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Initially, stressed plates are widely used in modern fabrication
techniques, such as additive manufacturing and UV
lithography, for their tunable morphology by application of
external stimuli. In this work, we propose a formal asymptotic
derivation of the Föppl–von Kármán equations for an elastic
plate with initial stresses, using the constitutive theory of
nonlinear elastic solids with initial stresses under the
assumptions of incompressibility and material isotropy.
Compared to existing works, our approach allows us to
determine the morphological transitions of the elastic plate
without prescribing the underlying target metric of the
unstressed state of the elastic body. We explicitly solve the
derived FvK equations in some physical problems of
engineering interest, discussing how the initial stress
distribution drives the emergence of spontaneous curvatures
within the deformed plate. The proposed mathematical
framework can be used to tailor shape on demand, with
applications in several engineering fields ranging from soft
robotics to four-dimensional printing.
1. Introduction
The Föppl–von Kármán (FvK) equations are a set of nonlinear
partial differential equations describing the large deflection of
linear elastic plates [1,2]. They can be derived as a formal
asymptotic expansion of the three-dimensional filed theory of
linear elasticity in the limit of large displacements and small
strains, and associated with specific boundary conditions [3–7].

The FvK equations are notably difficult to solve, but they
proved to be very useful to give theoretical insights into many
physical problems where in-plane and out-of-plane unknowns
can be decoupled [8–12]. The research interest in FvK equations
has been recently reinvigorated by the technological possibility
to fabricate shape-morphing devices using soft active materials
[13–19]. These morphable plates have applications in several
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engineering fields, ranging from soft robotics [20,21] to the design of biomimetic structures [16]. In
particular, morphological transitions can be realized by controlling the geometric frustration of a soft
plate by swelling [22–24], surface accretion [25], optothermal stimuli in nematic elastomers [26] and
surface tension in nano-plates [27]. For these purposes, FvK equations have been derived in cases
where geometrical incompatibilities arise and the undeformed configuration of the elastic plates is no
longer free of initial stresses [28].

The formal asymptotic expansion leading to the FvK model has been rigorously derived as the G-limit
of the three-dimensional elastic problem [29,30]. This analysis has been recently extended to the case of a
pre-strained plate [31–34]. The existing approaches account for the geometrical frustration using additive
or multiplicative decomposition of the deformation gradient for describing the spatial distribution of
residual strains given by the underlying non-Euclidean metric [35–38]. However, the FvK equations
with pre-strains require the prescription of the incompatible metric of the virtual relaxed state, while
in many practical cases, the distribution of residual strains remains unknown. Since a stress-free
configuration cannot be physically attained by non-invasive techniques, it is more suitable to consider
a more general theoretical framework where the elastic energy explicitly depends on the spatial
distribution of the initial stress in the reference configurations, without the need to prescribe a stress-
free state [39].

In the following, we present a formal asymptotic derivation of the FvK equations for an elastic plate
with initial stresses. In §2, we introduce the constitutive theory of nonlinear elastic solids with initial
stresses under the assumptions of incompressibility and material isotropy. In §3, we introduce the
scaling assumption for the geometrical parameters and the initial stress components and we derive
the FvK equations for an initially stressed elastic plate. In §4, we explicitly solve the derived FvK
equations in some physical problems, discussing how the initial stress concentration may drive the
emergence of spontaneous curvatures within the deformed plate. Concluding remarks are finally
summarized in §5.
2. Constitutive theory for initially stressed elastic materials
Let us consider a body that occupies a simply connected domain Bt in its reference configuration. We use
Cartesian unit vectors (EX, EY, EZ) and (ex, ey, ez) in the reference and spatial configurations, respectively.
Let X =XEX +YEY +ZEZ be the material position vector. In this undeformed configuration, the body has
an initial stress, meaning that its Cauchy stress tensor is not vanishing. We denote the initial stress tensor
by t, where t :Bt ! SðR3Þ, and SðRnÞ is the set of the self-adjoint L :Rn ! Rn, where L [ LðRnÞ is a
linear application. In order to enforce the material balance of linear and angular momentum, this
initial stress is such that

Divt ¼ 0, t ¼ tT , in Bt, ð2:1Þ
where Div is the material divergence operator. We remark that if the body is residually stressed, i.e. the
zero-traction boundary condition tN = 0 applies to the whole boundary @Bt with material unit normalN,
t must be inhomogeneous and have zero average over the volume in Bt in force of the mean value
theorem [40].

