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ART-SLAM: Accurate Real-Time
6DoF LiDAR SLAM

Matteo Frosi!, Matteo Matteucci? Member, IEEE

Abstract—Real-time six degrees-of-freedom pose estimation
with ground vehicles represents a relevant and well-studied topic
in robotics due to its many applications such as autonomous
driving and 3D mapping. Although some systems already exist,
they are either not accurate or they struggle in real-time settings.
In this paper, we propose a fast, accurate and modular LiDAR
SLAM system for both batch and online estimation. We first
apply downsampling and outlier removal, to filter out noise and
reduce the size of the input point clouds. Filtered clouds are then
used for pose tracking, possibly aided by a pre-tracking module,
and floor detection, to ground optimize the estimated trajectory.
Efficient multi-steps loop closure and pose optimization, achieved
through a g2o0 pose graph, are the last steps of the proposed
SLAM pipeline. We compare the performance of our system
with state-of-the-art point cloud-based methods, LOAM, LeGO-
LOAM, A-LOAM, LeGO-LOAM-BOR, LIO-SAM and HDL, and
show that the proposed system achieves equal or better accuracy
and can easily handle even cases without loops. The comparison is
done evaluating the estimated trajectory displacement using the
KITTI (urban driving) and Chilean (underground mine) datasets.

Index Terms—SLAM, Range Sensing, Localization, Mapping.

I. INTRODUCTION

RAJECTORY estimation and map building represent

core aspects of many applications in robotics, such as
autonomous driving. A great amount of simultaneous localiza-
tion and mapping (SLAM) systems with 6 degrees-of-freedom
(6 DoF) have been proposed in literature in the last decades,
with the goal of estimating accurate trajectories with real-
time performance. These methods can be grouped in two
main categories, vision-based and point cloud-based systems,
depending on the main sensor used.

Point cloud-based systems, can capture and represent the
environment with a high level of detail, due to the density
of the clouds, and they are not afflicted by the issues of
vision-based methods, such as illumination and viewpoint
changes. Moreover, tracking performed with point clouds is
more accurate and stable than its visual counterpart, and it is
generally preferred when LiDAR data is available. However,
achieving real-time performance, while keeping high accuracy,
still remains an open quest in point cloud-based systems.
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The most critical aspect which hinders real-time point cloud
SLAM is the alignment of LiDAR scans. During the last
decades, many algorithms have been created to find the relative
motion between two point clouds, operation also known as
scan matching. The most used and known methods to perform
scan matching are Iterative Closest Point (ICP) [1] and its
many variants. The idea behind these algorithms is to align
two point clouds iteratively, until convergence or a stopping
criterion is satisfied. Although ICP suffers from high com-
putational cost, Generalized ICP [2] and more recent parallel
versions (e.g., VGICP [3]) are faster and more accurate, and
can be used as alternatives to the original algorithm.

To overcome the computational shortcomings of full point
clouds scan matching, feature-based approaches have been
proposed. These methods work similarly to standard scan
matching, but require fewer resources. They achieve this by
extracting 3D features from the clouds, such as edges or
planes, and then match them. A low-drift and real-time LiDAR
odometry and mapping (LOAM) method is proposed in [4].
LOAM performs 3D point feature to edge, and plane, scan
matching to find correspondences between point clouds. The
performance of LOAM deteriorates when resources are limited
and no loop closure is performed, leading to large estimation
errors, as we show in Section III. Improving LOAM, LeGO-
LOAM [5] has been proposed, being a lightweight real-
time pose estimation and mapping system, composed by five
modules: segmentation, feature extraction, LiDAR odome-
try, LiDAR mapping and transform integration. Speedup is
achieved by filtering the input clouds through image-based
segmentation, performed on the 2D range projection of each
scan. More recent variants of LOAM and LeGO-LOAM have
been proposed, optimizing it, namely A-LOAM and LeGO-
LOAM-BOR, respectively. Another improved system, w.r.t.
LOAM, is LIO-SAM [6], which couples mandatory IMU
data and the registration method of LOAM, achieving better
performance than the other systems.

Feature-based systems are, in general, less accurate than
methods which perform scan matching on whole clouds.
For this reason, loop closure and trajectory optimization are
mandatory steps in their pipeline. These tasks can easily
become computationally demanding as the size of a trajectory
increases. To overcome this problem, graph SLAM systems
have been proposed, such as [7] and [8], where the trajectory
of the robot, estimated via scan matching, is modeled as a
graph. There are multiple advantages of this approach, as de-
scribed by Grisetti et. al. in [9], such as the ability to introduce
relationships between sensor data and/or observations from the
environment, or a great availability of frameworks for efficient
graph optimization, which translates in the optimization of the
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corresponding trajectory.

