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We present a novel algorithm for the many-body Dissipative Particle Dynamics (DPD) forces calculation 
which allows to efficiently scale the DL_MESO software package on Multiple General Purpose Graphic 
Processing Units. Together with the extension to 64-bit integer arrays and addition of hard surface 
boundary conditions, the proposed algorithm allows to simulate very large complex mesoscale systems 
up to 14 billion beads. The implementation takes advantages of the CUDA language stream features 
to overlap the exchange of particle positions and local densities and the computation of the short 
range forces. We tested a water drop between two plates system using tree of the main European 
supercomputers: Piz Daint, Marconi and JUWELS. Results shows an improvement on the speedup 
compared to a naive implementation up to 1.5x when using 1024 GPUs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the range of mesoscale simulations, i.e. between 10−9 and 
10−6 meters, the Dissipative Particle Dynamics (DPD) [1,2] is one 
of most popular approaches due to its capability in accounting 
for the molecular properties of the chemical species, their global 
effects as continuum fluids, its algorithmic simplicity and its enor-
mous versatility [3]. Groups of atoms and/or molecules are usually 
represented via coarser beads allowing a larger time step com-
pared to Molecular Dynamics (MD) simulations. A large number 
of beads recovers the Navier-Stokes equations behaviour, but with 
the advantage of keeping the fluctuation-dissipation effects usually 
neglected in classical Computational Fluid Dynamic (CFD) solvers.

However, one of the main limitations of standard DPD [2], i.e. 
where there is a linear potential depending only on the inter-
particle separation distance, is the quadratic equation of state for 
the system. This limit does not allow to study complex systems 
where two phases have strong density variations with pressure 
and chemical species. The many-body DPD method [4,5] provides 
a solution making the conservative forces depending also from a 
local density. This needs to be calculated at every iteration and 

✩ The review of this paper was arranged by Prof. David W. Walker.

* Corresponding author.
E-mail address: jony.castagna@stfc.ac.uk (J. Castagna).
https://doi.org/10.1016/j.cpc.2022.108472
0010-4655/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
requires the particle positions. For parallelization via typical do-
main decomposition, the particle position needs to be exchanged 
between domains. The impact of this exchange, occurring via the 
network bus, is usually detrimental for scalability.

Particle based solvers, like DPD and more in general MD solvers, 
can easily benefit from General Purpose Graphic Processing Units 
(here after GPUs) accelerators. In particular, NVidia GPUs are cur-
rently widely spread in the top500 supercomputer HPC thanks to 
their higher peak performance and memory bandwidth when com-
pared to traditional CPUs. They can be programmed in different 
ways, some more portable than others, but high tuning perfor-
mance usually requires the use of the specific Compute Unified 
Device Architecture (CUDA) language developed by NVidia itself. 
Great speedup can be easily achieved after memory reorganization 
and ad hoc tuning as reported in AMBER [6], LAMMPS [7], GRO-
MACS [8], NAMD [9], ACEMD [10] and HOOMD-blue [11].

To the authors knowledge, LAMMPS has the closest implemen-
tation of the many-body DPD algorithm on GPU to the one here 
presented. The USER-MESO extension package, written in CUDA 
C/C++ with MPI library and OpenMP directives for parallelization, 
has been used by Xia et al. [12,13] to simulate flow in nano-porous 
rocks, but there is no mention of the overlap between local density 
calculation and communication.

In a previous paper we presented a porting to CUDA of the 
DL_MESO DPD solver [14] for mesoscale simulations. Results 
showed a strong scaling efficiency > 85% when simulating systems 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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with low density variations, like phase separation between oil and 
water. In this paper we extend the implementation on CUDA to 
include: a) a many-body DPD algorithm for strong density varia-
tions which allows to keep the same scaling efficiency observed 
for quasi-similar density systems; b) wall boundary conditions via 
frozen surfaces and c) the use of integer 64-bit arrays to simu-
late systems with more than 2 billion beads. A description of the 
DPD mathematical formulation is given in section 2 while details 
on the many-body DPD implementation are in section 3. Finally, in 
section 4 we presents results on performance on a single GPU us-
ing different GPU cards, strong and weak scaling up to 1536 GPUs 
on a water drop between two surfaces and the evidence of over-
lap between communication and computation obtained using the 
NSight System profiler.

