
International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

DOI: 10.5121/ijwest.2022.13101 1

AN INTERSEMIOTIC TRANSLATION OF NORMATIVE

UTTERANCES TO MACHINE LANGUAGE

Andrea Addis
1
 and Olimpia Giuliana Loddo

2

1
Infora, viale Elmas, Cagliari, Italy

2
Department of Law, University of Cagliari, Cagliari, Italy

ABSTRACT

Programming Languages (PL) effectively performs an intersemiotic translation from a natural language to

machine language. PL comprises a set of instructions to implement algorithms, i.e., to perform

(computational) tasks. Similarly to Normative Languages (NoL), PLs are formal languages that can

perform both regulative and constitutive functions. The paper presents the first results of interdisciplinary

research aimed at highlighting the similarities between NoL (social sciences) and PL (computer science)

through everyday life examples, exploiting Object-Oriented Programming Language tools and an Internet

of Things (IoT) system as a case study. Given the pandemic emergency, the urge to move part of our social

life to the digital world arose, together with the need to effectively transpose regulative rules and

constitutive rules through different strategies for translating a normative utterance expressed in natural

language.

KEYWORDS

Programming languages, Normative languages, Constitutive rules, Regulative rules.

1. INTRODUCTION

According to Jakobson, translation is a form of interpretation, where interpretation is the

“transposition of a sign into alternative signs having the same meaning”. He also claimed that

there are three ways one can interpret the verbal sign; “it can be translated into other signs of the

same language, into another language, or into another nonverbal system of symbols” [1, p. 60].

He called them respectively intralingual translation or rewording, interlingual translation or

translation proper, and intersemiotic translation or transmutation. The intersemiotic translation

does not involve merely different languages, but it is the interpretation of a sign part of a semiotic

system with another sign part of a different semiotic system. More precisely, intersemiotic

translation is generally understood to mean the transfer of verbal texts into other systems of

signification, such as visual, oral, gestural. The definition proposed by Jakobson is clear and

schematic, but it also oversimplifies the mechanism that leads to the final product of the

intersemiotic translation. There is rarely a direct relation “sign to sign” from a code to another

code. In fact, the source sign and the target sign belong respectively to extremely different

semiotic systems, making the task uneasy for the intersemiotic translator to find strategies that

preserve the most relevant part of the original meaning. The impossibility to cross a linear path

while performing a translation is verifiable, even interpreting different natural languages or

dialects, notwithstanding their structural similarities
1
. The translation of a normative meaning

expressed in a natural language into a bitcode is an effective and exemplifying way to illustrate

1
 E.g., the hypothesis in modern linguistics of the existence of a certain set of structural rules that are innate

to humans and independent of sensory experience [2].

http://www.airccse.org/journal/ijwest/vol13.html
https://doi.org/10.5121/ijwest.2022.13101

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

2

the mechanism of intersemiotic translation because it highlights the needs to diverge from a

unique set of encoding algorithms, i.e., the requirement of a bridge language, in our case a “High-

Level” Programming Language. A High-Level PL allows to convey the concept from natural

language to a human like representation with a sufficient abstraction from the details of the

computer hardware (from which the adjective high-level), allowing to cross the pure semantical

translation. Programming languages can explicitly represent deontic modalities (for example,

prohibition and obligation through state machines).

The transposition of numerous social and legal events in the IT field has made it necessary to

focus on the correspondence between what happens in the legal field and what can happen in the

digital world. Can a social reality be digitized without taking into account some essential

characteristics? Legally relevant forms of interaction, such as digital contracts and smart

contracts, are already taking place. For this reason, it is important to analyze the different

translation techniques into a programming language that considers the categories (such as

constitutive and regulative rules) identified by the social ontology. As far as we studied, however,

among the many examples of inter-semiotic translation examined by semiotics and linguistics

scholars, PL is rarely mentioned in the translation of natural languages into machine languages.

