
Computer Physics Communications 280 (2022) 108472

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

A scalable algorithm for many-body dissipative particle dynamics

using multiple general purpose graphic processing units ✩

Davide Di Giusto a, Jony Castagna b,∗
a Polytechnic Department, University of Udine, Udine, Italy
b UK Research and Innovation - Science and Technology Facilities Council Hartree Centre, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 January 2022
Received in revised form 8 June 2022
Accepted 19 July 2022
Available online 25 July 2022

Keywords:
Many-body DPD
Mesoscale simulation
Multi-GPU
High performance computing

We present a novel algorithm for the many-body Dissipative Particle Dynamics (DPD) forces calculation
which allows to efficiently scale the DL_MESO software package on Multiple General Purpose Graphic
Processing Units. Together with the extension to 64-bit integer arrays and addition of hard surface
boundary conditions, the proposed algorithm allows to simulate very large complex mesoscale systems
up to 14 billion beads. The implementation takes advantages of the CUDA language stream features
to overlap the exchange of particle positions and local densities and the computation of the short
range forces. We tested a water drop between two plates system using tree of the main European
supercomputers: Piz Daint, Marconi and JUWELS. Results shows an improvement on the speedup
compared to a naive implementation up to 1.5x when using 1024 GPUs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the range of mesoscale simulations, i.e. between 10−9 and
10−6 meters, the Dissipative Particle Dynamics (DPD) [1,2] is one
of most popular approaches due to its capability in accounting
for the molecular properties of the chemical species, their global
effects as continuum fluids, its algorithmic simplicity and its enor-
mous versatility [3]. Groups of atoms and/or molecules are usually
represented via coarser beads allowing a larger time step com-
pared to Molecular Dynamics (MD) simulations. A large number
of beads recovers the Navier-Stokes equations behaviour, but with
the advantage of keeping the fluctuation-dissipation effects usually
neglected in classical Computational Fluid Dynamic (CFD) solvers.

However, one of the main limitations of standard DPD [2], i.e.
where there is a linear potential depending only on the inter-
particle separation distance, is the quadratic equation of state for
the system. This limit does not allow to study complex systems
where two phases have strong density variations with pressure
and chemical species. The many-body DPD method [4,5] provides
a solution making the conservative forces depending also from a
local density. This needs to be calculated at every iteration and

✩ The review of this paper was arranged by Prof. David W. Walker.

* Corresponding author.
E-mail address: jony.castagna@stfc.ac.uk (J. Castagna).
https://doi.org/10.1016/j.cpc.2022.108472
0010-4655/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
requires the particle positions. For parallelization via typical do-
main decomposition, the particle position needs to be exchanged
between domains. The impact of this exchange, occurring via the
network bus, is usually detrimental for scalability.

Particle based solvers, like DPD and more in general MD solvers,
can easily benefit from General Purpose Graphic Processing Units
(here after GPUs) accelerators. In particular, NVidia GPUs are cur-
rently widely spread in the top500 supercomputer HPC thanks to
their higher peak performance and memory bandwidth when com-
pared to traditional CPUs. They can be programmed in different
ways, some more portable than others, but high tuning perfor-
mance usually requires the use of the specific Compute Unified
Device Architecture (CUDA) language developed by NVidia itself.
Great speedup can be easily achieved after memory reorganization
and ad hoc tuning as reported in AMBER [6], LAMMPS [7], GRO-
MACS [8], NAMD [9], ACEMD [10] and HOOMD-blue [11].

To the authors knowledge, LAMMPS has the closest implemen-
tation of the many-body DPD algorithm on GPU to the one here
presented. The USER-MESO extension package, written in CUDA
C/C++ with MPI library and OpenMP directives for parallelization,
has been used by Xia et al. [12,13] to simulate flow in nano-porous
rocks, but there is no mention of the overlap between local density
calculation and communication.