A recent point cloud-based system that relies on a graph
structure is HDL [10], which consists of four steps. First, laser
scans are pre-processed and filtered to reduce their size. Then,
the filtered clouds are used to simultaneously perform tracking
and to possibly detect the ground plane. Poses estimated
through tracking, and floor coefficients extracted from the
point clouds, are used to build a graph of the trajectory, i.e.,
a pose graph, which is later optimized. The system achieves
superior performance, but it is slow, especially when dealing
with large point clouds (e.g., more than 100K points).

All algorithms available in literature, being based on feature
matching or full scan matching, either achieve high accuracy
at the cost of computational time, or sacrifice the quality
of the trajectory to obtain real-time performance. Moreover,
these systems are monolithic and difficult to modify and adapt,
and they are usually bound to some existing framework (e.g.,
ROS [11]), often hindering portability on different operating
systems and integrability with other software. Nevertheless,
full point cloud systems are preferable, as the maps (or
submaps) created can be used to efficiently obtain accurate 3D
reconstructions of the environment, as described in [12], useful
for many applications, such as autonomous driving, virtual
reality and augmented reality.

For these reasons, in this paper we propose a new system,
ART-SLAM, to perform point cloud-based graph SLAM, in-
spired by HDL, with multiple contributions. ART-SLAM is
able to achieve real-time performance, retaining high accuracy,
even in scenarios without loops. The proposed system is also
able to efficiently detect and close loops in the trajectory, using
a three-phased algorithm. ART-SLAM presents a high degree
of modularity, due to its architecture, described in Section II,
and can be easily integrated and improved, being also a
zero-copy software. Additionally, it is not ROS-dependent,
although a wrapper for integration with ROS is also provided.
ART-SLAM is available open source at https://github.com/
MatteoF94/ARTSLAM.

II. ART-SLAM
A. System overview

An overview of the proposed framework is represented in
Fig. 1. The system is composed by multiple distinct mod-
ules, which can be grouped into two main blocks. The first,
mandatory (colored in gray), is the core of ART-SLAM, and
it is formed by all the modules that perform SLAM on the
input point clouds (orange, in figure). The other blocks of
the proposed framework are optional, as they can be used to
integrate the main system with data coming from different
sensors or with pre-processed inputs.

Given an incoming laser scan, the first step is to process
it, in the pre-filterer, to reduce its size and remove noisy
points. The filtered cloud is then sent simultaneously to two
modules. The most important one, the tracker, estimates the
current displacement of the robot by performing scan-to-
scan matching with previous filtered scans. The other, floor
detector, finds the robot pose w.r.t. the ground, adding height
and rotational consistency to the trajectory. The current pose
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Fig. 1. Architecture of the proposed system, ART-SLAM. Core modules are
the mandatory blocks of the pipeline, used to estimate an accurate trajectory
and to build a 3D map of the environment, given a sequence of input point
clouds.

estimate is sent, along with its corresponding point cloud, to
the loop detector module, which tries to find loops between
new and previous point clouds, again performing scan-to-
scan matching. Moreover, poses, loops, and floor coefficients
(estimated by the floor detector module) are used to build the
pose graph, representing the trajectory of the robot. Lastly, the
pose graph is optimized to increase the poses accuracy.

IMU and GPS data (pink in Fig. 1) can be integrated in
the pose graph builder module, to increase the accuracy of
the estimated trajectory. IMU data can also be used in the
pre-filterer to de-skew point clouds. Moreover, pre-computed
odometry (e.g., through a different sensor or system) can be
fed to the tracker as initial guess for the scan matching. The
pre-tracker module (green in Fig. 1) performs multi-level scan-
to-scan matching, to quickly obtain a rough estimate of the
motion of the robot, before the tracking step: this estimate is
broadcasted to the tracker, as initial guess of the scan-to-scan
matching, to boost the performance of the module.

Differently from the majority of systems available in lit-
erature, our proposed framework is fully modular and its
components work independently one from another. This is
possible thanks to the register and dispatch technique used
to create the system, leading to the creation of modules
formed by the following elements. Observers allow a module
to capture data as soon as it is available, independently of the
type, which is then put into one or multiple dispatch queues,
i.e., FIFO structures with the purpose of avoiding the loss of
incoming data. The core of a module is its main characteristic:
it elaborates one datum per queue at a time, extracting it from
the relative dispatch queue. As soon as the core finishes its
task, it gives the byproducts of the module to the notifier,
which broadcasts them to the modules in need.

