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a b s t r a c t

Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been
proved to struggle in dealing with optimization problems with a high-dimensional search space or
subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-
inspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper
we present EmiR, a package for R which implements several metaheuristic algorithms for optimization
problems. Unlike other available tools, EmiR can be used not only for unconstrained problems, but
also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main
features of EmiR, its usage and the comparison with other available tools are presented.
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1. Introduction

Classical optimization techniques, as the steepest descent al-
orithm and quasi-Newton techniques, are based on the use
f differential calculus in locating the optimum solution. Al-
hough still widely used in several research areas, these algo-
ithms have been proved to struggle in dealing with optimization
roblems with a high-dimensional search space or subject to
omplex nonlinear constraints [1]. In the last decade, the interest
n metaheuristic algorithms – also referred to as evolutionary
lgorithms [2] – has been growing steadily. The term meta-
euristic, proposed by Glover [3] in 1986, is composed by the
ords heuristic, which used to denote algorithms with stochastic
omponents in the past, and meta, which means ‘‘beyond’’ or
‘higher level’’. Metaheuristic algorithms are therefore higher-
evel heuristic algorithms, in the sense they are more general
n problem-solving [4] and, nowadays, are typically based on a
etaphor of natural or man-made processes, like the search for

ood or haunting of nearly any species of animals [5]. Most of
hese methods evolve an initial population of individuals, each of
hem representing a candidate solution to the problem, toward

∗ Corresponding author.
E-mail addresses: davide.pagano@unibs.it (Davide Pagano),

.sostero@studenti.unibs.it (Lorenzo Sostero).

the global minimum or maximum of the cost/fitness function,
according to nature-inspired processes.

2. Software description

EmiR is a package for R, written in C++ for speed, which imple-
ments some of the most popular population-based metaheuristic
algorithms: Artificial Bee Colony algorithm (ABC) [6,7], Bat al-
gorithm (BAT) [8], Cuckoo Search (CS) [9], Genetic Algorithms
(GA) [10,11], Gravitational Search Algorithm (GSA) [12], Grey
Wolf Optimization (GWO) [13,14], Harmony Search (HS) [15,16],
Improved Harmony Search (IHS) [17], Moth-flame Optimization
(MFO) [18], Particle Swarm optimization (PS)
[19,20], Simulated Annealing (SA) [21–23], Whale Optimization
Algorithm (WOA) [24].

A detailed description of these algorithms is beyond the scope
of this work. However, it is important to highlight that for algo-
rithms where multiple approaches have been proposed in litera-
ture, such as SA, PS and GA, we opted for most recent ones, as de-
scribed in the following. For SA we implemented the population-
based version of the algorithm proposed in 2016 by Askarzadeh
et al. [23]. For PS we opted for the general approach with adaptive
parameters, inertia on particles and constraints on their maxi-
mum velocity [20]. Finally, for GA we decided to implement the
version described by Haupt [25], characterized by high efficiency

mechanisms of selection and mating.
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Fig. 1. Graphical representation of the function minimize.

The package provides a single interface to all the available
lgorithms, by means of the function:

minimize(algorithm_id, obj_func, parameters,
config, constraints = NULL, ...)

whose block diagram is represented in Fig. 1. minimize ac-
epts the following arguments:

• algorithm_id — the identification code of the algorithm
to be used;

• obj_func — the objective function to be
minimized/maximized;

• parameters — the list of parameters the objective function
is minimized/maximized with respect to;

• config — the configuration parameters of the algorithm;
• constraints — the (optional) list of constraints the objec-

tive function is subjected to;
• ... — additional (optional) parameters.