Let x = w(X) = xex + yey + zez be the spatial material vector, so that w :Bt ! B be the one-to-one
mapping to the deformed configuration B and F ¼ @w=@X be the deformation gradient. In the
following, we deal with incompressible materials, imposing the constraint J ¼ det F ¼ 1. We further
assume that the body possesses a perfectly elastic response, defining a strain energy density C per
unit of reference volume as [41,42]

C ¼ CðF, tÞ: ð2:2Þ
By standard arguments, the second Piola–Kirchhoff S and Cauchy σ stress tensors reads

S ¼ @C

@F
ðF, tÞF�T � pF�1F�T , s ¼ FSFT , ð2:3Þ

where p is the Lagrange multiplier enforcing the incompressibility constraint. In particular, when F is
equal to the identity tensor I, the Cauchy stress must be equal to the initial stress tensor t, so that

t ¼ @C

@F
ðI, tÞ � ptI, ð2:4Þ
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Figure 1. Sketch of the reference (a) and current (b) configuration of the elastic plate with initial stress. The blue surfaces represent
the mid-section of the plate.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220421
3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ay
 2

02
2 
where pt is the value of p in Bt. If we further assume that the elastic response is invariant after the
application of a rigid-body motion, the strain energy can be expressed as a function of the three
invariants of the right Cauchy–Green tensor C ¼ FTF, the three invariants of the initial stress tensor t,
plus their four mixed invariants [42,43]. Since we are interested in developing a FvK theory, we are
interested in considering the minimal constitutive response that takes into account geometric
nonlinearities. Accordingly, we consider in the following the constitutive response of a pre-stressed
Neo-Hookean material, that is given by [44]

CðF, tÞ ¼ 1
2
(trðtCÞ þ r trC� E), ð2:5Þ

where E is the Young modulus of the unstressed material and r is the real root of

r3 þ It1r2 þ It2rþ It3 � E
3

� �3

¼ 0, ð2:6Þ

with It1 ¼ trt, It2 ¼ 1
2 ½ðI2t1 � trðt2Þ�, It3 ¼ det t. Equation (2.6) is obtained by inverting the constitutive

relation (2.3) and imposing the incompressibility constraint after a repeated application of the Cayley–
Hamilton theorem. Enforcing the compatibility condition (2.4) for the initial stress, we also find that
pt = r. Such an energy guarantees that the material properties are not affected by the initial stress
distribution, for details see [45].

From (2.3), the constitutive equation for the initial stressed Neo-Hookean material with strain energy
given by (2.5) is

S ¼ rI� pC�1 þ t and s ¼ rB� pIþ FtFT , ð2:7Þ
where B ¼ FFT is the left Cauchy–Green tensor.

Neglecting the presence of volume bulk forces, the equilibrium conditions in the reference
configuration read

DivS ¼ 0, S ¼ ST , in Bt, ð2:8Þ
while the zero-traction conditions at the boundary give SN ¼ 0 at @Bt. In the following, we will use these
constitutive assumptions to derive a FvK theory of elastic plates with initial stress.
3. The Föppl–von Kármán equations for initially stressed plates
In this section, we first make the geometric assumptions of the FvK theory, using dimensional analysis to
justify the asymptotic development. We later derive the constitutive equations using a variational
argument, assuming different scaling for the initial stress components.

3.1. Geometric assumptions and asymptotic analysis
We consider an elastic plate with reference configuration Bt ¼ Sm � ½�H, H�, where Sm is a closed subset
in R2, as sketched in figure 1. In particular, we require that there exists a point P∈ Sm such that BL(P)⊆ Sm
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and L is much larger than the thickness 2H of the plate, so that e =H/L≪ 1, where
BLðPÞ ¼ fY [ R2 j kY� Pk , Lg. The dimensionless parameter e will be used to perform an
asymptotic expansion. In this thin geometry, we introduce the following dimensionless variables

X ¼ X
L
, Y ¼ Y

L
, Z ¼ Z

H
, X ¼ XEX þ YEY þ ZEZ: ð3:1Þ

Similarly, let r be the gradient operator with respect to the dimensionless variables.
Let u = x−X be the displacement vector describing the deformation of the plate. We denote by uk the

projection of u on the plane containing Sm, while w indicates the orthogonal component of u. More
explicitly

u ¼ uk þ wEz, w ¼ u � EZ ¼ Hw, uk ¼ Pu ¼ u� wEZ ¼ Huk, ð3:2Þ

where P ¼ I� EZ � EZ is the projection operator, while uk and w are the dimensionless counterpart of uk
and w, respectively. From now on, for a generic quantity f, we denote by f its dimensionless counterpart.