DL_MESO [15] is a software package for mesoscale simulations 
made of two separate components: a particle dynamic solver based 
on DPD and a fluid dynamic solver based on the Lattice Boltzmann 
Equation (LBE) methodology. It has been developed at UKRI-STFC 
Daresbury Laboratory, mainly by Dr Micheal Seaton. It has been 
mainly funded by the United Kingdom Collaborative Computational 
Project for the Computer Simulation of Condensed Phases CCP5, 
however the multi-GPU version here presented has been devel-
oped under the E-CAM project founded by the EU. DL_MESO is 
available free of charge to academic scientists pursuing research of 
a non-commercial nature and for a fee for industrial applications. 
The single and multi-GPU versions used in this paper are available 
on the git repository DL_MESO under the single_GPU_version and 
multi_GPU_version branches.

2. Mathematical model

Here we present the DPD mathematical formulation, the nu-
merical scheme used in DL_MESO and the many-body DPD equa-
tions. More details can be found in the DL_MESO manual and in 
the work of Seaton et al. [15].

2.1. Equations of DPD

Forces between particles in DPD can be mainly split in three 
components: 1) a pairwise soft potential repulsive force FC

i j = Aij ; 
2) a drag force FD

ij which accounts of the viscosity and friction 
between particles and 3) a stochastic force FR

i j which balances the 
drag force and keeps the system temperature constant. For each 
particle, the overall force is then given by:

Fi =
N∑

i �= j

(FC
i j + FD

ij + FR
i j) (1)

The damping drag force balances the stochastic force in order 
to satisfy the fluctuation-dissipation theorem and maintain ther-
modynamic equilibrium. All forces are pairwise, i.e. Fi j = −F ji and 
are defined as:

FC
i j = Aijω

C (ri j)ei j (2)

FD
ij = −γi jω

D(r/i j)(ei j · vi j)ei j (3)

FR
i j = σi jω

R(ri j)εi j(�t)−(1/2)ei j (4)

where ri j = r j − ri , ri j = |ri j |, ei j = ri j/ri j . ωC , ωD and ωR are the 
switching functions for the soft potential, drag and random forces, 
2

respectively. Aij , γi j and σi j are the conservative interaction, dis-
sipative and random force coefficients between particles i and j, 
respectively. The values of εi j represent symmetric random Gaus-
sian variables, possessing zero mean and unit variance, that are 
uncorrelated for different pair of particles and different times.

While in MD particles have a hard core due to the strong 
non linear potential, in DPD the soft potential allows particle 
to overlap and cross each other. The conservative potential usu-
ally is chosen as a linear function of the distance between two 
particles, i.e. ωC = 1 − ri j/rc for ri j < rc . The satisfaction of the 
fluctuation-dissipation theorem provides a thermostat within the 
canonical ensemble and additionally conserves both the total mo-
mentum of the system and local momenta for particle pairs. As 
explained by Espanol and Warren [16], this condition occurs when 
σ 2 = 2γi j K B T and ωD(ri j) = [ωR(ri j]2.

2.2. Numerical methods

To obtain a numerically stable solution, the Verlet Velocity (VV) 
scheme is usually used [17].