The choice of the algorithm to be used is performed by passing
ts corresponding ID (an object of class character) to the argu-
ent algorithm_id. A data.frame object with the list of avail-
ble algorithms in EmiR, including their IDs and configuration
unctions, can be obtained with the function
ist_of_algorithms.
The objective function to be minimized or maximized has to

e specified by means of the argument obj_func. Valid functions
ave a single vector argument for all the independent variables,
s in the following example.

sphere_function <- function(x) {
x1 <- x[1]
x2 <- x[2]
x3 <- x[3]
value <- x1^2 + x2^2 + x3^2
return(value)

}

Depending on the dimension of the objective function, one or
ore objects of class Parameter have to be defined, one for each

ndependent variable the function depends on. This S4 class is
ecessary to store range, name and type (integer of continue)
or each variable. The class Parameter is not exposed to the
ser, who instead uses the function parameter, which returns
n instance of it. Arguments of function parameter are reported

below.

parameter(name, min_val, max_val, integer = FALSE)

With name the user specifies the name of the parameter, with
min_val and max_val its range, and with integer whether
the variable is integer or continue. As an objective function can
depend on multiple variables, a list of Parameter objects
has to passed to the argument parameters of the minimize
function. When dealing with high-dimensional functions, it could
be tedious to create a new Parameter object for each variable
one by one. For this reason, EmiR also implements the function
parameters, which accepts a matrix as input and returns a list
of objects of Parameter.

All algorithms share some common configuration parameters,
in addition to those which are algorithm-specific. For this reason,
a S4 class for each algorithm has been created to deal with all
these different tuning variables. Those classes are not exposed
to the user, who instead creates instances of them, by using
the configuration functions associated to each algorithm, whose
names are reported in the column Configuration function
of the list_of_algorithms function’s output. Only arguments
iterations and population_size do not have default values
and have to be specified.

EmiR can also be used for constrained optimization problems,
as long as the objective function is subjected to inequality con-
straints. The S4 class Constraint has been designed to deal with
constraints, but it is not exposed to the user, who instead can
define a constraint by using the function constraint(func,
inequality), where arguments func and inequality ex-
pect respectively an object of class function and one of class
character with the inequality type (">", ">=", "<=", "<"). The
function passed to func has to represent the first term of an
inequality with zero. Valid functions depend on one or more of
the independent variables of the objective function, and have a
single vector argument, like in the example below.

g1 <- function(x) {
value <- x[1] + 2*x[2]
return(value)

}
c1 <- constraint(g1, "<=")
2
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There are also additional parameters and options that can
e specified in the function minimize. Just to name a few, it
s possible to choose how to handle out-of-boundary solutions
oob_solutions), and to select the approach to use in the
onstrained optimization (constrained_method).
Other functions in EmiR, mainly related to the graphical pre-

entation of results, will be directly introduced in the following
xamples.

. Examples of unconstrained optimization problems

In this section, few examples on how to use the function
inimize for unconstrained optimization problems are pre-
ented.

.1. Example 1: 4-dimensional miele cantrell function

In this first example, the 4-dimensional Miele Cantrell func-
ion [26] is defined and evaluated in xi ∈ [−2, 2], for i =

, . . . , 4:

(x) = (e−x1 − x2)4 + 100(x2 − x3)6 + (tan(x3 − x4))4 + x81.

The function has a global minimum: f (0, 1, 1, 1) = 0. The
ollowing code shows the minimization of this function with
he Bat algorithm, using the default values for its algorithm-
pecific parameters. The Miele Cantrell function is one of those
unctions which are already the pre-defined in EmiR, whose list
s accessible via the command list_of_functions().

p1 <- parameter("x1", -2, 2, FALSE)
p2 <- parameter("x2", -2, 2, FALSE)
p3 <- parameter("x3", -2, 2, FALSE)
p4 <- parameter("x4", -2, 2, FALSE)

conf_algo <- config_bat(iterations = 200,
population_size = 100)

results <- minimize(algorithm_id = "BAT",
obj_func = miele_cantrell,
parameters = list(p1, p2, p3, p4),
config = conf_algo,
seed = 1)

print(results)

When running the previous code, an output similar to the
ollowing one is shown.