For the aims of the philosophy of normative language, a fascinating element of the translation of

a deontic proposition expressed in natural language into a programming language consists in the

fact that the programming language is essentially normative. Normally, the main purpose of the

programming language is not to let people know but to get things done. Programming language

has not a descriptive function but a regulative and constitutive function. The paper will focus on

the feasibility of intersemiotic translation between normative language and digital language. To

do that, we will study how to code a set of rules through a programming language. We will show

several case studies and perform some experiments exploiting both the game of chess which is a

phenomenon deeply analyzed both in computer science and in the philosophy of normative

language
2
 and DomoBuilder [3], an Internet of Things (IoT) system devoted to building complex

home domotics environments combining simple physical devices and intuitive sets of rules. The

paper is organized as follows: Section 2 will illustrate the reasons for choosing the bridge

language and tools to analyze and show how to code norms, section 3 will explore the process to

translate regulative and constitutive rules. Finally, section 4 will draw the conclusions.

2. PROGRAMMING LANGUAGES AS TOOLS FOR CODING NORMS

Programming languages (PL) are a subclass of formal languages comprising a set of instructions

used in computer programming to implement algorithms, i.e., to elaborate information (e.g., input

data) and produce output (e.g., analysis data, new information, and/or perform a task). PL can be

categorized in several ways that set side by side their different strategies for implementing

algorithms, as for instance, low-level languages that bind the developer to write code that

matches the internal representation of the machine architecture, and high-level languages that

allow expressing the code through a more abstract and human-like representation of the

algorithm. Another classification compares declarative programming languages and imperative

programming languages
3
.

This classification shows how computer scientists and software engineers tend to add more layers

of semantic abstraction to write more readable and maintainable code, thus releasing the

developers from specifying how the program should achieve the result. In fact, Imperative

2
The rules of chess are among the most exploited examples of constitutive rules.

3
 Please note that these two definitions carry an intrinsically different meaning from the one used in the

investigation on normative language.

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

3

Programming Languages focus on the use of imperative utterances to change a program‟s state

and describe how it operates in a way similar to the expression of commands in natural language.

At the same time, Declarative Programming Languages allows the developer to describe what the

program should accomplish, focusing on its target [4]. We will explore in this context the

imperative paradigm because it is particularly popular and mirrors the hardware implementation

of almost all computers. Among the imperative languages sub-classes, the Object-Oriented

Programming Language (OOP) gained rapid growth in the ‟80s [5], its concept built on “objects”

abstracted through “classes”, (a) provide natural support for software modelling of real-world

objects or the abstract model to be reproduced; (b) allows easier maintenance of large projects;

(c) grants more organized code in the form of classes and concepts, favouring modularity and

code reuse. Within this paper, we will exploit Java, a general-purpose OOP language designed to

have as few hardware implementation dependencies as possible [6]. In Java, we will analyze the

path to set a norm through a programming language and check if the logical structure of the norm

affects the programming code.

3. REGULATIVE RULES VS CONSTITUTIVE RULES

John Searle [7] points out that not every rule has the same logical structure and draws the famous

distinction between regulative and constitutive rules.

According to Searle, regulative rules “regulate antecedently or independently existing forms of

behaviour; for example, many rules of etiquette regulate interpersonal relationships which exist

independently of the rules” [7, p. 34]. There is not any ontological relation between the rule and

the form of behaviour that the rule regulates. The regulative rule has no impact on the concept of

what it regulates or its individual instances. Are examples of regulative rules:

(i) “It is prohibited to smoke.”
(ii) “It is obligatory to wear a mask.”
(iii) “It is prohibited to walk on the grass.”

Usually, regulative rules establish implicitly or explicitly when they are binding. Regulative rules

characteristically have the form or can be comfortably paraphrased in the form “Do X” or “If Y

do X”.

So it is possible to make the mentioned rules explicit as follows:

(i) “If you are in a public library, don‟t smoke.”
(ii) “If you are in the park, do not walk on the grass.”
(iii) “If you are in a public space, wear a mask.”

Indeed, wearing a mask is a brute fact, such as walking, eating, swimming, turning on the light.

(Regulative) rules can regulate all these behaviours; however, their existence is independent of

the existence of any rule, and they cannot be valid or invalid.

According to Searle, unlike regulative rules, “Constitutive rules do not merely regulate, they

create or define new forms of behaviour” [7]. Constitutive rules establish a relationship with what

they regulate that is different from the relation between regulative rule and regulated behavior.