We assume the classical Kirchhoff hypothesis for the in-plane displacement uk

uk ¼ Huk ¼ Um � Zrkw

and uk ¼ Um � eZrkw,

)
ð3:3Þ

where UmðXkÞ ¼ HUmðXkÞ ¼ ukðPXÞ represents the in-plane displacement of the point Xk of the middle
surface, obtained through the projection of X on Sm, while rk is the gradient operator with respect to Xk,
namely in Cartesian components rk ¼ ð@=@X, @=@Y, 0Þ, while r? ¼ ð0, 0, @=@ZÞ. From the non-
dimensionalization proposed in (3.1), we get

rk ¼ 1
L
rk and r? ¼ 1

H
r?: ð3:4Þ

The out-of-plane component of the displacement vector reads

w ¼ Hw ¼ jm þ e2W

and w ¼ j
m þ e2W ,

)
ð3:5Þ

where jmðXkÞ ¼ Hj
mðXkÞ ¼ wðPXÞ is the out-of-plane displacement of the point Xk of the middle surface,

obtained through the projection of X on Sm and W :Bt ! R3. The field ξ governs the out-of-plane
deformation up to an order O(e2).

The assumption made in (3.3) and (3.5) imposes that the displacement is a pure bending deformation
in the Z-direction, so that sections that are initially perpendicular to the middle surface undergo a
rotation that is driven by the local curvature of the deformed middle surface. For an initially stressed
plate, the validity of this scaling requires a further constraint on the scaling of the initial stress tensor,
that will be discussed later.

We further assume that the middle surface components can be expanded in powers of e as follows:

Um ¼
X1
n¼1

enUm
n ¼ H

X1
n¼1

enUm
n and jm ¼

X1
n¼0

enjmn ¼ H
X1
n¼0

enj
m
n : ð3:6Þ

Using (3.4), the deformation gradient can be written as

F ¼ Iþru ¼ Iþrkuþr?u ¼ Iþ erkuþr?u, ð3:7Þ

since u ¼ uk þ wEZ, substituting (3.3) and (3.5), we get

u ¼ Um þ j
m
EZ � eZrkj

m þ e2WEZ þ oðe2Þ: ð3:8Þ

We can compute rku and r?u, obtaining

rku ¼ rkU
m þ EZ �rkj

m � eZrkrkj
m þ oðeÞ

and r?u ¼ �erkj
m � EZ þ e2W ,ZEZ � EZ þ oðe2Þ,

)
ð3:9Þ
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where comma denotes the partial derivative. Thus, the right Cauchy–Green strain tensor becomes

C ¼ FTF

¼ ðIþ erkuþr?uÞTðIþ erkuþr?uÞ
¼ Iþ erkuþr?uþ eðrkuÞT þ e2ðrkuÞTrkuþ eðrkuÞTr?u

þ ðr?uÞT þ eðr?uÞTrkuþ ðr?uÞTr?u

¼ Iþ e2Aþ oðeÞ2, ð3:10Þ
where the tensor A is defined as

A ¼ 2 symrU� 2Zrrjþ ðkrjk2 þ 2W ,ZÞEZ � EZ þrj�rj, ð3:11Þ

here we have set U ¼ Um
1 , j ¼ j

m
0 for the sake of simplicity. At the leading order, the incompressibility

constraint reads trA ¼ 0, that imposes

W ,Z ¼ ZDj�r �U� krjk2, ð3:12Þ

where D ¼ r � r is the Laplace operator. The tensor A affinely depends on Z. More explicitly, we write

A ¼ C0 þ ZC1, ð3:13Þ
with

C0 ¼ 2 symrU� ðkrjk2 þ 2r �UÞEZ � EZ þrj�rj

and C1 ¼ 2DjEZ � EZ � 2rrj:

9=
; ð3:14Þ

In appendix A, we report the explicit expression of the tensors in (3.14) using the canonical basis (EX, EY,
EZ). Finally, for future convenience, we also recall that the asymptotic expansion of the inverse of C reads

C�1 ¼ I� e2Aþ oðe2Þ: ð3:15Þ
3.2. Scaling assumptions on the initial stress
Under the constitutive assumption given by (3.5), we define the dimensionless initial stress tensor as
t ¼ t=E. We assume the following scaling for the initial stress tensor:

t ¼ e2t2 þ e3t3 þ e4t4, ð3:16Þ
with

t2 ¼ tXXEX � EX þ tXYðEX � EY þ EY � EXÞ þ tYYEY � EY,

t3 ¼ 2 sym (ðtXZEX þ tYZEYÞ � EZ)

and t4 ¼ tZZEZ � EZ,

9>=
>; ð3:17Þ

where tij ¼ tijðXÞ ¼ Oð1Þ, with i, j =X, Y, Z. Substituting (3.16) into (2.1), the equilibrium equation in the
undeformed configuration reads

tXX,X þ tXY,Y þ tXZ,Z ¼ 0,
tXY,X þ tYY,Y þ tYZ,Z ¼ 0

and tXZ,X þ tYZ,Y þ tZZ,Z ¼ 0:

9=
; ð3:18Þ

If the top and bottom surfaces are free of traction, i.e. tiZðX, Y, +1Þ ¼ 0, the previous equation can be
further simplified by integration in the Z-directionð1

�1
ðtXX,X þ tXY,YÞdZ ¼ 0,ð1

�1
ðtXY,X þ tYY,YÞdZ ¼ 0

and
ð1
�1
ðtXZ,X þ tYZ,YÞdZ ¼ 0:

9>>>>>>>=
>>>>>>>;

ð3:19Þ
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We define the averaged planar initial stress tensor tm as

tm ¼ 1
2

ð1
�1

[tXXEX � EX þ tXYðEX � EY þ EY � EXÞ þ tYYEY � EY] dZ: ð3:20Þ

The leading order of (3.19) can be automatically fulfilled by introducing the dimensionless initial Airy
stress function x0 : S

m ! R, so that

tm ¼ cofðrmrmx0Þ, ð3:21Þ
whererm is the dimensionless gradient operator in R2, cofA is the cofactor of the tensor A. For the sake of
clarity, using Cartesian coordinates, we get

tm ¼ x0,YY �x0,XY�x0,XY x0,XX

� �
: ð3:22Þ

Under these assumptions, we get It1/E =O(e2), It2/E
2 =O(e4), It3/E

3 =O(e8). From (2.6), the leading
order expression of the dimensionless term r ¼ r=E is

r ¼ 1
3
(1� e2 tr t2)þ oðe2Þ: ð3:23Þ

Using (2.7), (3.15) and (3.16), the components of the dimensionless second Piola–Kirchhoff stress tensor
S ¼ S=E scales as follows:

Ea � SEb ¼ Oðe2Þ, Ea � SEZ ¼ Oðe3Þ, EZ � SEZ ¼ Oðe4Þ, a, b [ fX, Yg, ð3:24Þ

where the latter scaling is enforced by imposing that the dimensionless Lagrange multiplier p ¼ p=E
reads

p ¼ rþ e2

3
EZ � AEZ þ oðe2Þ: ð3:25Þ

In particular, we remark that (3.24) corresponds to the classical FvK scaling for the stress tensor, and
justifies the mathematical soundness of the Kirchhoff assumption for the displacement field in (3.3)
and (3.5) in the presence of initial stress components which scale as in (3.16). The leading-order
components of the stress tensor read

S ¼ (S0 þ ZS1 þ t2)e2 þ oðe2Þ, ð3:26Þ
with

Sj ¼ 1
3
(Cj � EZ � CjEZI), j ¼ 0, 1: ð3:27Þ

We remark that both S0 and S1 are independent of Z, since they depend on Xk through j and U.
3.3. Variational formulation
Let E ¼ E=ðEHL2Þ be the dimensionless counterpart of the elastic energy. From now on, we will refer only
to dimensionless variables (unless differently specified) and we drop the use of the superposed line to
indicate the non-dimensional quantities. We now perform a variational derivation of the generalized
FvK theory for an initially stressed material by imposing the stationary conditions for the total elastic
energy functional E. Neglecting traction loads at the boundary and body forces for the sake of
simplicity, the first variation of the dimensionless energy reads

dE ¼
ð
Sm

ð1
Z¼�1

1
2
S : dCdZdS, ð3:28Þ

where dS = dXdY and A :B ¼ trðATBÞ. From (3.10), (3.13) and (3.14), the increment of the right Cauchy–
Green tensor C reads

dC ¼ (symrdU� 2Zrrdjþrdj�rjþrj�rdj) e2 þ dCZZEZ � EZ þ oðe2Þ, ð3:29Þ

where dCZZ is the increment of EZ � CEZ.
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Since S0 and S1 are symmetric and S0EZ ¼ S1EZ ¼ 0, we can introduce the tensors Sm0 and Sm1

which are their projection onto SðR2Þ. Substituting (3.26) and (3.29) into (3.28), we get

dE ¼ dEs þ dEb, ð3:30Þ
where dEs and dEb are the increments due to average planar stretching and bending of the plate,
respectively. They are defined as

dEs ¼ 2e4
ð
Sm

(Sm0 þ tm) :rmdUdSþ oðe4Þ ð3:31Þ

and

dEb ¼ 2e4
ð
Sm

� 1
3
Sm1 þM

� �
: (rmrmdj)þ ðSm0 þ tmÞrmj � rmdj

� �
dSþ oðe4Þ, ð3:32Þ

where M is the dimensionless tensor representing the average bending torques imposed by the initial
stress, defined as

M ¼ 1
2

ð1
�1

Z[tXXEX � EX þ tXYðEX � EY þ EY � EXÞ þ tYYEY � EY] dZ, ð3:33Þ

which vanishes if tαβ are even functions of Z, with α, β∈ {X, Y}.
In the following, we detail such contributions, deriving the corresponding FvK equations as the

necessary conditions for their extremal values.