EmiR Minimization Results
---------------------------------------

minimizer | BAT
iterations | 200

population size | 100
minimum value | 7.349613e-16

best parameters | x1 = -0.01274905
| x2 = 1.012874
| x3 = 1.013704
| x4 = 1.013734

---------------------------------------

It is possible to plot the best function value (best cost) as a
unction of the iteration using the following function.

plot_history(results, log = "y")

The resulting plot is shown in Fig. 2 (left). Being based on base
lot function, plot_history accepts the same arguments for
he customization of the plot. Best cost at each iteration can be
lso directly accessed by means of the slot cost_history, as in
he example below, which produces the plot in Fig. 2 (right).

plot(151:200, tail(results@cost_history, 50),
type = "l", xlab = "Iteration",
ylab = "Best function value", lwd = 2)

3.2. Example 2: 2-dimensional ackley function

In this second example, the 2-dimensional Ackley function [27]
is chosen to show some of the visualization capabilities of EmiR.
The following code shows the minimization of the function, in
the range xi ∈ [−30, 30], for i = 1, 2, using the Particle Swarm
algorithm.

pars <- parameters(matrix(rep(c(-30, 30), 2), 2, 2))

conf_algo <- config_ps(iterations = 200,
population_size = 20)

results <- minimize(algorithm_id = "PS",
obj_func = ackley_func,
parameters = pars,
config = conf_algo,
save_pop_history = TRUE,
seed = 1)

The option save_pop_history has been set to TRUE, mean-
ing that the position of all particles at each iteration is saved,
and, because of this, it is possible to visualize how it evolves with
the iteration by means of the following code, which produces the
plots in Fig. 3.

plot_population(results, iteration = 1,
n_points = 200)

plot_population(results, iteration = 30,
n_points = 200)

Function plot_population can be used only for 1D, 2D
and 3D optimization problems. Examples for 1D and 3D cases
are shown in Fig. 4. Function animate_population allows the
creation of animations of how the population positions evolved
with the iteration.

3.3. Example 3: Unconstrained nonlinear integer problem

As already mentioned, EmiR can be also used for integer and
mixed-integer optimization problems. The following objective
function [28] is maximized in the range xi ∈ [0, 99], for i =

1, 2, . . . , 10, with xi ∈ N0.

f (x) = x21 + x1x2 − x22 + x3x1 − x23 + 8x24 − 17x25 + 6x36+

+ x6x5x4x7 + x38 + x49 − x510 − x10x5 + 18x3x7x6.

The problem has the following global maximum: f (x∗) =

216300719, with x∗
=(99, 49, 99, 99, 99, 99, 99, 99, 99, 0). The

following code shows the maximization of the previous objective
function, using the Whale Optimization algorithm.

ob <- function(x) {
x[1]^2 + x[1]*x[2] - x[2]^2 + x[3]*x[1] - x[3]^2
+ 8*x[4]^2 - 17*x[5]^2 + 6*x[6]^3
+ x[6]*x[5]*x[4]*x[7]
+ x[8]^3 + x[9]^4 - x[10]^5 - x[10]*x[5]
+ 18*x[3]*x[7]*x[6]

}
p <- parameters(matrix(rep(c(0, 99, TRUE), 10),
nrow=3))

conf <- config_algo(algorithm_id = "WOA",
population_size = 100,
iterations = 500)

results <- minimize(algorithm_id = "WOA",
obj_func = ob,
config = conf,
maximize = TRUE,
3
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Fig. 2. Best cost as a function of all iterations, in a minimization of the 4D Miele Cantrell function (left), and of iterations in the range [151, 200] (right).

Fig. 3. Population of particles at iteration 1 (left) and iteration 30 (right), superimposed to the profile of the Ackley function, for a minimization with the Particle
warm algorithm.

Fig. 4. Population of particles at iteration 10 for a minimization of the 1D (left) and 3D (right) Ackley function, using the Particle Swarm algorithm.
4
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parameters = p,
save_pop_history = TRUE,
oob_solutions = "RBC",
seed = 10)

print(results)

When running the previous code, an output similar to the
ollowing one is shown.