There is an ontological connection between the constitutive rule and what the rule regulates.

In the following paragraphs, we will try to check how to translate regulative rules and

constitutive rules in Java. To better understand these aspects, we will also exploit DomoBuilder,

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

4

an Internet of Things (IoT) system devoted to building complex home domotics environments

that allow depicting an operative environment composed of real entities: objects (devices) and

actors (users). Every object is a “device” that only needs to describe itself within the environment

through the PME paradigm. It shares, in fact, a set of (P) properties deemed relevant for the users,

(M) methods allowing to change the state of its properties or perform tasks, and (E) events

allowing the system to be asynchronously informed about occurring changes of states. Let us

consider a trivial, though clarifying, example to highlight this concept: A light bulb.

public class LightBulb extends Device { (i)

public LightBulb() throws DeviceException {

set("description", "This is a lamp,

it can be switched on or off"); (ii)

putProperty(new DeviceProperty("state", (iii)

"Shows the status of the Light Bulb",

String.class.getName(),

"on|off", "off"));

putMethod(new DeviceMethod("set",

"Set the status of the LightBulb, i.e., (ON|OFF)",

String.class.getName(), "ON|OFF")); (iv)

[...]

@Override

public void onMethod(String name, String value) {

[...] (v)

This is all we need to know to describe and make available a new device. Let‟s explain what is

happening.

(i) LightBulb inherits all the properties and constraints of a generic DomoBuilder device.

According to the OOP paradigm of Inheritance, the LightBulb will derive most of its

features “extending” the generic DomoBuilder Device (e.g., the capability to describe

itself).

(ii) We set a property of the LightBulb common to all devices: the description. This will

make the description of its features available to the users or other devices.

(iii) We create a new property for light bulbs; in this case, we can‟t directly access it like the

description already described for any generic device; we need first to define it. We make

explicit its type and the allowed values.

(iv) In a similar fashion, we create a new method, an action that the device can execute. In

this case, the LightBulb can turn on the light. This is done according to the encapsulation

and obfuscation paradigms of OOP, i.e., to conceal the mechanism of the internal code.

(v) Here the developers implement the internals of the methods. In this case, an utterance

will simply be sent by serial communication through a relays system to an electrical

switch.

The ability to mash up heterogeneous devices and combine their functionalities gives rise to

complex systems enriching them with new powerful features and, eventually, brand new

components underlying new concepts. This is possible through an additional constituent of the

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

5

paradigm: (R) rules. Rules allow encoding high-level behaviours with trivial devices, allowing

complex interactions between components and users.

In the next paragraph, we will show how simple it is to model such an architectural paradigm

given a PME(R) substrate.

3.1. Programming/Translating a Regulative Rule

A machine can operate in a non-digital environment and control other technological devices to

fulfil regulative rules. This is possible if the programmer sets the machine to make possible the

perception of the external environment and the other devices. To do so, the programmer has to

create new classes of objects through a schema very similar to Searle‟s formal description of

constitutive rules. According to Searle, constitutive rules can be formalized as follows,

X counts as Y in the context C

Where X is a brute fact, and Y is an institutional fact. However, a programmer who has to teach a

machine to follow the rules in a non-digital environment must create digital (symbolic) classes

that correspond to the material objects that the machine has to control (e.g. a lamp, an alarm

clock, a washing machine).

In this sense, the programmer follows a schema that can be described as the reverse of the

formula of constitutive rules. Where X is a digital object, Y is a material object with specific

functions, and C is a software development context.

According to Searle, “regulative rules characteristically have the form or can be comfortably

paraphrased in the form “Do X” or “If Y do X” [7, p. 34].

Regulative rules aim to be fulfilled, so they are addressed to a subject or a more or less wide class

of subjects. Regulative rules can be addressed to machines, and, following the form “if Y do X,”

it is possible to ask a machine to perform an action that exists independently from me and from

the machine, such as “if (conditions) then turn on the light”. Where “turning the light on or off” is

an action that preexists logically and chronologically this rule.