There are three main advantages of using this architecture.
First, input data, for each module, is safely stored for later
usage, independently from its processing rate, meaning that it
cannot be lost. Then, new modules can be easily integrated in
the system, being only dependent on the type of data needed.
Lastly, the same core task can be performed in parallel, on
multiple threads, if it does not require temporal coherence.
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B. Pre-filterer

The pre-filterer module has the purpose of reducing the size
of the input point cloud and to remove noise and outliers. Data
reduction, or downsampling, is essential because, as stated
in the introduction, scan matching on full point clouds can
become computationally demanding if the size of the cloud
is large enough. Downsampling can reduce point clouds by a
factor 5, or even more, if needed, while retaining the spatial
structure and density of the initial scan.

The clouds are then filtered to remove outliers and noise
points. This operation is more costly w.r.t. the downsampling
task. To improve performance w.r.t. HDL [10], we split the
cloud into four pairs of octants and perform filtering on each
separately, in parallel, obtaining a speedup linear with the
number of threads used (up to more than 50%). After that,
all the smaller clouds are combined to form a larger, filtered
point cloud, ready to be broadcasted to other modules.

C. Tracker

Short term data association, also known as pose tracking,
establishes the motion between consecutive poses. The tracker
adopts a keyframe-based approach to estimate the trajectory
of the robot, performing scan-to-scan matching, using state-
of-the-art algorithms (e.g., ICP [1], GICP [2], VGICP [3] and
NDT [13]), depending on the user choice and the type of
environment the robot is navigating.

Keyframes are data structures describing the motion of the
robot in selected locations of its trajectory. They are repre-
sented by multiple variables, used to collect data associated to
the various poses. In ART-SLAM, each keyframe contains a
point cloud and the pose (odometry) estimated by the tracker,
data which is also used for loop closure detection, pose
graph construction and map creation. Other useful information
contained in a keyframe are the timestamp associated to the
point cloud, the estimated accumulated distance from the
beginning of the trajectory and, if available, acceleration and
orientation coming from other sensors.

To reduce the computational resources needed to efficiently
perform SLAM, not all the filtered point clouds in input to
the tracker become keyframes. Except for the first keyframe,
which corresponds to the first point cloud received by the
system, other keyframes must satisfy at least one of the
following criteria:

« Be distant from the previous keyframe of a user-defined

translation Atrans, in meters

« Be rotated from the previous keyframe of a user-defined

angle Aorientation, in radians

« Have a difference in timestamps of a user-defined interval

AT, in seconds

The thresholds Atrans, Aorientation and AT depend on
the dataset considered (e.g., length, type or complexity) and
the type of trajectory to be estimated, and should be tuned
accordingly to obtain a reasonable number of keyframes, as
too few would decrease the accuracy of the SLAM system, and
too many would degrade its performance. In indoor scenes, for
example, Atrans could be set to 0.2 meters, while in large
scale urban environments Atrans > 5 meters.

Given the cloud corresponding to the current keyframe K,
and the available new filtered point cloud in input c;, scan-
to-scan matching is performed between them, to find their
relative motion. The algorithm requires an initial guess, to
boost performance and accuracy, which can be chosen in two
ways: either it is available through other means (e.g., from
odometry estimated from another sensor), or a constant motion
model is assumed, and the previous relative transformation is
used (the one computed between the point cloud of the current
keyframe K, and the previous filtered point cloud c;_1).

Usually, algorithms for point cloud-based tracking find the
relative motion between consecutive clouds, ¢;_1 and ¢;, and
then compose this transformation with the previous ones, to
estimate the current odometry. This method may seem more
accurate, but it accumulates error the more distant the clouds
are from the current keyframe. In ART-SLAM, instead, the
motion of the robot is always referred w.r.t. the keyframe clos-
est in time, and the previous motion is taken into consideration
only to estimate the guess for scan matching.

This approach, which is unique to ART-SLAM, also allows
the system to skip the whole scan matching procedure if
pre-computed odometry is available. The latter, even if not
completely accurate, allows indeed to immediately check if
the current point cloud is a candidate for the selection of
a new keyframe. If it is not, the tracker does not perform
scan matching, and the relative transformation between the
current keyframe and the pre-computed odometry is saved to
be used as motion guess in the next iteration. Skipping the
scan matching step greatly benefits the performance of the
tracker, while retaining the same accuracy.

