1)2

)

+λ2(1)

(
− V λ2(1)√

λ1(1)2 + λ2(1)2

)
= 0. (12)

3.3 The continuation technique

For all i = 1, . . . , p, let Ni be a positive integer, N = max
1≤i≤p

Ni , and define the

sequence of constraint functions

g
(n)
i (x, y; Ni) = (x − xi)

2

a2
i

+ (y − yi)
2

b2
i

− n

Ni

, n = 0, . . . , Ni .

The equation g
(n)
i (x, y; Ni) = 0 represents an ellipse of centre (xi, yi) and axes

ai

√
n/Ni , bi

√
n/Ni . When n = 0, each ellipse shrinks to its centre, while its axes

increase with n until, for n = Ni , they match the values ai and bi , yielding the
original shape. Let us define the functions

h
(n)
i (x, y; ki, Ni) = ki

g
(n)
i (x, y; Ni)

, n = 0, . . . , Ni,

and

P (n)(x, y; k1, . . . , kp, N1, . . . , Np) =
p∑

i=1

h
(n)
i (x, y; ki, Ni), n = 0, . . . , N,

where, after noticing that g
(Ni)
i (x, y; Ni) = gi(x, y) and h

(Ni)
i (x, y; ki, Ni) =

hi(x, y), we simply set g
(n)
i (x, y; Ni) = gi(x, y) for n > Ni , so h

(n)
i (x, y; ki, Ni) =

hi(x, y) and P (N)(x, y; k1, . . . , kp, N1, . . . , Np) = P(x, y). In the sequel, to
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simplify the notation, we will omit the explicit dependence of g
(n)
i , h

(n)
i , i =

1, . . . , p, and P (n), n = 0, . . . , N , on the parameters k1, . . . , kp, N1, . . . , Np.
The continuation technique consists in solving the BVPs (10)–(12) with P(x, y)

replaced by P (n)(x, y), sequentially for n = 0, . . . , N . The solution obtained after
solving the n-th problem is used in the code as initial guess to solve the subsequent
BVP. At the very first step (n = 0), the initial guess is just the straight line joining
(x0, y0) and (xf , yf ), i.e. the optimal trajectory in absence of constraints. In princi-
ple, it may happen that an obstacle centre lies on the initial guess or is very close to
it. In this case, the singularity introduced in that point prevents the continuation from
starting since P (0)(x, y) is Infinity. There are several ways to overcome this issue.
We have chosen to slightly move the obstacle centre along the line orthogonal to the
initial guess, and to increase its axes in such a way that the new adjusted obstacle
contains the original one.

The above procedure guarantees a fast convergence of the nonlinear scheme
solver embedded in the code towards the local solution which is closest to the ini-
tial profile given in input. From a geometrical viewpoint, the continuation procedure
defines a sequence of homotopic solution curves in the phase plane, originating
from the degenerate case where all the constraints reduce to points. As long as the
ellipses expand, the singularities introduced in the functions P (n)(x, y) adapt the
corresponding trajectories in order to keep them outside the ellipses.

Once the solution of the last BVP (n = N) has been determined, the state variables
x(t) and y(t) give the UAV trajectory, and the costate variables λ1(t) and λ2(t) give
the optimal control θ(t) ∈ [−π, π ] via the relations

cos θ(t) = − λ1(t)√
λ1(t)2 + λ2(t)2

, sin θ(t) = − λ2(t)√
λ1(t)2 + λ2(t)2

.

The values of the parameters ki and Ni are empirical and based on the numerical
simulations, though we have employed a dynamic selection strategy to speed up the
overall procedure, according to the following scheme:
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Notice that, at each continuation step n, the parameters ki and Ni are increased
until the minimum of g

(n+1)
i (x, y) computed along the n-th solution trajectory(

x
(n)
j , y

(n)
j

)
is greater than or equal to 0.02, for all i = 1, . . . , p. This check assures

that the n-th solution trajectory is outside and not so close to each ellipse at step
n + 1. This is needed because, if the n-th solution trajectory crosses some ellipses at
step n + 1, then it crosses the singularities introduced along them, making the con-
tinuation get stuck. Furthermore, every time ki is updated, the n-th problem has to
be solved again since the functions h

(n)
i (x, y) and P (n)(x, y) depend on ki . So ki is

increased whenever Ni becomes a multiple of 10, in order to prevent the execution
time from increasing too much.