Let‟s exemplify this regulative rule inside a software development context. A user desires the

light to turn on when s/he‟s entering a room. This rule is hard-coded inside the platform, i.e., in a

meta-programming language fashion:

If a user enters the room, then turn on the light!

In Java language, we need to codify the meaning of “entering a room” given a sensor (e.g., a

webcam installed in the room) and code the action of triggering a light switch. The

implementation could be written as follows:

while (true) {

if (webcam.movement_detected) {

light_switch.turn_on(); } }

Where webcam and light switch are object instances of their corresponding classes, i.e., a

representation of real devices, the code is encapsulated in an infinite control loop (while(true)).

Nevertheless, in a real implementation context, an event-driven paradigm (asynchronous) is

preferred to this strategy (synchronous). This is possible by subscribing the light switch to the

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

6

event caused by the movement detection (i.e., its change of state), acting consequently by

triggering an action, therefore relieving the processor from a continuous and computationally

onerous check.

This is the reason why DomoBuilder implements a PME(R) paradigm. As we have seen, the

Light Bulb shown above is a particularly simple device, it trivially exports its property of being

on or off, and its events will be triggered correspondingly after the transition of its state from on

to off and vice versa. Note that the method set we defined allows us to let users or other entities

(objects, devices) in the system to toggle its state.

Similarly, for the webcam, we will have a few properties. The webcam will internally collect

images corresponding to what happens in the environment. An internal algorithm will set to true

the property indicating that someone is in the room (i.e., trivial algorithms of movement detection

will update its properties as needed and triggering the corresponding events).

Public MovementDetector() throws DeviceException {

set("description", "Checks if is there anybody

out there");

putProperty(new DeviceProperty("movement",

"Asserts if there is movement",

boolean.class.getName(), "true|false", "false"));

putProperty(new DeviceProperty("presence",

"Asserts whether somebody has been

in this room recently",

boolean.class.getName(), "true|false", "false"));

Note that implementation internals are not discussed in this context, but the philosophy of

DomoBuilder is to make available very simple devices that implement very simple tasks so that

under the hood, there are often very few lines of code. The system complexity rises from rules

that combine behaviors.

The code to detect the movement is very simple; in fact, it just checks the camera input frame by

frame, detecting differences among them and updating the status of the device if a sensibility

threshold is passed.

It is possible to code a rule inside a machine establishing that at certain environmental conditions

(e.g., the presence movement), the machine will perform an action (turning the light on or off)

that is possible independently from any (social) regulation. In this sense, the act of turning on the

light is different in kind from the act of moving the bishop during a chess game. Thanks to its

architecture, DomoBuilder allows us to build a regulatory rule in a declarative form, further

abstracting the imperativeness of the Java language on which it is implemented. The rule can be

defined as follows:

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

7

<rule>

<id>Automatic Light Example</id>

<conditions>Webcam.movement_detected==true</conditions>

<action>Light_Switch.toggle(ON)</action>

</rule>

Which expresses very clearly what is the outcome we expect from the user‟s interactions with the

home environment
4
. Here it is clear how the presence of events that allow the asynchronous

handling of data alerting the system when a change has occurred mirror the concept of logic of

change [8].

During the Covid pandemic in 2020, many new regulative rules have been created, and many

existing ones have been strengthened or modified
5
. The most consequences concerned online

gaming, which has dramatically risen in popularity, leading to the need for increasing controls to

maintain healthy and fairly competitive Internet chess online platforms. For example, improving

the Artificial Intelligence (AI) of the bots (software applications that run automated tasks over the

Internet) that automatically check the fairness of the players based on the deviation from their

usual game style.

It is, in fact, possible to program a machine to strengthen or check if people follow regulative

rules. For instance, let‟s think about the regulative rule “you must wear a mask”. A video-scanner

can notice if I wear a mask (to protect me and others from COVID19), and If I don‟t, it can

remind me of my obligation, or lock the door until I wear it, or even call the security service. Or

also, for the same aim, a scanner can check people‟s temperature to prevent their access if it is

outside the accepted range.