Once the tracker has detected a point cloud which satisfies
any of the keyframe creation criteria described previously, a
new keyframe is built and it is broadcasted to the loop closure
detection and pose graph builder modules.

D. Pre-tracker

Aligning two full scale clouds would result in the best
transformation estimate, as all the 3D points are accounted
for. However, this approach is often unsuitable for real-time
applications, especially on low-end devices. For this reason,
scan matching should be aided with a rough initial guess.
The computation of the latter is the purpose of our pre-
tracker module, which performs multi-scale scan matching,
while working in parallel to the pre-filterer.

First, the same point cloud given in input to the pre-
filterer is fed to this module, where it is heavily downsampled.
The reduced point cloud is then used to perform scan-to-
scan matching with a previously downsampled cloud. This
alignment is fast, due to the reduced size of the inputs, even
if not as accurate as if it was done with non-downsampled
clouds. This procedure can be repeated using the same point
clouds, but downsampled at a different scale, lower than the
one used in the first phase. The relative motion resulting from
these steps is broadcasted to the tracker, to be used as initial
guess in the current scan matching, allowing it to possibly skip
the frame and reduce the computational resources needed.
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E. Floor detection

To enforce height and orientation consistency in the tra-
jectory, filtered point clouds are processed to find the ground
plane in them. This can be modeled as a four dimensional
vector GP(a,b, c,d) representing the plane equation a * = +
bxy+cxz+d=0.

Floor detection should handle multiple scenarios, such as
planar or planar-like motion (e.g., urban road), rough terrains
(e.g., rocky paths) and environments with ascents and descents.
While HDL [10] deals only with the planar motion, in ART-
SLAM all scenarios are considered.

In the first case, i.e., planar or planar-like motion, the floor
detector module takes a point cloud and manipulates it in the
following way. As the ground can be found within a small
region of the input scan, the first step performed is clipping the
cloud within an acceptable range of search. This step greatly
reduces the cloud size, boosting performance when searching
for the floor. Then, the clipped output is filtered to eliminate
points whose normal is highly non-vertical. This is done to
avoid mistakes due to planar-like surfaces in the environment,
such as walls. Lastly, Random Sample Consensus (RANSAC)
for plane detection is done on the filtered laser scan, to detect
and estimate the ground plane coefficients.

When dealing with rough terrains, a floor cannot be found
in the previous way, as no planar structures can be detected
with RANSAC. The input scan is further clipped, this time
horizontally: only the 3D points within a threshold distance
from the center of the cloud are kept. This is done to trim
the cloud to be as close as possible to the robot, to remove
outlier objects such as rocks, logs, or anything which is not
planar-like. The few remaining points are then used to perform
closed form plane fitting with the least squares method. If
the parameters {a,b,c,d} are found, they are broadcasted,
together with the timestamp associated to the corresponding
point cloud, to the pose graph builder module.

The last scenario is trickier to identify just by using a point
cloud, as inclined planes are parallel to the robot wheels and
cannot be distinguished from non inclined planes by just using
point clouds for detection. The process of discovering inclined
planes takes place in the pose graph builder module. When a
set of floor coefficients {a, b, ¢, d} is associated to a keyframe,
the builder checks if there is a noticeable change (user-
defined) in vertical orientation w.r.t. the previous keyframe.
If affirmative, it means that there has been a change in slope
in the trajectory of the robot, and an inclined ground plane
has been detected.

F. Loop closure

While moving, the robot may return to a place which was
previously visited, forming a loop in its trajectory. Finding
loops adds motion constraints in the estimated robot poses,
correcting drift and estimation errors. The hard part about
loop closure is not asserting the presence of a loop, which
can be accomplished via simple scan matching, but detecting
when loop closure is even a possibility. To do this, we need
to decide when and where to look. In ART-SLAM, detection

is performed in three consecutive steps, to efficiently search
for loops within the collected keyframes.

First, each time a keyframe Kgyey i available, it is
compared against all previous existing keyframes. Instead
of performing scan-to-scan matching between the possible
pairs {Kgyery, Kcandidate }» an odometry based selection is
performed. If Kgyery and Kcandidate are too close in terms
of trajectory, meaning that they have a low accumulated
distance, they cannot be considered candidates, as it is unlikely
that two keyframes, corresponding to point clouds acquired
shortly one from the other, would result in a useful loop.
Moreover, the loop detector checks if the position, estimated
through tracking, of K qndidate 1S in the neighborhood of the
pose corresponding Kgyery, Within a threshold range, which
accounts for drift errors induced by the tracker module. If
Kguery and Kcgpndidate satisfy these constraints, meaning that
they are sufficiently close in space and far in time, they can
be considered a loop closure candidate pair.