Finally, let us notice that the continuation technique described so far applies to all
the obstacles simultaneously. As an alternative, the continuation can be applied to
an obstacle at a time, starting from the one with the largest axes to the one with the
smallest axes decreasingly. To achieve this, we first define the functions

P
(n)
i (x, y) =

i−1∑
j=1

hj (x, y) + h
(n)
i (x, y), i = 1, . . . , p, n = 0, . . . , Ni,

where P
(n)
1 (x, y) = h

(n)
1 (x, y), n = 0, . . . , N1, and P

(Np)
p (x, y) = P(x, y), and

then, after sorting the obstacles as mentioned above, set up the following scheme:

Therefore, this variant consists in solving the BVPs (10)–(12) with P(x, y)

replaced by P
(n)
i (x, y), sequentially for i = 1, . . . , p, and sequentially for n =

0, . . . , Ni . The solution obtained after solving the n-th problem in the i-th iteration
is used in the code as initial guess to solve

– the subsequent BVP at step n + 1, if n < Ni ;
– the first problem in the (i + 1)-th iteration, if n = Ni .
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The initial guess for i = 1 and n = 0, as well as the parameter initialization and
tuning, is as before.

3.4 Simulation results

In this subsection, we report two examples showing the results of the two-
dimensional numerical simulations we have carried out. For the first example, we
compare the results given by the two continuation strategies, in terms of the corre-
sponding flight time, as well as the performance of the code bvptwp with that of
the codes bvp4c and bvp5c. As comparison criteria, we have considered, for the
computed solution of the last BVP in the continuation process, the number of points
in the final output mesh (nMeshPoints) and the total number of function evaluations
defining the ordinary differential equation system (nODEevals) and the boundary
conditions (nBCevals). In addition, we have reported the execution time expressed in
seconds (time) for the overall continuation. All computations have been carried out
on an Intel i7 quad-core CPU with 16GB of memory, running MATLAB R2020b.

For both examples, we assume that the UAV must move from the point (x0, y0) =
(0, 0) to the point (xf , yf ) = (10, 10) with constant velocity in modulus V = 1,
while the avoidance areas are disjoined and defined as follows.

– Example 1: Three circumferences having radius 1 and centres (2.2, 1.8),
(3.8, 4.2) and (6.2, 3.8), respectively; an ellipse having centre (7.4, 7.8) and
axes of length 2.25 and 1.5, whose first axis is rotated counterclockwise by
an angle of π/4 radians with respect to the x-axis. The final parameter values
of the continuation strategies for the codes bvptwp, bvp4c and bvp5c are
reported in Table 1. The corresponding trajectory and the yaw angle that real-
izes it, expressed in radians, are shown in Figs. 3 and 4 for the two continuation
strategies. Table 2 summarizes the performance of the code bvptwp in terms of
the output parameters listed at the beginning of this subsection, and compares its
behaviour with that of the MATLAB built-in codes bvp4c and bvp5c, showing
its efficiency and robustness.

This example has been suitably conjectured in such a way that the two con-
tinuation strategies could lead to two different local minima of the underlying

Table 1 Example 1: Final parameter values of the two continuation strategies

First continuation strategy

Code k1 k2 k3 k4 N1 N2 N3 N4 Flight time

bvptwp 0.01 0.01 0.01 0.01 9 8 1 6 15.1876

bvp4c/bvp5c 0.0145 0.01 0.01 0.01 10 8 1 6 15.2053

Second continuation strategy

Code k1 k2 k3 k4 N1 N2 N3 N4 Flight time

bvptwp 0.01 0.01 0.01 0.01 8 1 6 5 14.9766

bvp4c/bvp5c 0.01 0.01 0.01 0.01 8 1 6 5 14.9766
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Fig. 3 2D Example 1, first continuation strategy: optimal trajectory (a) and yaw angle that realizes it (b)

optimization problem, which is not the case for general problems. In the follow-
ing example, the first continuation strategy even fails to converge, which makes
the second strategy more robust, despite a bit more expensive.