3.3.1. Föppl–von Kármán equation for the average planar stretch

Integrating by parts (3.31) and neglecting the remainder, we get

dEs ¼ �2e4
ð
Sm

[rm � (Sm0 þ tm)] � dUdSþ b:t:, ð3:34Þ

where we write + b.t. to indicate boundary terms. Accordingly, imposing dEs ¼ 0 for each admissible
variation dU, we get rm � ðSm0 þ tmÞ ¼ 0. This equation is automatically fulfilled by introducing the
Airy stress function χ as:1

Sm0 þ tm ¼ cofrmrmx, ð3:35Þ
Substituting (3.21)–(3.27) into (3.35), we finally obtain

D2
mðx� x0Þ þ ½j, j� ¼ D2

mxþ (½j, j� � CG) ¼ 0, ð3:36Þ

where Dm ¼ rm � rm is the Laplace operator in R2 and the bracket operator is the Monge–Ampére
bilinear form

½a, b� ¼ 1
2
(cofrmrma) :rmrmb ð3:37Þ

and CG ¼ D2
mx0 plays the role of a spontaneous Gaussian curvature imposed by the planar initial stress.

3.3.2. Föppl–von Kármán equation for the average bending stretch

Using (3.27) in (3.32) and neglecting the remainder, we integrate by parts, obtaining

dEb ¼ 2e4
ð
Sm

4
9
D2
mj�rm � (rm �M)�rm � ððSm0 þ tmÞrmjÞ

� �
djdS þ b:t: ð3:38Þ

By substituting (3.35) into (3.38) and imposing dEb ¼ 0 for each admissible variation dξ, we finally get

2
9
D2
mj�

1
2
rm � rm �Mð Þ � ½x, j� ¼ 2

9
D2
mj� DmCM

� �� ½x, j� ¼ 0, ð3:39Þ

where DmCM ¼ 9
4rm � ðrm �MÞ, so that CM represents the spontaneous mean curvature imposed by the
1The existence of the Airy stress function can be shown by using some standard theorems of the theory of distributions (see [46], p. 59,
Théoréme VI). For multiply connected domains, one could proceed following the procedure proposed in ([7], pp. 61–66).
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initial stress distribution. In appendix A, we show the explicit expressions of the FvK equations in
Cartesian and polar coordinates.
oyalsocietypublishing
4. Physical examples
In this section, we provide a few physical examples showing the morphology of the solutions of the FvK
equations (3.36)–(3.39) for different distributions of the initial stress within the elastic plate.
 .org/journal/rsos

R.Soc.Ope
4.1. Planar initial stress
Let us start by considering a planar distribution of the initial stress. Since t does not depend on Z, the
corresponding average bending torques vanish, i.e. M ¼ 0. Accordingly, such an initial stress
distribution may impose only a non-zero spontaneous Gaussian curvature CG in (3.36), while CM = 0
in (3.39). For the sake of clarity, we discuss in the following some physical examples exhibiting
different spontaneous Gaussian curvatures.
n
Sci.9:220421
4.1.1. Positive spontaneous Gaussian curvature

Let R, Q be the polar coordinates of the generic point Xk [ Sm. Let us first consider an initial stress
distribution having an Airy stress function given by

x0ðR, QÞ ¼ c2

64
R4, ð4:1Þ

with c being a characteristic dimensionless stress parameter, and the planar initial stress tensor tm reads

tm ¼ c2R2

16
(ER � ER þ 3EQ � EQ): ð4:2Þ

From equation (3.36), the spontaneous Gaussian curvature is positive and constant, being

CG ¼ c2 . 0: ð4:3Þ
We look for a solution such that the second Piola–Kirchhoff stress tensor vanishes. In such a case,
equations (3.36)–(3.39) simplify as

½j, j� � c2 ¼ 0, D2
mj ¼ 0, ð4:4Þ

where the former is a Monge–Ampére equation. Using polar coordinates, we get

½j, j� ¼ � j2,Q
R4 þ

2j,RQj,Q
R3 þ j,QQj,RR

R2 � j2,RQ
R2 þ j,Rj,RR

R

and D2
mj ¼

R2j,RRRR þ 2Rj,RRR � j,RR þ 2j,RRQQ

R2 þ j,R � 2j,RQQ

R3 þ 4j,QQ þ j,QQQQ

R4 :

9>>>=
>>>;

ð4:5Þ

A solution to equation (4.4) such that ξ depends only on R is given by

jðRÞ ¼ c
2
R2, ð4:6Þ

which corresponds to a buckling of the plate, as illustrated in figure 2.
4.1.2. Negative spontaneous Gaussian curvature