Once all candidate pairs have been found, they must be
further thinned down to avoid unnecessary computation. The
approach proposed in [14] converts point clouds in 2D polar
grids, and efficiently compares them using a KD-tree to select
the & most similar ones to a given point cloud query. The
second phase for efficient loop closure detection in ART-
SLAM adopts this method, by comparing the 2D polar grid
of the point cloud associated to the query keyframe with the
2D polar grids corresponding to the candidate keyframes. At
the end of this step, only k£ candidate pairs for loop closure
remain, ready to be used in the last step.

The few number of candidates allows for scan-to-scan
matching on each pair of point clouds, to obtain a set of
relative motions. All transformations are then compared to
find the best one, i.e., the one with the highest accuracy, and
corresponding to the smallest Euclidean distance between all
the pairs Kgyery and Kcqndidate- If a best match is found, it
means that a new loop has been efficiently detected, and it is
added to the pose graph as a new constraint.

Differently from HDL [10], where only the first and last
steps are performed, in ART-SLAM, the addition of the Scan
Context method allows for scalable and efficient loop closure.
Indeed, as the length of the trajectory to be estimated increases,
the number of pairs to be checked for loop closures also grows
in size, as more and more keyframes are added. The first
two steps are very fast operations, with the former consisting
mainly in a matrix multiplication and the latter being proved
to be scalable [14]. Moreover, the 2D polar grids are pre-
computed when inserting the keyframes in the pose graph,
further decreasing the computation time needed by the loop
closure module. At the end of the second phase, there will
always be at most k£ candidate pairs, independently from
the number of keyframes to check, making this three-phased
approach suitable for efficient loop closure detection.

G. Pose graph building and optimization

As mentioned in the introduction and in the description of
the system, our framework is a form of graph SLAM [9]. In
graph SLAM, the poses of the robot are modeled as nodes in
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TABLE I
PARAMETERS USED FOR THE EXPERIMENTAL VALIDATION, FOR
REPRODUCIBILITY, AS DESCRIBED IN [15].

Module Parameter name Value
Downsample method VOXELGRID
. Downsample resolution 0.25 [m]
pre-filterer Outlier removal method RADIUS
Radius 0.4 [m]
ATrans keyframes 5.0 [m]
tracker AAngle keyframes 0.25 [rad]
ATime keyframes 1.0 [sec]
loop detector Loop closure search radius 35.0 [m]
Loop closure min. distance 25.0 [m]
Registration method FAST_GICP
scan matching Max. iterations 64
Transformation epsilon 0.01

a graph, named pose graph, and labeled with their position
in the environment. The nodes are connected with edges
representing spatial constraints between poses, resulting from
sensor measurements (e.g., IMU or GPS) or scene elements,
as the floor coefficients in our case.

Each node in the pose graph represents a robot position
and at least one measurement (the point cloud is mandatory)
acquired at that position; moreover, each node is associated
to the corresponding keyframe. An edge between two nodes
consists in a probability distribution over the relative transfor-
mation of the robot poses corresponding to the nodes. These
transformations are either odometry measurements between
consecutive positions, or are determined by aligning the sensor
measurements acquired between two keyframes, via tracking.
Because of the noise corrupting the sensors and the drift in the
robot odometry, the associated edges represent soft constraints
and are not fixed, to be later optimized. It is, however, possible
to insert absolute constraints, which cannot be modified in any
way. Examples of hard constraints are floor coefficients, GPS
and IMU data, although they can also be set as non absolute
elements, to account for the uncertainty of the sensors or the
measurements. Finally, edges can be added when performing
loop closure, between non consecutive nodes in the graph,
forming a ring-like structure.

The structure of the pose graph is given to optimization
algorithms to compute the optimal trajectory which satisfies
all sensors and motion constraints, giving high accuracy es-
timates, while elaborating a large number of poses. In our
implementation, we use the g2o optimization framework [16],
as it proves to be fast and accurate over long trajectories.
Moreover g2o allows for the insertion of custom elements in
the pose graph, and as such, it is an optimal solution for our
modular system, allowing future upgrades.