In a previous paper we presented a porting to CUDA of the
DL_MESO DPD solver [14] for mesoscale simulations. Results
showed a strong scaling efficiency > 85% when simulating systems
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2022.108472
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108472&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jony.castagna@stfc.ac.uk
https://www.top500.org/lists/top500/2020/11/
https://doi.org/10.1016/j.cpc.2022.108472
http://creativecommons.org/licenses/by/4.0/

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472
with low density variations, like phase separation between oil and
water. In this paper we extend the implementation on CUDA to
include: a) a many-body DPD algorithm for strong density varia-
tions which allows to keep the same scaling efficiency observed
for quasi-similar density systems; b) wall boundary conditions via
frozen surfaces and c) the use of integer 64-bit arrays to simu-
late systems with more than 2 billion beads. A description of the
DPD mathematical formulation is given in section 2 while details
on the many-body DPD implementation are in section 3. Finally, in
section 4 we presents results on performance on a single GPU us-
ing different GPU cards, strong and weak scaling up to 1536 GPUs
on a water drop between two surfaces and the evidence of over-
lap between communication and computation obtained using the
NSight System profiler.

DL_MESO [15] is a software package for mesoscale simulations
made of two separate components: a particle dynamic solver based
on DPD and a fluid dynamic solver based on the Lattice Boltzmann
Equation (LBE) methodology. It has been developed at UKRI-STFC
Daresbury Laboratory, mainly by Dr Micheal Seaton. It has been
mainly funded by the United Kingdom Collaborative Computational
Project for the Computer Simulation of Condensed Phases CCP5,
however the multi-GPU version here presented has been devel-
oped under the E-CAM project founded by the EU. DL_MESO is
available free of charge to academic scientists pursuing research of
a non-commercial nature and for a fee for industrial applications.
The single and multi-GPU versions used in this paper are available
on the git repository DL_MESO under the single_GPU_version and
multi_GPU_version branches.

2. Mathematical model

Here we present the DPD mathematical formulation, the nu-
merical scheme used in DL_MESO and the many-body DPD equa-
tions. More details can be found in the DL_MESO manual and in
the work of Seaton et al. [15].

2.1. Equations of DPD

Forces between particles in DPD can be mainly split in three
components: 1) a pairwise soft potential repulsive force FC

i j = Aij ;
2) a drag force FD

ij which accounts of the viscosity and friction
between particles and 3) a stochastic force FR

i j which balances the
drag force and keeps the system temperature constant. For each
particle, the overall force is then given by:

Fi =
N∑

i �= j

(FC
i j + FD

ij + FR
i j) (1)

The damping drag force balances the stochastic force in order
to satisfy the fluctuation-dissipation theorem and maintain ther-
modynamic equilibrium. All forces are pairwise, i.e. Fi j = −F ji and
are defined as:

FC
i j = Aijω

C (ri j)ei j (2)

FD
ij = −γi jω

D(r/i j)(ei j · vi j)ei j (3)

FR
i j = σi jω

R(ri j)εi j(�t)−(1/2)ei j (4)

where ri j = r j − ri , ri j = |ri j |, ei j = ri j/ri j . ωC , ωD and ωR are the
switching functions for the soft potential, drag and random forces,
2

respectively. Aij , γi j and σi j are the conservative interaction, dis-
sipative and random force coefficients between particles i and j,
respectively. The values of εi j represent symmetric random Gaus-
sian variables, possessing zero mean and unit variance, that are
uncorrelated for different pair of particles and different times.

While in MD particles have a hard core due to the strong
non linear potential, in DPD the soft potential allows particle
to overlap and cross each other. The conservative potential usu-
ally is chosen as a linear function of the distance between two
particles, i.e. ωC = 1 − ri j/rc for ri j < rc . The satisfaction of the
fluctuation-dissipation theorem provides a thermostat within the
canonical ensemble and additionally conserves both the total mo-
mentum of the system and local momenta for particle pairs. As
explained by Espanol and Warren [16], this condition occurs when
σ 2 = 2γi j K B T and ωD(ri j) = [ωR(ri j]2.

2.2. Numerical methods

To obtain a numerically stable solution, the Verlet Velocity (VV)
scheme is usually used [17].