We now consider the following Airy stress function

x0ðR, QÞ ¼ � c2R2nþ4

(4n2 þ 12nþ 8)2
, n [ N, ð4:7Þ

with c being a characteristic dimensionless stress parameter. Accordingly, the planar initial stress reads

tm ¼ � c2ð2nþ 4ÞR2nþ2

(4n2 þ 12nþ 8)2
(ER � ER þ ð3þ 2nÞEQ � EQ): ð4:8Þ
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Figure 2. Plot of actual buckled configuration of the elastic plate (using dimensional variables) as given by (4.6) for the initial stress
distribution in (4.2). We have set H = 0.01, L = 1 and c = 80, where Sm ¼ fY [ R2 j kYk , 1g.
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From (3.36), the spontaneous Gaussian curvature is negative, being

CG ¼ �c2R2n , 0, ð4:9Þ
where we have a constant Gaussian curvature if n = 0. Seeking for a solution that cancels the second
Piola–Kirchhoff stress tensor, equations (3.36)–(3.39) become a Monge–Ampére and a biharmonic
equation, respectively, namely

½j, j� þ c2R2n ¼ 0 and D2
mj ¼ 0: ð4:10Þ

It is easy to check that these equations admit a solution for each n [ N of the form

jðR, QÞ ¼ cRnþ2 sinððnþ 2ÞQÞ
n2 þ 3nþ 2

: ð4:11Þ

In particular, the solution for n = 0 corresponds to a twisting of the plate, as illustrated in figure 3.

4.1.3. Concentrated Gaussian curvature in thin plates

In this subsection, we consider the case of large deflections ξ, so that the bending term D2
mj in equation

(3.39) can be neglected [36]. In this case, if χ = 0 the second FvK equation is automatically satisfied while
the first FvK equation (3.36) becomes the Monge–Ampére equation

½j, j� ¼ D2
mx0: ð4:12Þ

We now consider the initial Airy stress function

x0ðR, QÞ ¼ aR2

4
ðlogR� 1Þ, ð4:13Þ

which corresponds to the planar initial stress tensor

tm ¼ a

4
ð2 logRþ 1ÞI� a

2
ER � ER: ð4:14Þ

We get that D2
mx0 ¼ adðRÞ=R, where d(R) is a Dirac delta such thatðþ1

0
f ðRÞdðRÞdR ¼ f ð0Þ: ð4:15Þ
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Figure 3. Plot of actual buckled configuration of the elastic plate (using dimensional variables) as given by (4.11) for the initial
stress distribution in (4.8). We have set H = 0.01 and L = 1, where Sm ¼ fY [ R2 j kYk , 1g. The other parameters are (a)
n = 0, c = 80; (b), n = 1, c = 200; (c), n = 2, c = 400; (d ), n = 3, c = 800.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220421
10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ay
 2

02
2 
If the second Piola–Kirchhoff stress tensor vanishes, the first FvK equation (3.36) becomes

� j2,Q
R4 þ

2j,RQj,Q
R3 þ j,QQj,RR

R2 � j2,RQ
R2 þ j,Rj,RR

R
¼ a

dðRÞ
R

, ð4:16Þ

which admits as solutions the functions jðR,QÞ ¼ gðQÞR, where gðQÞ must satisfy the relation [8]ð2p
0

gðQÞ(g00ðQÞ þ gðQÞ) dQ ¼ 4pa: ð4:17Þ

Some solutions of equation (4.16) are given by Xu et al. [47]

jðR, QÞ ¼
ffiffiffiffiffiffi
2a

p
R, if a . 0

and jðR, QÞ ¼ 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�a

m2 � 1

r
sinðmuÞ, if a , 0, with m [ Nnf0, 1g:

9>=
>; ð4:18Þ

The plots of some of these solutions are shown in figure 4.

4.1.4. Inhomogeneous spontaneous Gaussian curvature

Let us now consider an initial Airy stress function given by

x0ðX, YÞ ¼ �c2 e�2k X, ð4:19Þ
with c being a characteristic dimensionless stress parameter and k > 0 a characteristic dimensionless decay
length. It corresponds to a uniaxial compression along the Y-axis that is inhomogeneous along the X-axis,
and the only non vanishing initial stress component is

tmYY ¼ �4k2c2 e�2kX: ð4:20Þ
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Figure 4. Plot of the vertical deflection ξ of the elastic plate as given by (4.18) for the initial stress distribution in (4.14) where we
set α = 1 (a) and α =−1 (b,c). In the solutions for α =−1, we fix m = 2 (b) and m = 3 (c).
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From (3.36), the spontaneous Gaussian curvature is also inhomogeneous, being