III. EXPERIMENTAL VALIDATION OF THE SYSTEM

The proposed system is compared with other methods for
point cloud-based SLAM: LOAM [4], LeGO-LOAM [5], A-
LOAM, LeGO-LOAM-BOR, LIO-SAM [6] and HDL [10],
with A-LOAM and LeGO-LOAM-BOR being two advanced
versions of LOAM and LeGO-LOAM (code improvement
and re-engineering), respectively. We also include, in the

comparison, different variants of our system: ART-SLAM
without Scan Context, ART-SLAM with Scan Context, ART-
SLAM with IMU (for de-skewing and orientation correction
in the pose graph), and ART-SLAM with GPS. We evaluate
these systems in three scenarios coming from the KITTI
dataset [17] [18], corresponding to a short, medium and long
sequences, respectively. Lastly, we perform a brief study on
the Chilean underground mine dataset [19], to test ART-SLAM
in rough environments, typical of long tunnels with very few
distinctive features.

LOAM, LeGO-LOAM, A-LOAM, LeGO-LOAM-BOR and
LIO-SAM do not require particular parameter tuning, although
they need a custom implementation of the point cloud projec-
tion module, depending on the laser sensor used. Hence, in our
tests, we changed such parameters accordingly. On the other
hand, HDL and ART-SLAM share the same configuration pa-
rameters, e.g., keyframe selection thresholds and pre-filtering
method. Table I shows the most important parameters used
in the experiments, for both HDL and ART-SLAM, to allow
reproducibility, as described in [15].

It should be noticed that in the KITTI dataset, both IMU
and GPS data are acquired at very low frequency, the same
as for LiDAR point clouds (about 10 Hz). For this reason, we
consider them unreliable, giving low weights in the pose graph,
meaning they have only a minor contribution during the graph
optimization phase. LIO-SAM, to work, obligatorily requires
IMU data at high frequency, and for this reason, to evaluate
it, we used the unsynchronized version of the KITTI dataset,
having IMU data taken at 100 Hz.

Experiments are tested on a 2021 XMG 64-bit laptop with
Intel(R) Core(TM) i7-11800H CPU @ 2.30GHz x 8 cores,
with 24576 KB of cache size.

A. Comparison and results

To evaluate the systems we compute the absolute trajectory
error (ATE). This metric measures the difference between
points of the true and the estimated trajectory. As a pre-
processing step, we associate the estimated poses with ground
truth poses using timestamps and point cloud indices. We also
include a visual evaluation of the estimated trajectory and
show the reconstructed 3D map in the long sequences (KITTI
00 and Chilean). Finally, we also show the processing time of
the mandatory modules of the proposed system, to prove its
real-time performance.

Fig. 2 shows the estimated trajectories of Sequence 07 of the
KITTI odometry dataset [17]. All the methods considered for
comparison, except for LOAM, accurately follow the ground
truth, correctly finding the loop and optimizing the poses.
LOAM, instead, quickly drifts apart from the true trajectory:
this is caused by the fact that no loop closure is performed.
Table II further details the obtained results, as it represents
the mean, root mean square error (RMSE), and standard
deviation (STD) of the absolute trajectory error, in meters.
The highest accuracy is achieved by ART-SLAM with IMU
data. This was expected, as this method combines both the
advantages of scan-to-scan matching, to track de-skewed point
clouds, and orientation integration in the pose graph, to correct



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

=== @I

—— LOAM
LeGO-LOAM
A-LOAM
LeGO-LOAM-BOR
LIO-SAM
HDL

—— Proposed

100

z (m)

-100

-300 -200 -100 0 100

x (m)

200 300

Fig. 2. Comparison between the trajectories estimated by LOAM [4], LeGO-
LOAM [5], A-LOAM, LeGO-LOAM-BOR, LIO-SAM [6], HDL [10] and
the proposed system, without Scan Context, on Sequence 07 of the KITTI
odometry dataset [17].

TABLE 11
ATE ON SEQUENCE 07 OF THE KITTI ODOMETRY DATASET [17].