This consists of splitting the time integration in 2 stages. In the
first stage, the particle velocities are advanced to time t + �t

2 , us-
ing the forces calculated at time t . The particle positions are then
advance to t + �t:

vi

(
t + �t

2

)
= vi(t) + �t

2

Fi(t)

mi
(5)

ri(t + �t) = ri(t) + vi

(
t + 1

2
�t

)
�t (6)

In the second stage, the velocities are updated to time t + �t:

vi(t + �t) = vi(t + �t

2
) + �t

2

Fi(t + �t)

mi
(7)

A naïve calculation of force interactions between all particle
pairs would require a O(N2) (where N is the number of particles)
search algorithm, which will easily limit its practicability to large
systems. The VV scheme is then usually applied in combination
with a cell linked-list method [18], which reduces the computa-
tion to O(N). The cell linked-list method consists of finding each
particle’s neighbouring particles within a cut-off radius at least as
large as the maximum extent for the soft conservative potential
(rc).

The DL_MESO DPD code is written in Fortran 2003 with MPI,
while the single and multi-GPU versions are written in CUDA lan-
guage. To guarantee full compatibility with the CPU version, the
GPU versions uses the same Fortran 2003 subroutines for initial-
ization and IO operations, including MPI_IO for parallel file writing.
However, the main loop for time step integration and all the cor-
related computing functions have been ported to CUDA. Moreover,
a reorganization of the memory layout allows to achieve a ∼ x4
speedup when compared to a traditional 24-core CPU as presented
in the section 4. More details on the DPD equations and the nu-
merical methods used in the single and multi-GPU versions can be
found in the work of Castagna et al. [14].

2.3. Equations for many-body DPD

To take in account of thermodynamic equations of state differ-
ent from the quadratic relation p = f (ρ2), we calculate an instan-
taneous free-energy:

˜Gex =
∑

i

ψex(ρ̃i) (8)

and obtain the conservative force as the spatial derivative

https://www.ccp5.ac.uk
https://www.e-cam2020.eu/
https://gitlab.stfc.ac.uk/dl_meso/dl_meso

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472
�F C
i = −∂ ˜Gex

∂ �ri
= −

∑
j

∂ψex(ρ̃i)

∂ �ri
(9)

where the local-density approximation ρ̃i can be expressed as:

ρ̃i =
∫

d�rωρ(|�r − �ri |)ρ(�r,{ �rk
}
)

=
∑
j �=i

∫
d�rωρ(|�r − �ri |)δ(�r − �r j)

=
∑
j �=i

ωρ(ri j)

(10)

and ωρ is the weight function usually defined as:

ωρ = 15

2πr3
d

(
1 − ri j

rd

)2

(ri j < rd) (11)

To obtain the pairwise conservative force:

�F C
i j =

(
∂ψex(ρ̃i)

∂ρ̃i
+ ∂ψex(ρ̃ j)

∂ρ̃ j

)
ωC (ri j)

�ri j

ri j
(12)

A van der Waals-like equation of state can be obtained setting:

ψex(ρ̃) = π

30
Aij ¯̄ρ + πr4

d

30
Bijρ̃

2 (13)

where ρ̃ is the same as ρ̃ but with the cutoff set to rc instead of
rd (¯̄ρ). In this case, the force associated is:

�F C
i j =

[
Aij

(
1 − ri j

rc,i j

)
+ Bij(ρi + ρ j)

(
1 − ri j

rd

)] �ri j

ri j
(14)

and setting Aij < 0 and Bij > 0 we obtain the following vapour/liq-
uid equation of state:

p = ρkB T + αAρ2 + 2αBr4
d(ρ3 − cρ2 + d) (15)

where α, c and d can be specified in the input files of DL_MESO.

3. Scalable many-body DPD algorithm

In [14] is showed the importance of a correct overlap between
computation and communication in order to achieve good scala-
bility on the multi-GPU version of DL_MESO. To avoid duplicating
the force calculation kernel, a distinction between internal cells and
boundary cells is made (see Fig. 1). We will refer hereafter as inter-
nal particles those which lie in the internal cells, boundary particles
those within the boundary cells and finally as ghost particles those
in the ghost cells which are used to exchange data between differ-
ent domains. A flag controls the switch in the kernel between the
internal and boundary particles. However, as seen in the previous
section, the many-body calculation requires an extra information,
the local-density, to correctly obtain the potential forces. This de-
pends on the particle positions, so a first swap of their coordinates
is necessary. Then, the local densities need also to be swapped,
adding an extra communication to the overall procedure and, most
crucially, not allowing the overlap between communications and
computation of internal cells forces as done in [14]. A naive imple-
mentation would follow the diagram in Fig. 2a.