EmiR Minimization Results
---------------------------------------

minimizer | WOA
iterations | 500

population size | 100
maximum value | 216300719

best parameters | x1 = 99
| x2 = 49
| x3 = 99
| x4 = 99
| x5 = 99
| x6 = 99
| x7 = 99
| x8 = 99
| x9 = 99
| x10 = 0

---------------------------------------

. Examples of constrained optimization problems

Because of their strong heuristic component, the use of evo-
utionary algorithms for constrained problems was very limited
n the past [29]. However, for both linearly and non-linearly
onstrained problems with inequality constraints, evolutionary
lgorithms have proved to be a promising option. EmiR offers
hree approaches to deal with constrained problems:

• penalty method— the constrained problem is converted to an
unconstrained one, by adding a term, called penalty function,
to the objective function. The penalty function consists of a
penalty parameter multiplied by a measure of the violation
of the constraints. The penalty parameter is increased at
each iteration;

• barrier method — the value of the objective function is set
equal to an arbitrary large positive (or negative in case of
maximization) number if any of the constraints is violated;

• acceptance-rejection method — all solutions at each genera-
tion are checked for possible violation of the constraints: if
so, they are replaced by new randomly generated solutions
in the feasible region (FR).

For all previous methods, the user can choose to generate the
initial population either in the feasible region of the problem, or
in the full range of its parameters.

In this section, two examples on how to use the function
minimize for constrained optimization problems are presented.

4.1. Example C1: nonlinear programming

Let us consider the following example from [30]:

min f (x, y) = (x − 10)3 + (y − 20)3

ubject to: g1(x, y) = −(x − 5)2 − (y − 5)2 + 100 ≤ 0

g2(x, y) = (x − 6)2 + (y − 5)2 − 82.81 ≤ 0

, (1)

in the interval x ∈ [13, 100] and y ∈ [0, 100]. The coloured con-

0 and g2(x, y) = 0, and the FR are shown in Fig. 5 (left). The prob-
lem has the following global minimum: f (14.09500, 0.84296) =

−6961.81474448783, which is located within a very narrow re-
gion of the FR, as shown in Fig. 5 (right).

The following code shows how to set up this constrained op-
timization problem in EmiR, using the Particle Swarm algorithm.

ob <- function(x) (x[1]-10)^3 + (x[2]-20)^3
g1 <- function(x) -(x[1]-5)^2 - (x[2]-5)^2 + 100
g2 <- function(x) (x[1]-6)^2 + (x[2]-5)^2 - 82.81
c1 <- constraint(g1, "<=")
c2 <- constraint(g2, "<=")
p1 <- parameter("x1", 13, 100)
p2 <- parameter("x2", 0, 100)
conf <- config_algo(algorithm_id = "PS",

population_size = 200,
iterations = 10000)

results <- minimize(algorithm_id = "PS",
obj_func = ob,
config = conf,
parameters = list(p1,p2),
constraints = list(c1,c2),
save_pop_history = TRUE,
constrained_method = "PENALTY",
constr_init_pop = FALSE,
oob_solutions = "RBC",
penalty_scale = 5,
seed = 1)

When running the previous code, an output similar to the
following one is shown.

EmiR Minimization Results
---------------------------------------

minimizer | PS
iterations | 10000

population size | 200
minimum value | -6961.80150

best parameters | x1 = 14.09500
| x2 = 0.84297

---------------------------------------

4.2. Example C2: nonlinear programming with mixed-integer vari-
ables

Let us consider the following problem, based on the pressure
vessel design optimization problem in [31]:

min f (x1, x2, x3, x4) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3

subject to: g1(x1, x3) = −x1 + 0.0193x3 ≤ 0
g2(x2, x3) = −x2 + 0.00954x3 ≤ 0

g3(x3, x4) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0

,

(2)

in the interval x1 ∈ [1.125, 2], x2 ∈ [0.625, 2], x3 ∈ [10, 240]
and x4 ∈ [10, 240], and with x1 · x2 = 0.0625. The best
solution reported in [31] is f (x∗) = 7199.412, with x∗

=

[1.125, 0.625, 58.2895, 43.6964]. The following code shows the
implementation in EmiR of this optimization problem, using the
Bat algorithm.
tour plot of the objective function, as well as the curves g1(x, y) =