This consists of splitting the time integration in 2 stages. In the 
first stage, the particle velocities are advanced to time t + �t

2 , us-
ing the forces calculated at time t . The particle positions are then 
advance to t + �t:

vi

(
t + �t

2

)
= vi(t) + �t

2

Fi(t)

mi
(5)

ri(t + �t) = ri(t) + vi

(
t + 1

2
�t

)
�t (6)

In the second stage, the velocities are updated to time t + �t:

vi(t + �t) = vi(t + �t

2
) + �t

2

Fi(t + �t)

mi
(7)

A naïve calculation of force interactions between all particle 
pairs would require a O(N2) (where N is the number of particles) 
search algorithm, which will easily limit its practicability to large 
systems. The VV scheme is then usually applied in combination 
with a cell linked-list method [18], which reduces the computa-
tion to O(N). The cell linked-list method consists of finding each 
particle’s neighbouring particles within a cut-off radius at least as 
large as the maximum extent for the soft conservative potential 
(rc).

The DL_MESO DPD code is written in Fortran 2003 with MPI, 
while the single and multi-GPU versions are written in CUDA lan-
guage. To guarantee full compatibility with the CPU version, the 
GPU versions uses the same Fortran 2003 subroutines for initial-
ization and IO operations, including MPI_IO for parallel file writing. 
However, the main loop for time step integration and all the cor-
related computing functions have been ported to CUDA. Moreover, 
a reorganization of the memory layout allows to achieve a ∼ x4
speedup when compared to a traditional 24-core CPU as presented 
in the section 4. More details on the DPD equations and the nu-
merical methods used in the single and multi-GPU versions can be 
found in the work of Castagna et al. [14].

2.3. Equations for many-body DPD

To take in account of thermodynamic equations of state differ-
ent from the quadratic relation p = f (ρ2), we calculate an instan-
taneous free-energy:

˜Gex =
∑

i

ψex(ρ̃i) (8)

and obtain the conservative force as the spatial derivative

https://www.ccp5.ac.uk
https://www.e-cam2020.eu/
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�F C
i = −∂ ˜Gex

∂ �ri
= −

∑
j

∂ψex(ρ̃i)

∂ �ri
(9)

where the local-density approximation ρ̃i can be expressed as:

ρ̃i =
∫

d�rωρ(|�r − �ri |)ρ(�r,{ �rk
}
)

=
∑
j �=i

∫
d�rωρ(|�r − �ri |)δ(�r − �r j)

=
∑
j �=i

ωρ(ri j)

(10)

and ωρ is the weight function usually defined as:

ωρ = 15

2πr3
d

(
1 − ri j

rd

)2

(ri j < rd) (11)

To obtain the pairwise conservative force:

�F C
i j =

(
∂ψex(ρ̃i)

∂ρ̃i
+ ∂ψex(ρ̃ j)

∂ρ̃ j

)
ωC (ri j)

�ri j

ri j
(12)

A van der Waals-like equation of state can be obtained setting:

ψex(ρ̃) = π

30
Aij ¯̄ρ + πr4

d

30
Bijρ̃

2 (13)

where ρ̃ is the same as ρ̃ but with the cutoff set to rc instead of 
rd ( ¯̄ρ). In this case, the force associated is:

�F C
i j =

[
Aij

(
1 − ri j

rc,i j

)
+ Bij(ρi + ρ j)

(
1 − ri j

rd

)] �ri j

ri j
(14)

and setting Aij < 0 and Bij > 0 we obtain the following vapour/liq-
uid equation of state:

p = ρkB T + αAρ2 + 2αBr4
d(ρ3 − cρ2 + d) (15)

where α, c and d can be specified in the input files of DL_MESO.

3. Scalable many-body DPD algorithm

In [14] is showed the importance of a correct overlap between 
computation and communication in order to achieve good scala-
bility on the multi-GPU version of DL_MESO. To avoid duplicating 
the force calculation kernel, a distinction between internal cells and 
boundary cells is made (see Fig. 1). We will refer hereafter as inter-
nal particles those which lie in the internal cells, boundary particles
those within the boundary cells and finally as ghost particles those 
in the ghost cells which are used to exchange data between differ-
ent domains. A flag controls the switch in the kernel between the 
internal and boundary particles. However, as seen in the previous 
section, the many-body calculation requires an extra information, 
the local-density, to correctly obtain the potential forces. This de-
pends on the particle positions, so a first swap of their coordinates 
is necessary. Then, the local densities need also to be swapped, 
adding an extra communication to the overall procedure and, most 
crucially, not allowing the overlap between communications and 
computation of internal cells forces as done in [14]. A naive imple-
mentation would follow the diagram in Fig. 2a.