To avoid this serialization communication → computation we
propose to split the local-density as follows:

ρi = ρ in
i + ρ ib

i + ρ
bg
i (16)

where ρ in
i is the local-density component due to internal particles

only, ρ ib
i is the component due to the interaction between inter-

nal and boundary particles and finally ρbg is the component due
i

3

Fig. 1. Internal, boundary and ghost cells for a single GPU domain.

to the interaction between boundary and ghost particles. We then
divide the potential forces calculation as follows:

f i j = f ′
i j + f ′′ (17)

where f ′
i j is the force on the internal cell particles due to local

densities ρ in
i and ρ ib

i , while f ′′ is the contribution due to ρbg
i

which applies to both internal particles (those at the border with
the boundary) and boundary particles. This split is possible due
the force calculation being a linear operator function of the local-
density.

We then proceed as in the Algorithm 1:

Algorithm 1: Split force calculation algorithm.

find local-density ρ in
i + ρ ib

i ;
find f ′ (CUDA stream 1);
for each direction do

swap particle positions CUDA (stream 2);

find ρbg
i (CUDA stream 2);

swap local densities (CUDA stream 2);
end
find f ′′;

The above split allows to overlap the computation of f ′ with
the swap of particle positions, calculation and swap of local densi-
ties ρbg

i using two different CUDA streams. We will refer hereafter
to stream 1 as streamCompute and the stream 2 as streamExchange.
Note as the calculation of the forces and densities for the internal
particles is executed forward looking, i.e. taking advantage of 3rd
Netwon’s law (xij = −x ji and Fij = −F ji), while for the boundary
particles we do and explicit calculation looking in all directions.

3.1. Other improvements

In this section we will look into the details of the 3 main
improvements implemented in DL_MESO multi-GPU version com-
pared to the version presented in [14]: 1) the extension to 64-bit
integer arrays; 2) the implementation of wall boundary conditions.

3.1.1. Extension to LONG INT and hard surfaces boundary conditions
The master version of DL_MESO does not support systems

larger than 2 billion particles (231-1 in theory). This is due to the
use of INTEGER 32 bit Fortran arrays across the code. The main
reason for this choice was linked to very long integration times re-
quired to achieve thermodynamic equilibrium, even with a small
number of particles. However, the use of multi-GPU architectures
allows to drastically accelerate the solver and then to simulate very
complex phenomena like macropolymer chains. The use of LONG
INTEGER arrays (64 bit, i.e. 263-1 max particles) allows to move
beyond the current limit, leaving the GPU memory as the only
constrain to the size of the system. However, this change makes

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472

Fig. 2. a) naive implementation of many-body DPD algorithm which does not allow to overlap computation with communication. b) scalable parallel many-body DPD.
some of the OUTPUT files incompatible with the master version
and post processing subroutines have been adapted to the 64-bit
integer format.

3.1.2. Wall boundary conditions
A wall boundary condition consists of a no-slip reflecting

boundary where particles are bouncing back with specular veloc-
ity components from a frozen layer of beads. We obtain this in
DL_MESO by combining the frozen and surface flags which create a
layer of frozen particles along a defined plane and introduce a re-
pulsive potential at the surface. In particular, the short range wall
repulsion is given by:

U wall(z) = 1

2
Awall,αzc(1 − z/zc)

2, (z < zc) (18)

where Awall,α is the repulsive force magnitude with species α, z is
the distance between the particle and the wall and zc the surface
repulsion range. However, an appropriate choice for the density
of frozen beads in the walls and interactions between frozen and
non-frozen particles has to be made in order to reduce the density
fluctuations near the walls [19].

As the number of ghost cells, required for the short range repul-
sive force, is equal to the number of ghost cells for periodic bound-
ary conditions, the parallel implementation is straightforward, tak-
ing into account that no communication is required through the
frozen layers as the periodicity of the domain is broken.

4. Results

We tested our single and multi-GPU versions of DL_MESO on
the latest three NVidia GPU generations: P100, V100 and A100
(A100 being the latest). These are the same cards installed on
the three main European supercomputers used for the weak and
strong scaling benchmarks: the Swiss Supercomputer Piz Daint
(P100) from CSCS, the Italian Marconi (V100) from CINECA and the
German supercomputer JUWELS (A100) from Jülich Supercomput-
ing Centre at Forschungszentrum Jülich.