5
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0

Fig. 5. Coloured contour plot of the objective function in a region around the feasible region (left) and in a region around the minimum (right). The area outside the
feasible region has been desaturated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ob <- function(x) {
0.6224*(x[1]*0.0625)*x[3]*x[4]
+ 1.7781*(x[2]*0.0625)*x[3]^2
+ 3.1611*(x[1]*0.0625)^2*x[4]
+ 19.8621*(x[1]*0.0625)^2*x[3]

}

g1 <- function(x) 0.0193*x[3] - (x[1]*0.0625)
g2 <- function(x) 0.00954*x[3] - (x[2]*0.0625)
g3 <- function(x) {

1296000 - pi * x[3]^2 * x[4] - 4/3 * pi * x[3]^3
}
c1 <- constraint(g1, "<=")
c2 <- constraint(g2, "<=")
c3 <- constraint(g3, "<=")

p1 <- parameter("x1", 18, 32, integer = TRUE)
p2 <- parameter("x2", 10, 32, integer = TRUE)
p3 <- parameter("x3", 10, 240)
p4 <- parameter("x4", 10, 240)

conf <- config_algo(algorithm_id = "BAT",
population_size = 500,
iterations = 7000)

results <- minimize(algorithm_id = "BAT",
obj_func = ob,
config = conf,
parameters = list(p1,p2, p3, p4),
constraints = list(c1,c2,c3),
save_pop_history = TRUE,
constrained_method = "BARRIER",
constr_init_pop = TRUE,
oob_solutions = "RBC",
seed = 1)

The corresponding output is shown below (note that 18 ·

.0625 = 1.125 = x∗

1 and 10 · 0.0625 = 0.625 = x∗

2).

EmiR Minimization Results
---------------------------------------

minimizer | BAT
iterations | 7000

population size | 500
minimum value | 7199.37

best parameters | x1 = 18

| x2 = 10
| x3 = 58.29
| x4 = 43.6937

---------------------------------------

5. Comparison with metaheuristicOpt

R already offers a plethora of packages implementing meta-
heuristic algorithms for optimization problems. Among them,
metaheuristicOpt [32], with its collection of 21 algorithms, is the
most complete and popular one. Because of the clear overlap with
EmiR, in this section we outline the differences between the two
packages and compare their performance. Table 1 compares some
of the main features offered by the two packages.

EmiR not only comes in handy to overcome the main limita-
tion of metaheuristicOpt, that is it can only be used for continuous
unconstrained optimization problems, but its faster execution
times makes it appealing also in those cases where metaheuris-
ticOpt can be used.

We compared both performance and execution time of the
two packages on seven unconstrained problems, using four differ-
ent algorithms: WOA, MFO, GWO and CS. The choice of these al-
gorithms relies on the fact that the first three do not have specific
configuration parameters and the fourth is implemented in a sim-
ilar way in both packages, making possible to test EmiR and meta-
heuristicOpt in the same conditions. Each test was performed 200
times on a six-core Intel Core i7-8750H @2.20 GHz PC, running R
v4.1.0 and the latest available versions (at the time of writing) of
the two packages: EmiR v1.0.1 and metaheuristicOpt v2.0.0.

Table 2 summarizes the results of all tests, by reporting mean
(µ) and standard deviation (σ ) of both execution time and best
cost of the objective function, as obtained from both packages.
Values in red, in columns µcost and µtime, indicate they are better
than the corresponding ones from the other package. In basically
all cases, EmiR performed better (sometimes much better) than
metaheuristicOpt in both execution time and best cost.

6. Impact

EmiR offers a complete solution in R for solving constrained
and unconstrained optimization problems. The package has been
designed to be highly time effective and user-friendly, sharing a
common interface to all the available algorithms implemented.
Moreover, EmiR also offers a high-level of customization, as well
as a set of graphical functions for the visualization of the algo-
rithm evolution during the optimization process.
6
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Table 1
Comparison of some of the main features of EmiR and metaheuristicOpt.