CG ¼ �16c2k4 e�2kX: ð4:21Þ

This inhomogeneous expression for CG was obtained in [28] using a different approach, based on
imposing an incompatible distortion of the elastic metric. Through the cancellation of the second
Piola–Kirchhoff stress tensor in the actual configuration, equations (3.36)–(3.39) simplify as the
following Monge–Ampére and biharmonic equations:

½j, j� þ 16c2k4 e�2kX ¼ 0, D2
mj ¼ 0: ð4:22Þ

Assuming variable separation, we set ξ = f (Y ) e−kX so that (4.22) can be transformed in the following
nonlinear ordinary differential system:

16c2k2 � f 02 þ f f 00 ¼ 0 and k4f þ 2k2f 00 þ f 0000 ¼ 0: ð4:23Þ

A solution of (4.23) is given by f = 4c sin (kY), so that the vertical deflection is

j ¼ 4c sinðkYÞ e�kX, ð4:24Þ

that corresponds to a sinusoidal oscillation along the Y-axis that decays exponentially along the X-axis
with a decay length k and an amplitude proportional to c. The resulting morphology of the middle
plane of the initially stressed plate is depicted in figure 5.
4.2. Initial stress varying along the plate thickness
We finally consider the case in which the initial stress is allowed to vary along the plate thickness. For the
sake of simplicity, we take t ¼tðX, ZÞ, with tYY = tXY = tYZ = 0. In this case, from (3.18), we can define an
Airy stress function F ¼ FðX, ZÞ such that

tXX ¼ F,ZZ, tXZ ¼ �F,XZ and tZZ ¼ F,XX: ð4:25Þ

In particular, assuming that tXZ|Z±1 = tZZ|Z±1 = 0, a leading order expansion of F along the vertical
direction gives

F ¼ Z3

3
� Z

� �
ða1X þ a0Þ þ b Z2, ð4:26Þ

where a0, a1 and b are dimensionless stress parameters. The only non-zero components of the average
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Figure 5. Plot of the vertical deflection ξ of the elastic plate as given by (4.24) for the initial stress distribution in (4.20) where we
set c = 1 and k = 20.
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initial stress tensor tm and torque tensor M are the following:

tmXX ¼ 2b, tmXZ ¼ 2
3
a1, MXX ¼ 2

3
ða1X þ a0Þ: ð4:27Þ

Accordingly, the parameter b determines the characteristic amplitude of the average initial
stress, while a0, a1 determine the magnitude of the initial bending torque. Since tmXX is a constant, the
initial stress distribution has zero spontaneous Gaussian curvature, i.e. CG = 0. Assuming ξ = ξ(X ),
since [ξ, ξ] = 0 equation (3.36) is automatically satisfied if χ = χ0 = bY2. The torque distribution in (4.27)
imposes a spontaneous average curvature CM ¼ 3

2 ða1X þ a0Þ, and equation (3.39) reads

2
9
j
00 � bj� 1

3
ða1X þ a0Þ ¼ 0: ð4:28Þ

If the average initial stress is zero, i.e. if b = 0, then the solution corresponds to a bending deflection
having exactly the curvature CM, with

j ¼ 3
4

a0X2 � ða1X3Þ
3

� �
þ C1 þ C2X, ð4:29Þ

where C1, C2 are two constants of integration that must be fixed by boundary conditions.
If the average initial stress does not vanish, i.e. b≠ 0, the deflection reads

j ¼ � a0 þ a1X
3b

þ C1 sinh
3X

ffiffiffi
b

p
ffiffiffi
2

p
 !

þ C2 cosh
3X

ffiffiffi
b

p
ffiffiffi
2

p
 !

: ð4:30Þ

If the average uniaxial stress is tensile, i.e. b > 0, than the deflection has an exponential trend; if it is
compressive, i.e. b < 0, than the deflection has the characteristic sinusoidal behaviour of an Euler
buckling where the symmetry is broken by a spontaneous average curvature. Two possible bending
morphologies of the middle line of the plate are depicted in figure 6.

Thus, in the limit of narrow plates, the governing equation (4.28) recovers the Euler beam theory for
elastic rods, where the average initial stress tmXX appears as a traction load, and MXX as a distributed
torque provoking a spontaneous curvature.
5. Concluding remarks
In this work, we have derived the FvK equations for an elastic plate with initial stress. The reference
configuration of the plate is a parallelepiped, whose thickness 2H along the z-direction is much
smaller than the characteristic length L of its edges. We have identified with e =H/L the
dimensionless parameter describing the thinness of the plate. Adopting the theoretical framework of
initially stressed materials developed in [41], the elastic energy of the plate is obtained by an
asymptotic expansion with respect to the small parameter e.