In DomoBuilder we would code the rule as follows:

<rule>

<id>Covid Security Door Locking</id>

<conditions>Webcam.movement_detected==true

AND Webcam.face_withmask_detected==true

AND Clock.time > 0800, < 1800 (working time)

</conditions>

<action>Door.toggle_lock(OFF)</action>

</rule>

In this case, a rule is composed of a set of conditions that must be simultaneously fulfilled in

order to unlock the door.

4
Note that further conditions and temporal constraints can be implemented in the same rule.

5
 For example, during the Tata Steel Chess Tournament in 2021 a new rule allowed the organizers to

change the logistics of the game tables, in some cases raising a huge controversy in some really critical

game moments. See the Firouzja Controversy.

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

8

3.2. Programming/Translating a Constitutive Rule

Constitutive rules are different in kind from regulative rules because whereas regulative rules

regulate preexisting behaviour, constitutive rules create what they regulate
6
. A typical example of

constitutive rules in the game of chess is:

“The chessboard is composed of an 8 x 8 grid of 64 equal squares alternately light (the `white‟

squares) and dark (the „black‟ squares).”
7

In Java, we could code the chessboard as a matrix:

String[][] board = new String[8][8];

In this case, we represented each tile of the chessboard with an Integer Number (an integer

number will, e.g., represent if a tile is occupied and by which piece), each piece may be placed

only within the 8x8 grid corresponding to the instantiated matrix (an array of arrays).

Keeping in mind that chess coordinates are expressed as 0-based integers (i.e., a..h 0..7, and

1..80..7) let us implement the function that asserts whether a tile is white or not. In natural

language, we have asserted that the tiles are alternately light and dark, but the concept of

alternative must be made explicit to a machine through an unambiguous algorithm. One way to

implement such a trivial algorithm is to check each tile through a hand-compiled list of dark

boxes:

If ((x==0 && y==0) || (x==0 && y==2) || (x==0 && y==4)...

|| ((x==1) && (y==1)) || ... (and so on for every tile)

return true; else return false;

However, this solution is extremely verbose, computationally inefficient, and not scalable (if the

size of the board changes, the list must be re-edited by hand).

In the same way, I would not create an algorithm to sum two numbers by writing a list of all

infinite possible sums. So we resort to stratagems (the above-mentioned bridge), in this case, by

simply writing:

Boolean is Dark(int x, int y){

return (x+y)%2==0; }

This function, not immediately intuitive, translates the constraints asserting that if the sum of the

coordinates passed to the function (integers x and y) is even, a dark square occupies those

coordinates on the grid. The concept of even is expressed as “the remainder of the division by 2

(indicated with the operator module “%”) of the sum of the coordinates is equal (“==” operator is

an equality check) to 0”. Let‟s try, for example, to check the e4 square of the chessboard: e4 is

Dark? Translates to: is Dark(4,3); which will be computed because7 is odd, as 7%2==1, so that

the function returns false. Therefore, e4 is not a dark but a light tile.

6
 According to A.G. Conte [9] there are different kinds of constitutive rules. In fact, a constitutive rule can

be a condition for the existence of what it regulates (e.g. the rules of chess) or can establish conditions for

the validity of what it regulates (e.g. the signature of a contract or of a will). In this paper, we will focus on

the rules that are a condition of the existence of what they regulate.
7 Article 2.1. Laws of Chess.

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

9

As you can see, in order to translate in code a constitutive rule, we were forced to find an

alternative way to represent the rule, still in near natural language but subject to the constraints of

semantic correctness and computational efficiency.

From a semiotic point of view, these rules build the meaning of the specific term. For instance, an

example of a constitutive rule is the following:

“A bishop moves any number of vacant squares diagonally as many open
squares as you like. The Bishop must remain on the same color square as

it started the game on.”

We cannot say “this is a bishop, and it (may) move(s) diagonally” because there is no bishop

before the “moves diagonally” rule.

Here also, the programmer could list the possible combinations of the moves of the chess pieces

on the chessboard, but this would make the software particularly inefficient. The programmer

must take into account one of the most important characteristics of the eidetic constitutive rules:

the eidetic constitutive rules can not be violated. If one does not act in accordance with the

constitutive rules, one can perform an act, even one with meaning, but it is in any case different

from the activity whose concept is constituted by the rules
8
.