– Example 2: Three circumferences having radius 1 and centres (1.8, 1.4),
(2.8, 3.8) and (4.6, 5.4), respectively; an ellipse having centre (7.6, 7.2) and axes
of length 1.75 and 3.5, whose first axis is rotated counterclockwise by an angle
of π/4 radians with respect to the x-axis. Using the second continuation strat-
egy and the code bvptwp, the final parameter values are (k1, k2, k3, k4) =
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Fig. 4 2D Example 1, second continuation strategy: optimal trajectory (a) and yaw angle that realizes it (b)
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Table 2 Example 1: Comparison of the codes’ performance

Strategy Code nMeshPoints nODEevals nBCevals Time

bvptwp 55 1252 10 3.844797

1 bvp4c 179795 7415318 9 549.997793

bvp5c 6201 468757 13 81.166330

bvptwp 53 1206 10 6.248556

2 bvp4c 265868 8773065 11 477.555046

bvp5c 11857 663555 17 96.182822

(0.01, 0.01, 0.01, 0.0145) and (N1, N2, N3, N4) = (1, 2, 1, 17), which yield an
optimal trajectory with associated flight time 16.1760 (see Fig. 5).

4 3D path planning problem

The three-dimensional problem is conceptually similar to the two-dimensional one,
the ordinary differential equations governing the UAV motion now being

ẋ = V cos θ cos γ,

ẏ = V sin θ cos γ,

ż = V sin γ,
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Fig. 5 Example 2, second continuation strategy: optimal trajectory (a) and yaw angle that realizes it (b)
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with the boundary conditions

x(0) = x0, y(0) = y0, z(0) = z0,

x(tf ) = xf , y(tf ) = yf , z(tf ) = zf ,

where

– x = x(t), y = y(t), z = z(t), respectively the abscissa, ordinate and altitude of
the UAV in an appropriate Cartesian reference, are the state variables;

– θ = θ(t) ∈ [−π, π ], γ = γ (t) ∈ [−π/2, π/2], respectively the yaw and pitch
angles, are the control variables (see Fig. 1).

We still do not consider the roll angle since we are neglecting the rigid body struc-
ture of the UAV, and we will not introduce constraints on the control variables. The
performance index to be minimized is again the flight time

J (θ, γ ) =
∫ tf (θ,γ )

0
dt = tf (θ, γ ),

that now is a function of the pitch angle, too.
Regarding the avoidance areas, since we are working in the three-dimensional

space R
3, we enclose them in cylinders or ellipsoids in order to obtain sufficiently

regular constraints. Therefore, the set of constraints with which we approximate the
avoidance areas is

gi(x, y, z) ≥ 0, i = 1, . . . , p,

hj (x, y, z) ≥ 0, j = 1, . . . , q,

where

gi(x, y, z) = (x − xi)
2

a2
i

+ (y − yi)
2

b2
i

− 1,

and xi , yi , ai and bi are, respectively, the axis coordinates and the axis lengths of the
i-th cylinder,

hj (x, y, z) = (x − xj )
2

a2
j

+ (y − yj )
2

b2
j

+ (z − zj )
2

c2
j

− 1,

and xj , yj , zj , aj , bj and cj are, respectively, the centre coordinates and the axis
lengths of the j -th ellipsoid. Cylinders are suitable for areas to avoid no matter what
the altitude is, while ellipsoids are suitable for finite height avoidance areas.

Thus, the optimal control problem in the three-dimensional case is the following:

min
θ,γ

∫ tf (θ,γ )

0
dt,
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where the state variables x(t) and y(t), given a control (θ(t), γ (t)), must satisfy the
equations

ẋ = V cos θ cos γ,

ẏ = V sin θ cos γ,

ż = V sin γ,

x(0) = x0, y(0) = y0, z(0) = z0,

x(tf ) = xf , y(tf ) = yf , z(tf ) = zf ,

and the additional constraints

gi(x, y, z) ≥ 0, i = 1, . . . , p,

hj (x, y, z) ≥ 0, j = 1, . . . , q.