We first present the performance results on the single GPU
version and 64-bit integer arrays extension for a binary mixture
system modelled via standard DPD. The purpose is to provide a
reference for comparison for on a water-vapour test case where
the many-body DPD formulation is required. This will allow us to
asses the impact on speedup and scalability of the algorithm here
presented.
4

4.1. Single GPU performance

As the code is memory bandwidth bounded, to use a single CPU
core as comparison would not be correct, being the CPU bandwidth
not fully saturated. The choice of the CPU baseline is then based
on the bandwidth of the available CPUs. The theoretical maximum
speedup Smax would be the ratio of theoretical memory band-
widths (assuming both code can fully saturate it). At present, this
ratio is around a factor 10 ÷ 20, irrespective from the number of
CPU or GPU cores. A good indicator of performance would then be
the efficiency η as ratio between the speedup GPU vs CPU (S) and
the theoretical maximum speedup Smax:

ηmb = S/Smax (19)

We tested our single GPU version on the latest NVidia Am-
pere A100 card and compared with the previous V100 perfor-
mance (900GB/s and 1555GB/s memory bandwidths, respectively)
using 2 different CPU: a 6-core Intel(R) Xeon(R) W-2133 CPU @
3.60 GHz and a 24-core AMD (Rome) 7402 CPU @ 2.7 GHz (85.3
GB/s and 204.8GB/s memory bandwidths, respectively). Figs. 3a
and 3b shows the different comparisons. The A100 shows a fac-
tor ∼ x2 speedup vs the V100. The A100 is ∼ 4x the 24-core AMD
CPU and ∼ 17x compared to the 6-core Intel CPU. In terms of effi-
ciency ηmb , there is a drops from ∼ 1 to ∼ 0.4 when using a CPU
with a larger number of cores. This indicates that there is poten-
tial for improvement on the GPU card, like for example via shared
memory usage, which is part of our future work plan.

4.2. 64-bit integer arrays extension

Fig. 4 show the weak scaling for the Mixture Large test case up
to 14 billion particles on Piz Daint (up to 2048 GPUs), Marconi (up
to 1024 GPUs) and on JUWELS (up to 1536 GPUs) supercomputers.
This case can be thought as a mixture of oil and water initially
fully dispersed into each other and then gradually separating (see
DL_MESO manual for more details). Starting from 1 GPU and 7
million particles, the number of GPUs and system size is doubled
up to 2048 GPUs and 14.336 billion particles, respectively. In this
case, the many-body DPD algorithm is not needed, so the scaling
is purely based on the standard DPD formulation.

When only 1 GPU is used there is no overlap between commu-
nication and computation and the force calculation kernel is much
faster. This explains the sharp drop in performance from 1 to 2

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472

Fig. 3. Performance comparison between A100 and V100 NVidia GPU cards vs AMD 24-core Rome and Intel Gold 6-core CPUs.: a) speedup, b) efficiency. (For interpretation
of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Weak scaling for the Mixture Large test case using up to 14 billion particles.
GPUs, but after 2 a quasi-linear performance is observed across all
3 architectures.

4.3. Many-body DPD algorithm scaling

In the Surface Drop test case, a liquid vapour system coexists
initially as fully dispersed and then slowly evolving towards a
unique large drop of water. The system is 500x240x500 DPD length
units with particle density 6.7 for a total of 400 million beads.
The thickness of the surfaces of is 1 DPD length units. Table 1
resumes the DPD parameters (see DL_MESO manual for more de-
5

tails). The many-body DPD is used to replicate the vapour-liquid
interactions and surface tension effects. Reflecting boundary con-
ditions are used for the plate surfaces. The size of the droplet can
be mapped to a real system by the appropriate use of dimensional
analysis and dimensionless groups such as the capillary number
[20] [21].