From a software point of view, a way to obligate this behaviour is to check the old and the new

position of the instance of a bishop on the chessboard, i.e., given a 8x8 chessboard represented

with the same matrix we used earlier, we can implement the check of a legal bishop move as

follows:

if ((math.abs(bishop.old_y - bishop.new_y)) !=

(math.abs(bishop.old_x - bishop.new_x)))

throw new InvalidPositionException();

Where math.abs(...) is a call to a math library function that returns the absolute value of the

arguments passed inside the parenthesis, and the != operator means “is different from”. In fact, if

the absolute differences (unsigned) of the x and y coordinates of the previous and current

positions are not equals, the bishop didn‟t move diagonally. So an exception must be thrown, or,

as usually happens in a software chessboard, the move is not allowed at all
9
, which is translated

in the interface as the impossibility to move the bishop on that target tile. This rule is part of the

definition of the object called bishop.

Without this rule, the bishop would be unthinkable as bishop, and it would not be a bishop.

In addition to this, in programming languages such as Java, the creation of objects

corresponding to instantiating a class, is logically analogous to a constitutive eidetic rule. This is

a kind of rule that can not be violated. It would “not compile”, i.e., the program could not be

8
In the final chapter of the novel, “The Man Who Watched the Trains Go By” Georges Simenon describes

an interesting exemplification of what this means. The protagonist of the novel, Popinga, is finally defeated

and put in a mental institution. During a game of chess in the asylum garden, he takes the queen off the

board and drops it into a cup of coffee. This episode is mentioned by the narrator to show Popinga insanity,

since he is not making just an odd violation of a rule, he is out of the game like he is out of the society, he

stopped playing chess when he made an impossible move (dropping the queen in a cup is, in fact, not a

legal move).
9
Please note that for sake of simplicity checks about the chessboard boundaries or blocking pieces on the

bishop trajectory are omitted in this example.

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

10

translated into bitcode. It is quite evident in online chess that I can move the bishop only in

accordance with the constitutive rule. If you “do not follow” these rules in a physical chessboard

and move random chess pieces, you are not violating any rule; you are simply “not playing

chess”.

It is interesting to note that in an online game web platform, constitutive rules are usually

implemented server side i.e., the backend implements the logic which will be made accessible via

an Application Programming Interface (API) for display on any device that implements the

interface (frontend).

Given their structure, digital systems allow the creation of constitutive rules from scratch in a

very simple way. For example, many chess platforms provide small variations on conventional

rules, creating new game scenarios such as the Fischer random chess, also known as Chess960,

the Atomic Chess, the King Race, and so on. This happens in DomoBuilder too, where the

programmer not only sets instructions to the machine but also creates new simplified semantic

entities in order to produce a representation of the world understandable to the machine that has a

logical form extremely similar to the one proposed by Searle for constitutive rules. Starting from

these new semantic entities, a new set of regulative rules allows to obtain a new application

behaviour given the same components.

4. CONCLUSIONS

To date, some programming languages that translate normative utterances (such as contractual

clauses) are developed to produce immediate legal effects (e.g., a money transfer in a smart

contract) and did not distinguish between violable regulative and inviolable constitutive rules.

However, this distinction is part of the social reality.

We tried to outline the limits and potential of this approach, starting from extremely simple

examples that are not strictly legal, but which take account of the typological diversity that exists

between the norms. It will be desirable to verify the applicability of such strategies to the legal

field in the future.

Norms can be expressed both in natural language and formal language. One of the debated

problems in deontics consists in finding a semantic that combines constitutive rules and

regulative rules. In this paper, we focused on a subclass of formal language, programming

language showing that in imperative OOP programming languages, it is possible to translate both

constitutive rules and regulative rules. Moreover, the combination between constitutive rules and

regulative rules is not only possible, but it is sometimes the optimal solution to implement a

system. Likely, an inflexible prescriptivist, a person that thinks that rules are only regulative and

there is nothing in the world such as constitutive rules, would be a bad programmer. The activity

of a programmer is mainly focused on rules. The programmer is indeed an emblematic example

of a subject that creates to rule [10] precisely, she/he often creates new forms of action through

constitutive rules. The programmer not only sets instructions to the machine but also creates a

representation of the world understandable to the machine. To do so, he creates new simplified

semantic entities that have a logical form extremely similar to the one proposed by Searle for

constitutive rules. However, these rules operate on reality in different ways. These rules

sometimes have a direct impact on an existing behaviour, but they are often a precondition for the

existence of that behaviour, i.e., they establish a condition that the user or the programmer has to

satisfy in order to validly perform an action. It is indeed possible to conceive a more articulate

typology of (constitutive) rules, and in this sense, some interesting attempts have been made