ATE [m] MEAN RMSE STD
LOAM >10 >10 >10
LeGO-LOAM 1.191 1.309 0.546
A-LOAM 2.467 2.741 1.195
LeGO-LOAM-BOR 1.604 1.807 0.832
LIO-SAM 0.509 0.675 0.351
HDL 0.954 1.253 0.767
ART-SLAM 0.698 0.777 0.341
ART-SLAM (SC) 0.730 0.813 0.358
ART-SLAM (IMU) 0.343 0.366 0.127
ART-SLAM (GPS) 0.782 0.869 0.382

the front-end estimates. It should be noticed that LIO-SAM
comes in second place, proving that, with the same sensors,
tracking relying on full point clouds is the best choice for
accurate results. Moreover, the slightly worse results of the
other variants of ART-SLAM are also expected. The quality of
ART-SLAM with Scan Context depends on the loops identified
by the Scan Context method, which are not necessarily the
best ones, hence reducing the overall accuracy. ART-SLAM
with GPS shows a higher ATE because, as stated before, we
consider GPS data as unreliable (for the KITTI dataset) and
this influences negatively the optimization of the pose graph,
leading to a trajectory farther from the ground truth.

After having dealt with a large sequence with the presence
of loops, we also evaluated the systems on a shorter sequence.
As short datasets do not have a ground truth, we use, instead,
raw GPS data, provided along with the point clouds. Fig. 3
shows the estimated trajectories of city Sequence 05 of the
KITTI raw dataset [18]. As before, all methods, except for
LOAM, accurately represent the ground truth, with small
errors in the trajectory. It should not come as a surprise that
the results are more or less the same, as, for short trajectories,
tracking is performed a limited amount of times, and there is
not enough distance to accumulate errors. Table III shows the
ATE statistics, in meters. As before, all the systems but LOAM
show good results, accurately following the GPS signal, here
used as ground truth due to its relatively high accuracy. This is
the reason ART-SLAM with GPS is the most accurate method,
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Fig. 3. Comparison between the trajectories estimated by LOAM [4], LeGO-
LOAM [5], A-LOAM, LeGO-LOAM-BOR, LIO-SAM [6], HDL [10] and the
proposed system, without Scan Context, on city Sequence 05 of the KITTI
raw dataset [18].

TABLE III
ATE ON CITY SEQUENCE 05 OF THE KITTI RAW DATASET [18].

ATE [m] MEAN RMSE STD
LOAM >5 >5 >5
LeGO-LOAM 0.707 0.768 0.300
A-LOAM 0.938 1.044 0.459
LeGO-LOAM-BOR 1.094 1.169 0.409
LIO-SAM 0.493 0.338 0.280
HDL 0.893 0912 0.476
ART-SLAM 0.742 0.812 0.331
ART-SLAM (SC) 0.742 0.812 0.331
ART-SLAM (IMU) 0.746 0.814 0.326
ART-SLAM (GPS) 0.343 0.588 0.477

even though, for a fair comparison, LIO-SAM was highlighted
as the most accurate system.

In Fig. 4, we show the behavior of ART-SLAM on one of
the most complex sequences of the KITTI odometry dataset,
i.e, Sequence 00. In the visual comparison, we did not include
A-LOAM and LIO-SAM, which estimated trajectories are far
off the ground truth, and would have cluttered the image. From
Table IV, one can see the high degree of accuracy achieved
by the proposed system, reaching low translation error. Once
again, the best accuracy is achieved by ART-SLAM with IMU,
followed by ART-SLAM without Scan Context. Fig. 5 and
Fig. 6 show the map reconstructed by ART-SLAM and a
detailed area of it, respectively.

Table V shows the average processing times, per frame,
of the various ART-SLAM variants. Intuitively, independently
from the sequence considered, pre-filtering, tracking and floor
detection take the same time (aside from the ART-SLAM with
IMU case, where de-skewing is also performed, hence the
higher pre-filtering time). It is important to notice, instead,
the different times associated to loop detection and graph op-
timization, which clearly depend on the size of the trajectories
to estimate. Moreover, the table clearly shows the importance
of Scan Context when performing loop closure: in Sequence
00, the loop detection time, using Scan Context, is half the
case without it. Considering that data is acquired at 10 Hz
and looking at the system architecture of Fig. 1, one can
clearly see that ART-SLAM shows real-time performance. All
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Fig. 4. Comparison between the trajectories estimated by LOAM [4], LeGO-
LOAM [5], LeGO-LOAM-BOR, HDL [10] and the proposed system, without
Scan Context, on sequence 00 of the KITTI odometry dataset [17].

TABLE IV
ATE ON SEQUENCE 00 OF KITTI ODOMETRY DATASET [17].