Fig. 5 shows the strong scaling obtained from 64 to 1048 GPUs.
The lower limit of 64 GPus is due to GPU memory capacity. We do
not use Unified Memory as it can have a negative impact on per-
formance, so we are bound to the actual DRAM memory of 16GB
for the P100 and V100 and 40GB (HMB2) on the A100. With 1024

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472

Table 1
Parameters values for the many-body DPD test case Surface Drop.

specie A specie B Aij Bi j Ci j Di j Ei j rc,i j γi j

water water -40 25 1.0 0 0 0 4.5
water wall -10 25 1.0 0 0 0 4.5
wall wall -40 25 1.0 0 0 0 4.5

Fig. 5. Strong scaling of the Surface Drop test case on Piz Daint, Marconi and JUWELS supercomputers.
GPUs, the efficiencies are 93%, 84% and 75%, for Piz Daint, Marconi
and JUWELS, respectively. These values are very close to those pre-
sented in the work of Castagna et al. [14] where 85% efficiency was
maintained on Piz Daint up to 4096 GPUs.

Moreover, to highlight the importance of overlap between com-
putation and communication in our algorithm, we run the same
test case but mimicking a lack of overlap setting the streamCom-
pute equal to the default stream. This has the effect of synchronize
the two streams avoiding the overlap. The code will first compute
the internal cell forces, then exchange the data and finally find the
boundary cell forces. Fig. 6a, 6b and 6c show a comparison of the
strong scaling obtained with and without overlaps.

On Piz Daint we observe an improvement from 60% to 93%,
on Marconi from 59% to 84% and on JUWELS from 60% to 66%.
As expected, the impact of the communication speed is greater on
the older machine (Piz Daint). This is due to 2 effects: the memory
bandwidth between GPUs (51.2 GB/s on Piz Daint, 150 GB/s on
Marconi and 220 GB/s on JUWELS) and the number of GPU cards
per node (1 on Piz Daint, 4 on Marconi and JUWELS).

This is also confirmed from the profile results in Figs. 7a and
7b obtained using the NVidia NSight System profiler. The system
is the same surface drop case, with 15M particles of water on
8 GPUs. The timing of the streamExchange is of 29.1 ms without
overlap and 18.7 ms with overlap, i.e. a ∼ x1.6 speedup.

4.4. Memory usage and load balance between GPUs

The poorer scalability observed on the A100 system compared
to the other two required further investigation. In particular we
focused on the memory usage and the load imbalance occurring
during this particular simulation of water drop formation from
fully dispersed conditions.

While on Pizdaint and Marconi the memory usage starts from
nearly full GPU capacity (∼ 88% of 16GB), on the JUWELS super-
computer we only use 40% of the 40GB available per GPU (Fig. 8).
With 1024 GPUs, the usage drops to 10% and 4%, respectively.
Moreover, the memory bandwidth of the A100 is 1.5x higher than
6

the V100 and 3x more than P100, drastically reducing the ratio
between computation/communication and then limiting the over-
lap between the two. The communication between GPUs (mainly
the inter-node communication, being the intra-node much faster
as occurring via NVlink) has then a stronger impact on the A100
system.

Moreover, we realized that during the simulation the load bal-
ance between GPUs drastically changes: the number of beads per
GPU is initially homogeneously distributed. However, as the system
evolves and the particles starts to coalesce together, an imbalance
on the number of particle per GPU occurs. This has two negative
effects: on the computing side some GPUs will finish earlier and
will be idle waiting for the other GPUs to finish. On the commu-
nication side, an imbalance on the amount of data transferred will
occur, overloading some sections of the network and less others.
This last effect exaggerates the communication time and then im-
pact more on the fastest GPU, i.e. the A100.

The load imbalance can be corrected readjusting each GPU do-
main size according to the new number of particles. We decided
to use A Load Balancing Library (ALL), developed in the Simulation
Laboratory of Molecular Systems of the Jüelich Supercomputing
Centre at Forschungszentrum Jüelich (DE), to calculate the new
domains. In particular, we use the ALL Tensor-Product method to
maintains orthogonality between domains without staggered bor-
ders. To exaggerate the impact of this imbalance we examined a
much smaller system of 32k beads and 8 GPUs. Fig. 9 shows the
load balance during the total simulation of 100k steps: in the first
20k steps the particles are still coagulating in small droplets (see
Fig. 10) and the load balance is not too far from the ideal value of
12.5%. However, with time, a single large drop is formed (Fig. 11).
The integration with the ALL library allows to control the balance
around the ideal value. Investigation on the overall impact on scal-
ability and performance on larger system is currently being carried
out. Of course, if ALL is active the time for re-adjusting the domain
needs also to be taken in account, but this is out of scope in this
manuscript.