EmiR v1.0.1 metaheuristicOpt v2.0.0

Core language C++ R
Available algorithms 12 21
Predefined test functions 10 4
Continuous optimization ✓ ✓
Integer and mixed-integer optimization ✓ –
Constrained optimization Inequality constraints –
Multiple options for out-of-boundary solutions ✓ –

Table 2
Performance comparison between EmiR and metaheuristicOpt tested with seven benchmark functions and four algorithms, as described in the text. The first column
reports name and domain of the benchmark functions, as well as the population size and the number of iterations. Values in red, in columns µcost and µtime , indicate
they are better than the corresponding ones from the other package.
Function Algo EmiR metaheuristicOpt

µcost σcost µtime σtime µcost σcost µtime σtime

Ackley WOA
MFO
GWO
CS

3.3e−15
12.04
1.4e−14
18.99

2.4e−15
1.64
2.2e−15
0.20

2.36
3.53
2.17
1.24

0.089
0.10
0.08
0.093

3.5e15
18.22
1.3e−14
20.20

2.4e−15
3.20
2.4e−15
0.12

5.85
13.68
56.95
3.06

0.19
0.26
0.48
0.10

xi ∈ [−32.768, 32.768]
for all i = 1, . . . , 50
population: 50
iterations: 2000

Styblinski WOA
MFO
GWO
CS

−195.83
−195.80
−195.83
−195.83

6.1e−08
0.26
4.6e−07
7.3e−05

4.04
4.27
4.06
2.28

0.11
0.10
0.098
0.12

−195.83
−192.01
−193.22
−189.53

3.2e−07
7.19
6.03
2.84

5.16
5.98
18.98
3.58

0.19
0.20
0.35
0.25

xi ∈ [−5, 5]
for all i = 1, . . . , 5
population: 50
iterations: 5000

Freudenstein WOA
MFO
GWO
CS

3.3e−06
0.006
8.22
2.1e−06

8.9e−06
0.064
18.53
2.4e−06

3.56
3.61
3.55
1.89

0.13
0.10
0.11
0.043

9.0e−06
1.04
9.71
0.052

2.1e−05
6.58
19.78
0.055

3.76
3.54
8.64
2.28

0.18
0.15
0.23
0.062

xi ∈ [−10, 10]
for i = 1, 2
population: 50
iterations: 5000

Rastrigin WOA
MFO
GWO
CS

0.00
0.0071
0.00
3.2e−06

0.00
0.039
0.00
3.3e−06

6.99
7.22
6.96
3.81

0.13
0.14
0.094
0.078

0.00
0.06
0.00
0.025

0.00
0.24
0.00
0.027

7.38
6.24
14.57
4.88

0.12
0.11
0.34
0.12

xi ∈ [−5.12, 5.12]
for i = 1, 2
population: 50
iterations: 10000

Schwefel WOA
MFO
GWO
CS

−1673.56
−1630.96
−1633.79
−1651.73

16.62
66.03
110.85
43.24

7.31
7.63
7.22
3.96

0.15
0.34
0.094
0.085

−1643.36
−1454.77
−1502.06
−1594.24

82.21
152.88
132.18
39.21

8.45
8.89
25.95
5.50

0.26
0.17
0.29
0.10

xi ∈ [−500, 500]
for i = 1, . . . , 4
population: 50
iterations: 10000

Powell WOA
MFO
GWO
CS

2.4e−07
0.88
1.9e−07
0.84

3.3e−07
1.50
2.7e−07
0.77

24.85
25.17
24.87
13.62

1.77
0.93
1.73
0.72

2.7-e07
265.63
1.4e−07
1290.14

4.6e−07
452.78
2.5e−07
199.58

29.62
37.00
92.57
49.17

1.03
1.40
5.94
1.33

xi ∈ [−4, 5]
for i = 1, . . . , 20
population: 50
iterations: 5000

Sphere WOA
MFO
GWO
CS

2.0e−89
2.5e+05
3.3e−13
5.0e+05

3.7e−86
2.8e+04
2.1e−13
1.3e+04

0.25
1.81
0.26
0.18

0.016
0.16
0.014
0.019

3.4e−156
3.2e+05
2.2e−28
5.1e+05

4.7e−142
2.6e+04
4.3e−28
1.5e+04

2.64
7.68
30.62
1.77

0.06
0.37
1.18
0.06

xi ∈ [−100, 0]
for i = 1, . . . , 200
population: 10
iterations: 1000

From the comparison with metaheuristicOpt, which is another
ackage for R with a large collection of metaheuristic algorithms
or optimization problems, EmiR stands out for the following
eatures:

• core code written in C++ for speed;
• possibility to handle constrained optimization problems;
• possibility to handle integer and mixed-integer optimization

problems;
• different options to handle out-of-boundary solutions;
• possibility to import the initial state of the population;
• tools for plots and animations.

Although a comprehensive comparison between metaheuris-
ic and classical optimization algorithms goes beyond the scope
f this work, we also compared the performance of EmiR to
ome of the most used classical optimization techniques im-
lemented in R: BFGS-method [25] (BFGS), Conjugate Gradient

method (CG) [33] and Nelder Mead method (NM) [34]. Table 3
shows the average best cost (from 100 independent tests), for 5
benchmark functions,1 as obtained from BFGS, CG and NM and
three metaheuristic algorithms from EmiR: GA, WOA and ABC. To
make the comparison fair, the population size and the number
of iterations for each metaheuristic algorithm in this test have
been chosen to target a computational time of O(1) second. The
results clearly show that metaheuristic algorithms outperformed
traditional approaches for the selected objective functions.

7. Conclusions

In this work we presented EmiR, a new package for R imple-
menting several population-based metaheuristic algorithms for
optimization problems. We started introducing its architecture,

1 Definitions of the benchmark functions can be found at Ref. [35].
7
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Table 3
Performance comparison between traditional (BFGS, CG, NM) and metaheuristic (GA, WOA, BAT)
algorithms tested with five benchmark functions, as described in the text. The first column reports
name and domain of the benchmark functions.
Function Algorithm µcost

Hartmann
BFGS −3.05

xi ∈ [0, 1] for all i = 1, 2, 3
CG −2.89

fmin(x) = −3.86278
NM −2.65
GA −3.86
WOA −3.86
ABC −3.86

Michalewicz
BFGS −1.85

xi ∈ [0, π] for all i = 1, . . . , 5
CG −2.05

fmin(x) = −4.687658
NM −2.53
GA −4.68
WOA −4.60
ABC −4.68

Schwefel
BFGS −1106.62

xi ∈ [−500, 500] for all i = 1, . . . , 5
CG −1125.84

fmin(x) = −2094.9145
NM −1095.08
GA −2094.91
WOA −2046.94
ABC −2094.91

Schubert
BFGS 1.83e−18

xi ∈ [−10, 10] for all i = 1, 2
CG 1.54e−15

fmin(x) = −186.7309
NM −50.38
GA −186.73
WOA −186.73
ABC −186.73

Styblinski–Tang
BFGS −479.34

xi ∈ [−5, 5] for all i = 1, . . . , 15
CG −477.22

fmin(x) = −587.48985
NM −460.77
GA −587.32
WOA −587.48
ABC −587.48

based on a common interface to all algorithms, and then we
showed its usage and performance by means of several represen-
tative examples of unconstrained and constrained optimization
problems, with both continuous and integer variables. We also
gave an overview of some of graphical tools available in EmiR:
from the graph of the best cost as function of the iteration, to
the production of animated gif of the population motion. In the
second part of this work, we focused on comparing the per-
formance of EmiR with metaheuristicOpt (another package with
metaheuristic algorithms for optimization problems), as well as
with classical optimization methods. Tests were performed using
challenging benchmark functions, with many local minima and/or
high dimensionality, and results have proven the effectiveness
of EmiR in terms of computational time and convergence to the
global minimum. Future version of EmiR will include the addition
of new algorithms and the extension of the current graphical tools
to high dimensionality functions.
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