1.5

(a)

(b)

1.0

0.5

0
0

0.5

1.0
0

0.5

1.0

Y

X

ξ

1.5
1.0
0.5

–0.5
–1.0

0

0

0.5

1.0
0

0.5

1.0ξ

Y

X
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More explicitly, we have assumed that the plate is composed of an incompressible neo-Hookean
material, whose strain energy depends on both the deformation gradient and the initial stress, see
(2.5). Assuming the classical Kirchhoff hypothesis for the displacement of the plate (see (3.3)–(3.5)), we
used the scaling for the initial stress components reported in (3.16).

Under these assumptions, we have obtained the balance equation through a variational approach,
by enforcing that the energy functional be stationary. The equilibrium equations (3.36) and (3.39)
generalize the FvK equations for the average planar and bending stretch, respectively, to the case of initially
stressed plates.

We have solved the FvK equations in some physical examples of engineering interest. By tuning the
initial stress distribution within the plate, we have obtained buckled configurations exhibiting a constant
positive or negative Gaussian curvature. Furthermore, it is possible to obtain surfaces with non-constant
Gaussian curvature by properly tuning the initial stress of the plate. In particular, we propose some new
solutions with a radially inhomogeneous Gaussian curvature. We have also recovered some known
explicit solutions of the FvK equations, such as the conical solutions proposed by Ben Amar &
Pomeau [8] for thin plates, where the initial stress exhibits logarithmic singularities, and the solution
for a geometrically frustrated FvK plate reported in [28]. Finally, we analysed the effect of an initial
stress that varies along the plate thickness. The plate spontaneously bends when the initial stress
along the X-direction is non-negative, while it exhibits a wrinkling pattern if it is compressive,
similarly to Euler buckling of elastic beams. In the case of more complex initial stress distributions,
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e.g. exhibiting checkerboard or labyrinth patterns, it is unlikely that analytical solutions can be found and
approximated solutions of the proposed equations may be found exploiting numerical techniques, such
as the finite-element method.

In conclusion, we have derived the FvK equations for an initially stressed plate using a formal
dimensional reduction of a nonlinear strain energy function depending explicitly on both the
deformation gradient and the initial stress tensor. The main advance of the proposed approach is to
unravel the effects of the initial stress distribution on the spontaneous average and Gaussian curvatures
of the plate without the need to prescribe incompatible pre-strains, as required in earlier works [28,35].
In fact, unlike pre-straining, the initial stress distribution within the body can be measured by means of
non-destructive techniques, such as ultrasound elastography [48] or photoelasticity [49]. Moreover, a
target initial stress distribution can be physically realized using modern digital fabrication techniques,
such as four-dimensional printing [18,25] and UV lithography [50]. Thus, the results of the proposed
model may be used to design residually stressed objects in proximity to an elastic bifurcation [51], with
the aim of fabricating shape-shifting plates able to adapt their morphology in the presence of external
stimuli, such as a chemical potential [52] or an electric field [53].
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Appendix A. Expression of the tensor C and of the Föppl–von Kármán
equations in Cartesian coordinates
In this appendix, we express the right Cauchy–Green tensor C and the FvK equations using a Cartesian
coordinate system. In the following, all the quantities are dimensionless.

Let U(X, Y ) and V(X, Y ) be the components of U(X, Y ) with respect to the basis EX and EY, namely

UðX, YÞ ¼ UðX, YÞEX þ VðX, YÞEY: ðA 1Þ
The right Cauchy–Green tensor reads C ¼ Iþ e2Aþ oðe2Þ, where A ¼ C0 þ ZC1 and

C0 ¼
j2,X þ 2U,X j,Xj,Y þU,Y þ V,X 0

j,Xj,Y þU,Y þ V,X j2,Y þ 2V,Y 0

0 0 �krjk2 � 2U,X � 2V,Y

2
64

3
75,

C1 ¼
�2j,XX �2j,XY 0

�2j,XY �2j,YY 0

0 0 2Dj

2
64

3
75:

ðA 2Þ

Finally, in order to retrieve the FvK equations using the canonical vector basis (EX, EY, EZ), we recall
that

½a, b� ¼ 1
2
ða,XXb,YY þ a,YYb,XX � 2a,XYb,XYÞ: ðA 3Þ

so that equation (3.36) becomes

j,XXj,YY � j2,XY þ x,XXXX þ 2x,XXYY þ x,YYYY � x0,XXXX � 2x0,XXYY � x0,YYYY ¼ 0, ðA 4Þ

while equation (3.39) is given by

2
9
(j,XXXX þ 2j,XXYY þ j,YYYY)�

1
2
(MXX,XX þ 2MXY,XY þMYY,YY)þ 1

2
(2j,XYx,XY � j,XXx,YY � j,YYx,XX) ¼ 0:

ðA 5Þ
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