To avoid this serialization communication → computation we 
propose to split the local-density as follows:

ρi = ρ in
i + ρ ib

i + ρ
bg
i (16)

where ρ in
i is the local-density component due to internal particles 

only, ρ ib
i is the component due to the interaction between inter-

nal and boundary particles and finally ρbg is the component due 
i

3

Fig. 1. Internal, boundary and ghost cells for a single GPU domain.

to the interaction between boundary and ghost particles. We then 
divide the potential forces calculation as follows:

f i j = f ′
i j + f ′′ (17)

where f ′
i j is the force on the internal cell particles due to local 

densities ρ in
i and ρ ib

i , while f ′′ is the contribution due to ρbg
i

which applies to both internal particles (those at the border with 
the boundary) and boundary particles. This split is possible due 
the force calculation being a linear operator function of the local-
density.

We then proceed as in the Algorithm 1:

Algorithm 1: Split force calculation algorithm.

find local-density ρ in
i + ρ ib

i ;
find f ′ (CUDA stream 1);
for each direction do

swap particle positions CUDA (stream 2);

find ρbg
i (CUDA stream 2);

swap local densities (CUDA stream 2);
end
find f ′′;

The above split allows to overlap the computation of f ′ with 
the swap of particle positions, calculation and swap of local densi-
ties ρbg

i using two different CUDA streams. We will refer hereafter 
to stream 1 as streamCompute and the stream 2 as streamExchange. 
Note as the calculation of the forces and densities for the internal 
particles is executed forward looking, i.e. taking advantage of 3rd 
Netwon’s law (xij = −x ji and Fij = −F ji ), while for the boundary 
particles we do and explicit calculation looking in all directions.

3.1. Other improvements

In this section we will look into the details of the 3 main 
improvements implemented in DL_MESO multi-GPU version com-
pared to the version presented in [14]: 1) the extension to 64-bit 
integer arrays; 2) the implementation of wall boundary conditions.

3.1.1. Extension to LONG INT and hard surfaces boundary conditions
The master version of DL_MESO does not support systems 

larger than 2 billion particles (231-1 in theory). This is due to the 
use of INTEGER 32 bit Fortran arrays across the code. The main 
reason for this choice was linked to very long integration times re-
quired to achieve thermodynamic equilibrium, even with a small 
number of particles. However, the use of multi-GPU architectures 
allows to drastically accelerate the solver and then to simulate very 
complex phenomena like macropolymer chains. The use of LONG 
INTEGER arrays (64 bit, i.e. 263-1 max particles) allows to move 
beyond the current limit, leaving the GPU memory as the only 
constrain to the size of the system. However, this change makes 
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Fig. 2. a) naive implementation of many-body DPD algorithm which does not allow to overlap computation with communication. b) scalable parallel many-body DPD.
some of the OUTPUT files incompatible with the master version 
and post processing subroutines have been adapted to the 64-bit 
integer format.

3.1.2. Wall boundary conditions
A wall boundary condition consists of a no-slip reflecting 

boundary where particles are bouncing back with specular veloc-
ity components from a frozen layer of beads. We obtain this in 
DL_MESO by combining the frozen and surface flags which create a 
layer of frozen particles along a defined plane and introduce a re-
pulsive potential at the surface. In particular, the short range wall 
repulsion is given by:

U wall(z) = 1

2
Awall,αzc(1 − z/zc)

2, (z < zc) (18)

where Awall,α is the repulsive force magnitude with species α, z is 
the distance between the particle and the wall and zc the surface 
repulsion range. However, an appropriate choice for the density 
of frozen beads in the walls and interactions between frozen and 
non-frozen particles has to be made in order to reduce the density 
fluctuations near the walls [19].