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/tensor_method/readme.html

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472

Fig. 6. Strong scaling of the Surface Drop test case with and without overlap between computation and communication: a) Piz Daint, b) Marconi and c) JUWELS.
We then conclude that the poorer scalability observed on the
A100 at high number of GPUs is due to: a) communication be-
tween GPUs prevailing on the computation. This tends to be re-
duced if a larger number of particles is being used; b) load im-
balance between GPUs workload, which tends to exaggerate the
communication effects. Note as a higher number of GPUs could
actually improve the scalability for imbalanced systems if the com-
munication would not play a major role as in this case.

5. Conclusions

We presented a novel algorithm for the implementation of the
many-body DPD on multi-GPU architectures which allows to keep
high scalability on different architectures and across NVidia lat-
est three generations of GPUs. Results on Piz Daint, Marconi and
JUWELS European supercomputers shows good weak and strong
scaling results up to 1048 GPUs with efficiency always above 75%.
7

Moreover, we highlighted the impact of a correct overlap between
computation and communication which leads to a ∼ x1.6 speedup
compared to a naive implementation. Results are also confirmed by
in depth profiler analysis via NVidia NSight System profiler. With
the extension to 64-bit integer arrays, we are able to simulate large
mesoscale systems up to 14 billion particles.

Moreover, similar scalability is observed up to 512 GPUs across
the three architectures. If the number of particles per GPU is not
large enough, a poorer scalability is observed for a higher number
of GPUs using the latest NVidia A100, due to a lack of full over-
lap between computation and communication. In systems where
the load imbalance occurs, the slower communication can exag-
gerate this effect. However, as the performance is higher, the to-
tal number of GPUs required for a given problem is smaller and
could be easily accommodated on the larger A100 memory. This
increases the ratio computation/communication hiding more effi-

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472

Fig. 7. NVidia NSight System profiler results: a) with and b) without overlap between computation and communications obtained on a surface drop system with 8 GPUs.

Fig. 8. Memory usage of the Surface Drop test case on Piz Daint, Marconi and JUWELS supercomputers.
8

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472

Fig. 9. Load imbalance on the Surface Drop test case.

Fig. 10. Water drop formation after 20k steps: several groups of beads are coalescing together.

Fig. 11. Water drop formation after 100k steps: a single bubble crossing the periodic system is formed.
9

D. Di Giusto and J. Castagna Computer Physics Communications 280 (2022) 108472
ciently the data transfer latency and then be the most convenient
overall choice.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors are grateful to the European Project funded E-CAM,
as part of the European Union’s Horizon 2020 research and inno-
vation program under the grant agreement No 676531, to the UK
Research and Innovation - STFC Hartree Centre - and to the PRACE
Summer of HPC 2019 program for funding provided to the authors.

References

[1] P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19 (3) (1992) 155–160,
https://doi .org /10 .1209 /0295 -5075 /19 /3 /001.

[2] R.D. Groot, P.B. Warren, J. Chem. Phys. 107 (11) (1997) 4423–4435, https://
doi .org /10 .1063 /1.474784, http://aip .scitation .org /doi /10 .1063 /1.474784.

[3] P. Español, P.B. Warren, J. Chem. Phys. 146 (15) (2017) 150901, https://doi .org /
10 .1063 /1.4979514, http://aip .scitation .org /doi /10 .1063 /1.4979514.

[4] I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 115 (11) (2001) 5015–5026, https://
doi .org /10 .1063 /1.1396848, https://aip .scitation .org /doi /10 .1063 /1.1396848.

[5] S.Y. Trofimov, E.L.F. Nies, M.a.J. Michels, J. Chem. Phys. 117 (20) (2002)
9383–9394, https://doi .org /10 .1063 /1.1515774, https://aip .scitation .org /doi /10 .
1063 /1.1515774.

[6] A.W. Götz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker, J. Chem.
Theory Comput. 8 (5) (2012) 1542–1555, https://doi .org /10 .1021 /1ct200909j.