The formulation of the auxiliary unconstrained optimal control problem described in
the previous section is now adapted in order to tackle the three-dimensional problem.
According to the Euler-Lagrange Theorem, to determine the optimal controls θ and
γ , we consider the Hamiltonian function

H = 1 + P(x, y, z) + λ1V cos θ cos γ + λ2V sin θ cos γ + λ3V sin γ

and compute its stationary points with respect to the controls

Hθ = −λ1V sin θ cos γ + λ2V cos θ cos γ = 0,

Hγ = −λ1V cos θ sin γ − λ2V sin θ sin γ + λ3V cos γ = 0,

from which we have that

cos θ = ± λ1√
λ2

1 + λ2
2

, sin θ = ± λ2√
λ2

1 + λ2
2

,

and

cos γ = ±
√

λ2
1 + λ2

2√
λ2

1 + λ2
2 + λ2

3

, sin γ = ± λ3√
λ2

1 + λ2
2 + λ2

3

.

We choose the negative solution for the yaw angle θ in order to be consistent with the
two-dimensional case, the positive and negative ones for the cos γ and sin γ respec-
tively such that the Pontryagin Minimum Principle [16, pp. 95–101] is satisfied. The
continuation technique remains identical to the two-dimensional case.

Table 3 Example 3: Final parameter values of the two continuation strategies

First continuation strategy

Code k1 k2 k3 k4 k5 N1 N2 N3 N4 N5 Flight time

bvptwp 0.0145 0.01 0.01 0.01 0.01 10 1 7 8 9 15.3833

Second continuation strategy

Code k1 k2 k3 k4 k5 N1 N2 N3 N4 N5 Flight time

bvptwp 0.01 0.01 0.01 0.01 0.0145 8 1 4 6 10 15.2962
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4.1 Simulation results

Among the three-dimensional numerical simulations we have carried out, we here
report an example, simulating an urban environment, where the two continuation
strategies behave differently, again emphasizing that for general and less involved
problems, the two approaches lead to the same results. Finally, we consider a
scenario reproducing an orographic environment by means of a set of ellipsoids.

– Example 3: We assume that the UAV must move from the point (x0, y0, z0) =
(0, 0, 0) to the point (xf , yf , zf ) = (10, 10, 1.5) with constant velocity in mod-
ulus V = 1, while the avoidance areas are four circular cylinders having radius
1 and axes of equations x = 1.5, y = 1.2, x = 2.1, y = 3.6, x = 7.9, y = 6.4
and x = 8.5, y = 8.8, respectively, and a circular cylinder having radius 1.5 and
axis of equations x = 4.5, y = 5.5. The final parameter values and the resulting
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Fig. 6 Example 3, first continuation strategy: optimal trajectory (a), view from above of it (b), and yaw
and pitch angles that realize it (c, d)
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flight time for the two continuation strategies are reported in Table 3. The corre-
sponding trajectory, a view from above of it, and the yaw and pitch angles that
realize it, expressed in radians, are shown in Figs. 6 and 7.

– Example 4: We assume that the UAV must move from the point (x0, y0, z0) =
(0, 0, 0) to the point (xf , yf , zf ) = (6, 6, 0) with constant velocity in modulus
V = 1, while the areas to avoid are three ellipsoids having centres (2, 3.5, −0.5),
(3, 2, −0.5) and (5.1, 4.4, −0.5), and axis lengths 1, 1, 4, 2.5, 1.25, 2 and 1,
1, 2 respectively (notice that the first two ellipsoids intersect). For this prob-
lem, the first continuation strategy fails to converge, so we have considered an
extension of the second continuation technique to the three-dimensional case.
The corresponding output parameters are (k1, k2, k3) = (0.01, 0.01, 0.01) and
(N1, N2, N3) = (8, 8, 6), which yield an optimal trajectory with associated flight
time tf = 8.9816 (see Fig. 8).
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Fig. 7 Example 3, second continuation strategy: optimal trajectory (a), view from above of it (b), and yaw
and pitch angles that realize it (c, d)
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Fig. 8 Example 4: Front and rear views of the optimal trajectory (a, b), and yaw and pitch angles that
realize it (c, d)

5 Conclusions

We have considered the problem of determining a UAV trajectory that minimizes the
flight time in presence of avoidance areas and obstacles. Incorporating these con-
straints in the cost functional, with the aid of the Euler-Lagrange Theorem and the
Pontryagin Minimum Principle, we have derived a boundary value problem with a
Hamiltonian structure. The use of the code bvptwp combined with a suitable con-
tinuation strategy to manage the additional constraints has shown very efficient in
comparison to the standard solvers available in MATLAB.
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