As the number of ghost cells, required for the short range repul-
sive force, is equal to the number of ghost cells for periodic bound-
ary conditions, the parallel implementation is straightforward, tak-
ing into account that no communication is required through the 
frozen layers as the periodicity of the domain is broken.

4. Results

We tested our single and multi-GPU versions of DL_MESO on 
the latest three NVidia GPU generations: P100, V100 and A100 
(A100 being the latest). These are the same cards installed on 
the three main European supercomputers used for the weak and 
strong scaling benchmarks: the Swiss Supercomputer Piz Daint 
(P100) from CSCS, the Italian Marconi (V100) from CINECA and the 
German supercomputer JUWELS (A100) from Jülich Supercomput-
ing Centre at Forschungszentrum Jülich.

We first present the performance results on the single GPU 
version and 64-bit integer arrays extension for a binary mixture 
system modelled via standard DPD. The purpose is to provide a 
reference for comparison for on a water-vapour test case where 
the many-body DPD formulation is required. This will allow us to 
asses the impact on speedup and scalability of the algorithm here 
presented.
4

4.1. Single GPU performance

As the code is memory bandwidth bounded, to use a single CPU 
core as comparison would not be correct, being the CPU bandwidth 
not fully saturated. The choice of the CPU baseline is then based 
on the bandwidth of the available CPUs. The theoretical maximum 
speedup Smax would be the ratio of theoretical memory band-
widths (assuming both code can fully saturate it). At present, this 
ratio is around a factor 10 ÷ 20, irrespective from the number of 
CPU or GPU cores. A good indicator of performance would then be 
the efficiency η as ratio between the speedup GPU vs CPU (S) and 
the theoretical maximum speedup Smax:

ηmb = S/Smax (19)

We tested our single GPU version on the latest NVidia Am-
pere A100 card and compared with the previous V100 perfor-
mance (900GB/s and 1555GB/s memory bandwidths, respectively) 
using 2 different CPU: a 6-core Intel(R) Xeon(R) W-2133 CPU @ 
3.60 GHz and a 24-core AMD (Rome) 7402 CPU @ 2.7 GHz (85.3 
GB/s and 204.8GB/s memory bandwidths, respectively). Figs. 3a 
and 3b shows the different comparisons. The A100 shows a fac-
tor ∼ x2 speedup vs the V100. The A100 is ∼ 4x the 24-core AMD 
CPU and ∼ 17x compared to the 6-core Intel CPU. In terms of effi-
ciency ηmb , there is a drops from ∼ 1 to ∼ 0.4 when using a CPU 
with a larger number of cores. This indicates that there is poten-
tial for improvement on the GPU card, like for example via shared 
memory usage, which is part of our future work plan.

4.2. 64-bit integer arrays extension

Fig. 4 show the weak scaling for the Mixture Large test case up 
to 14 billion particles on Piz Daint (up to 2048 GPUs), Marconi (up 
to 1024 GPUs) and on JUWELS (up to 1536 GPUs) supercomputers. 
This case can be thought as a mixture of oil and water initially 
fully dispersed into each other and then gradually separating (see 
DL_MESO manual for more details). Starting from 1 GPU and 7 
million particles, the number of GPUs and system size is doubled 
up to 2048 GPUs and 14.336 billion particles, respectively. In this 
case, the many-body DPD algorithm is not needed, so the scaling 
is purely based on the standard DPD formulation.

When only 1 GPU is used there is no overlap between commu-
nication and computation and the force calculation kernel is much 
faster. This explains the sharp drop in performance from 1 to 2 
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Fig. 3. Performance comparison between A100 and V100 NVidia GPU cards vs AMD 24-core Rome and Intel Gold 6-core CPUs.: a) speedup, b) efficiency. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Weak scaling for the Mixture Large test case using up to 14 billion particles.
GPUs, but after 2 a quasi-linear performance is observed across all 
3 architectures.