([11];[12]; [13]; [14]; [15]). A future challenge for this research is to distinguish different forms

International Journal of Web & Semantic Technology (IJWesT) Vol.13, No.1, January 2022

11

of constitutive rules and different strategies of translation. Clearly, the programmer deals with

rules that mainly regulate the interaction between man and machine. However, when they are

used to creating a digital social environment (e.g., a digital platform where different subjects who

are recognized by the machine as belonging to different classes interact), then their social

relevance becomes evident.

ACKNOWLEDGEMENTS

This research is part of the project “Legal Acts, Images, Institutions: The Form of the Legal Act

in the Era of Legal Design”, funded by Fondazione Sardegna in 2019.

REFERENCES

[1] Jakobson, R. (1971), “On linguistic aspects of translation”, in: Selected Writings, Mouton, New York.
[2] Cook, V. and M. Newson (1996), “Chomsky‟s universal grammar: an introduction,” Blackwell

Publishers, Oxford, OX, 2nd [updated] edition.
[3] Addis, A. and G. Armano (2010), “Domobuilder: A multiagent architecture for home automation,” in:

A. Omicini and M. Viroli, eds., Proceedings of the 11th WOA 2010 Workshop,

Daglioggettiagliagenti, Rimini, Italy, September 5-7, 2010, CEUR Workshop Proceedings 621, pp.

1–2.
[4] Sebesta, R.W. (2016), “Concepts of programming languages,” Pearson, Boston, eleventh edition.
[5] Black, A. P. (2013), “Object-oriented programming: Some history, and challenges for the next fifty

years,” Information and Computation 231, pp. 3–20.
[6] Arnold, K., J. Gosling and D. Holmes (2005), “The Java programming language,” Addison Wesley

Professional.
[7] Searle, J.R. (1969), “Speech Acts: An Essay in the Philosophy of Language,” Oxford University

Press, Oxford.
[8] Wright von, G. H. (1963), “Norm and Action,” The Humanities Press, New York.
[9] Weinberger, O. (1970), “Die Norm als Gedanke und Realität,” Österreichische Zeitschrift für

öffentliches Rechtes 20, pp. 203–216.
[10] Zelaniec, W. (2013), Create to rule: studies on constitutive rules, LED, Milano.
[11] Conte, AG (1986), “Fenomeni di fenomeni,” Rivista internazionale di Filosofia del diritto 63, pp. 29–

57.
[12] Azzoni, G. M. (1988), “Il concetto di condizione nella tipologia delle regole,” CEDAM, Padova.
[13] Conte Conte, A. G., “Regole eidetico costitutive e regole anankastico costitutive,” in: G. Lorini and L.

Passerini Glazel. Lorenzo, eds, Filosofie della norma, Giappichelli, Turin, 2012 pp. 107–117.
[14] Lorini, G.(2017), Anankastico in deontica, LED, Milano.
[15] Sun, X. and L. van der Torre (2014), “Combining constitutive and regulative norms in input/output

logic,” in: F. Cariani, D. Grossi, J. Meheus and X. Parent, eds., Deontic Logic and Normative

Systems, Springer, New York, pp. 241–257.

AUTHORS

Andrea Addis Founder, Senior Developer in Infora: a ICT startup with experience in

research and innovation. Former researcher of the University of Cagliari. Research

interests: Information Retrieval, Text Categorization, Multi Agent Systems

Olimpia G. Loddo is a post-doc fellow at the Department of Law, University of Cagliari.

Her main topic is intersemiotic legal translation. She has been working on the normative

language, phenomenology of law