ATE [m] MEAN RMSE STD
LOAM >10 >10 >10
LeGO-LOAM 9.537 11.666 6.718
A-LOAM >10 >10 >10
LeGO-LOAM-BOR 6.240 6.613 2.188
LIO-SAM >10 >10 >10
HDL 1.378 1.424 0.779
ART-SLAM 0.981 1.092 0.478
ART-SLAM (SC) 1.232 1.409 0.684
ART-SLAM (IMU) 0.907 1.014 0.454
ART-SLAM (GPS) 1.092 1.156 0.380

methods, except HDL, are feature-based, and written to run
in real-time. Nevertheless, from Table V, one can see that the
proposed system, even if full point cloud-based, achieves the
same processing performance.

Lastly, we show a visual evaluation of the accuracy achieved
by ART-SLAM on the Chilean underground mine dataset [19].
This sequence is relatively long and contains multiple loop
closures. The dataset is rather peculiar, as there are only 44
LiDAR measurements, taken at 30 to 40 meters of distance
each and with large rotations, of around 25M points each
(while a cloud in KITTT has around 130K points). Due to this
huge gap between the data acquisition poses, any scan match-
ing would fail without proper initialization. For this reason,
we gave to the tracker module the ground truth, corrupted by
noise, as initial guess. The given noise is uniformly distributed
in the = and y directions, within the range £1cm. We achieved
translation error of about 1 to 5 millimeters, with a processing
time much faster than each LiDAR scan period (10 seconds of
pre-filtering and 10 seconds of tracking against 152.5 seconds
needed to acquire each scan). Moreover, for each scan we
correctly identified the ground plane, which is distant around
1 meter from the LiDAR used. The map reconstructed with
ART-SLAM can be seen in Fig 7.

IV. CONCLUSIONS AND FUTURE WORKS

We have proposed ART-SLAM, a fast and ground-optimized
LiDAR odometry and mapping method, able to perform pose
estimation of moving robots in complex environments. Its

Fig. 5. Map corresponding to Sequence 00 of the KITTI odometry
dataset [17], built by the proposed algorithm.

Fig. 6. Detailed area of the map corresponding to Sequence 00 of the KITTI
odometry dataset [17], built by the proposed algorithm.

modular design allows it to include many upgrades w.r.t.
existing similar systems, such as pre-tracking, smart loop
closure, and optimized loop detection. The proposed method is
evaluated on a series of datasets corresponding to multiple en-
vironments, of different sizes and complexities. Results show
that ART-SLAM can achieve similar or better accuracy when
compared with the state-of-the-art, with reduced computational
cost w.r.t. high accuracy systems. The proposed method proves
to achieve real-time performance, while being as accurate as
full point clouds scan matching methods.

Due to its nature, ART-SLAM can be easily improved and
extended, allowing for multiple future works. Tracking can
be performed in a more robust way by enhancing the pre-
filtering process to remove moving objects in the scene, such
as cars or bicycles, using the method proposed by Postica
et. al. [20]. Moreover, the whole system can be aided by
using additional data, such as already available 2D maps or
existing submaps (e.g., coming from SLAM on overlapping
trajectories), to be integrated in the pose graph. Lastly, the
system can be modified to handle input point clouds coming
from multiple sensors.
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TABLE V
COMPARISON OF THE PROCESSING TIME [MS], PER FRAME, OF THE VARIOUS MODULES, BETWEEN THE VARIANTS OF ART-SLAM.

Processing time (per frame) [ms] Sequence Pre-filterer | Tracker | Floor detector | Loop detection | Graph optimization

ART-SLAM 18.627 39.462 25.976 19.301 16.330
ART-SLAM (SC) KITTI 00 18.627 39.462 25.976 9.380 17.791
ART-SLAM (IMU) 21.667 39.462 25.976 13.747 14.486
ART-SLAM (GPS) 18.627 39.462 25.976 14.681 12.733

ART-SLAM 18.627 39.462 25.976 10.226 1.320
ART-SLAM (SC) KITTI 07 18.627 39.462 25.976 7.239 1.598
ART-SLAM (IMU) 21.667 39.462 25.976 9.808 1.710
ART-SLAM (GPS) 18.627 39.462 25.976 10.407 1.331

ART-SLAM 18.627 39.462 25.976 6.819 0.132
ART-SLAM (SC) 18.627 39.462 25.976 6.819 0.132
ART-SLAM (IMU) KITTI SHORT |1 er—39.462 75976 6.720 0.001
ART-SLAM (GPS) 18.627 39.462 25.976 9.085 0.165

TS K T

Fig. 7. Map corresponding to the Chilean underground mine dataset [19], built with the proposed algorithm. The density of the map is related to the high

number of 3D points acquired by each LiDAR scan (around 25M points each).
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