4.3. Many-body DPD algorithm scaling

In the Surface Drop test case, a liquid vapour system coexists 
initially as fully dispersed and then slowly evolving towards a 
unique large drop of water. The system is 500x240x500 DPD length 
units with particle density 6.7 for a total of 400 million beads. 
The thickness of the surfaces of is 1 DPD length units. Table 1
resumes the DPD parameters (see DL_MESO manual for more de-
5

tails). The many-body DPD is used to replicate the vapour-liquid 
interactions and surface tension effects. Reflecting boundary con-
ditions are used for the plate surfaces. The size of the droplet can 
be mapped to a real system by the appropriate use of dimensional 
analysis and dimensionless groups such as the capillary number 
[20] [21].

Fig. 5 shows the strong scaling obtained from 64 to 1048 GPUs. 
The lower limit of 64 GPus is due to GPU memory capacity. We do 
not use Unified Memory as it can have a negative impact on per-
formance, so we are bound to the actual DRAM memory of 16GB 
for the P100 and V100 and 40GB (HMB2) on the A100. With 1024 
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Table 1
Parameters values for the many-body DPD test case Surface Drop.

specie A specie B Aij Bi j Ci j Di j Ei j rc,i j γi j

water water -40 25 1.0 0 0 0 4.5
water wall -10 25 1.0 0 0 0 4.5
wall wall -40 25 1.0 0 0 0 4.5

Fig. 5. Strong scaling of the Surface Drop test case on Piz Daint, Marconi and JUWELS supercomputers.
GPUs, the efficiencies are 93%, 84% and 75%, for Piz Daint, Marconi 
and JUWELS, respectively. These values are very close to those pre-
sented in the work of Castagna et al. [14] where 85% efficiency was 
maintained on Piz Daint up to 4096 GPUs.

Moreover, to highlight the importance of overlap between com-
putation and communication in our algorithm, we run the same 
test case but mimicking a lack of overlap setting the streamCom-
pute equal to the default stream. This has the effect of synchronize 
the two streams avoiding the overlap. The code will first compute 
the internal cell forces, then exchange the data and finally find the 
boundary cell forces. Fig. 6a, 6b and 6c show a comparison of the 
strong scaling obtained with and without overlaps.

On Piz Daint we observe an improvement from 60% to 93%, 
on Marconi from 59% to 84% and on JUWELS from 60% to 66%. 
As expected, the impact of the communication speed is greater on 
the older machine (Piz Daint). This is due to 2 effects: the memory 
bandwidth between GPUs (51.2 GB/s on Piz Daint, 150 GB/s on 
Marconi and 220 GB/s on JUWELS) and the number of GPU cards 
per node (1 on Piz Daint, 4 on Marconi and JUWELS).

This is also confirmed from the profile results in Figs. 7a and 
7b obtained using the NVidia NSight System profiler. The system 
is the same surface drop case, with 15M particles of water on 
8 GPUs. The timing of the streamExchange is of 29.1 ms without 
overlap and 18.7 ms with overlap, i.e. a ∼ x1.6 speedup.

4.4. Memory usage and load balance between GPUs

The poorer scalability observed on the A100 system compared 
to the other two required further investigation. In particular we 
focused on the memory usage and the load imbalance occurring 
during this particular simulation of water drop formation from 
fully dispersed conditions.

While on Pizdaint and Marconi the memory usage starts from 
nearly full GPU capacity (∼ 88% of 16GB), on the JUWELS super-
computer we only use 40% of the 40GB available per GPU (Fig. 8). 
With 1024 GPUs, the usage drops to 10% and 4%, respectively. 
Moreover, the memory bandwidth of the A100 is 1.5x higher than 
6

the V100 and 3x more than P100, drastically reducing the ratio 
between computation/communication and then limiting the over-
lap between the two. The communication between GPUs (mainly 
the inter-node communication, being the intra-node much faster 
as occurring via NVlink) has then a stronger impact on the A100 
system.

Moreover, we realized that during the simulation the load bal-
ance between GPUs drastically changes: the number of beads per 
GPU is initially homogeneously distributed. However, as the system 
evolves and the particles starts to coalesce together, an imbalance 
on the number of particle per GPU occurs. This has two negative 
effects: on the computing side some GPUs will finish earlier and 
will be idle waiting for the other GPUs to finish. On the commu-
nication side, an imbalance on the amount of data transferred will 
occur, overloading some sections of the network and less others. 
This last effect exaggerates the communication time and then im-
pact more on the fastest GPU, i.e. the A100.

The load imbalance can be corrected readjusting each GPU do-
main size according to the new number of particles. We decided 
to use A Load Balancing Library (ALL), developed in the Simulation 
Laboratory of Molecular Systems of the Jüelich Supercomputing 
Centre at Forschungszentrum Jüelich (DE), to calculate the new 
domains. In particular, we use the ALL Tensor-Product method to 
maintains orthogonality between domains without staggered bor-
ders. To exaggerate the impact of this imbalance we examined a 
much smaller system of 32k beads and 8 GPUs. Fig. 9 shows the 
load balance during the total simulation of 100k steps: in the first 
20k steps the particles are still coagulating in small droplets (see 
Fig. 10) and the load balance is not too far from the ideal value of 
12.5%. However, with time, a single large drop is formed (Fig. 11). 
The integration with the ALL library allows to control the balance 
around the ideal value. Investigation on the overall impact on scal-
ability and performance on larger system is currently being carried 
out. Of course, if ALL is active the time for re-adjusting the domain 
needs also to be taken in account, but this is out of scope in this 
manuscript.

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/tensor_method/readme.html
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Fig. 6. Strong scaling of the Surface Drop test case with and without overlap between computation and communication: a) Piz Daint, b) Marconi and c) JUWELS.
We then conclude that the poorer scalability observed on the 
A100 at high number of GPUs is due to: a) communication be-
tween GPUs prevailing on the computation. This tends to be re-
duced if a larger number of particles is being used; b) load im-
balance between GPUs workload, which tends to exaggerate the 
communication effects. Note as a higher number of GPUs could 
actually improve the scalability for imbalanced systems if the com-
munication would not play a major role as in this case.

5. Conclusions

We presented a novel algorithm for the implementation of the 
many-body DPD on multi-GPU architectures which allows to keep 
high scalability on different architectures and across NVidia lat-
est three generations of GPUs. Results on Piz Daint, Marconi and 
JUWELS European supercomputers shows good weak and strong 
scaling results up to 1048 GPUs with efficiency always above 75%. 
7

Moreover, we highlighted the impact of a correct overlap between 
computation and communication which leads to a ∼ x1.6 speedup 
compared to a naive implementation. Results are also confirmed by 
in depth profiler analysis via NVidia NSight System profiler. With 
the extension to 64-bit integer arrays, we are able to simulate large 
mesoscale systems up to 14 billion particles.

Moreover, similar scalability is observed up to 512 GPUs across 
the three architectures. If the number of particles per GPU is not 
large enough, a poorer scalability is observed for a higher number 
of GPUs using the latest NVidia A100, due to a lack of full over-
lap between computation and communication. In systems where 
the load imbalance occurs, the slower communication can exag-
gerate this effect. However, as the performance is higher, the to-
tal number of GPUs required for a given problem is smaller and 
could be easily accommodated on the larger A100 memory. This 
increases the ratio computation/communication hiding more effi-
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Fig. 7. NVidia NSight System profiler results: a) with and b) without overlap between computation and communications obtained on a surface drop system with 8 GPUs.

Fig. 8. Memory usage of the Surface Drop test case on Piz Daint, Marconi and JUWELS supercomputers.
8
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Fig. 9. Load imbalance on the Surface Drop test case.

Fig. 10. Water drop formation after 20k steps: several groups of beads are coalescing together.

Fig. 11. Water drop formation after 100k steps: a single bubble crossing the periodic system is formed.
9
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ciently the data transfer latency and then be the most convenient 
overall choice.
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