[7] S. Plimpton, J. Chem. Phys. 117 (1) (1995) 1–19, https://doi .org /10 .
1006 /jcph .1995 .1039, https://www.sciencedirect .com /science /article /pii /
S002199918571039X.

[8] M.J.O. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lin-
dahl, GROMACS: High Performance Molecular Simulations Through Multi-Level

Parallelism from Laptops to Supercomputers 1-2, Oak Ridge National Lab.
(ORNL), Oak Ridge, TN (United States), Elsevier, 2015, https://www.osti .gov /
pages /biblio /1252791.

[9] J.C. Phillips, D.J. Hardy, J.D.C. Maia, J.E. Stone, J.V. Ribeiro, R.C. Bernardi, R.
Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M.C.R. Melo, B.K. Radak, R.D.
Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten,
L.V. Kalé, K. Schulten, C. Chipot, E. Tajkhorshid, J. Chem. Phys. 153 (4)
(2020) 044130, https://doi .org /10 .1063 /5 .0014475, https://aip .scitation .org /doi /
10 .1063 /5 .0014475.

[10] M.J. Harvey, G. Giupponi, G.D. Fabritiis, J. Chem. Theory Comput. 5 (6) (2009)
1632–1639, https://doi .org /10 .1021 /ct9000685.

[11] J.A. Anderson, J. Glaser, S.C. Glotzer, Comput. Math. Sci. 173 (2020) 109363,
https://doi .org /10 .1016 /j .commatsci .2019 .109363, http://www.sciencedirect .
com /science /article /pii /S0927025619306627.

[12] Y. Xia, J. Goral, H. Huang, I. Miskovic, P. Meakin, M. Deo, Phys. Fluids 29 (5)
(2017) 056601, https://doi .org /10 .1063 /1.4981136, https://aip .scitation .org /doi /
abs /10 .1063 /1.4981136.

[13] Y. Xia, A. Blumers, Z. Li, L. Luo, Y.-H. Tang, J. Kane, J. Goral, H. Huang, M.
Deo, M. Andrew, Comput. Phys. Commun. 247 (2020) 106874, https://doi .
org /10 .1016 /j .cpc .2019 .106874, https://www.sciencedirect .com /science /article /
pii /S0010465519302619.

[14] J. Castagna, X. Guo, M. Seaton, A. O’Cais, Comput. Phys. Commun. 251 (2020)
107159, https://doi .org /10 .1016 /j .cpc .2020 .107159, https://www.sciencedirect .
com /science /article /pii /S0010465520300199.

[15] M.A. Seaton, R.L. Anderson, S. Metz, W. Smith, Mol. Simul. 39 (10) (2013)
796–821, https://doi .org /10 .1080 /08927022 .2013 .772297.

[16] P. Español, P. Warren, Europhys. Lett. 30 (4) (1995) 191–196, https://doi .org /10 .
1209 /0295 -5075 /30 /4 /001.

[17] W.C. Swope, H.C. Andersen, J. Chem. Phys. 102 (7) (1995) 2851–2863, https://
doi .org /10 .1063 /1.468663, https://aip .scitation .org /doi /abs /10 .1063 /1.468663.

[18] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, second edition, Ox-
ford University Press, 1987, https://oxford .universitypressscholarship .com /view /
10 .1093 /oso /9780198803195 .001.0001 /oso -9780198803195.

[19] M. Revenga, I. Zúñiga, P. Español, Comput. Phys. Commun. 121–122
(1999) 309–311, https://doi .org /10 .1016 /S0010 -4655(99)00341 -0, https://www.
sciencedirect .com /science /article /pii /S0010465599003410.

[20] P.-G. Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena,
SpringerLink, http://link.springer.com /book /10 .1007 /978 -0 -387 -21656 -0.

[21] P.B. Warren, Phys. Rev. Lett. 87 (22) (2001) 225702, https://doi .org /10 .1103 /
PhysRevLett .87.225702.
10

https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1063/1.474784
https://doi.org/10.1063/1.474784
http://aip.scitation.org/doi/10.1063/1.474784
https://doi.org/10.1063/1.4979514
https://doi.org/10.1063/1.4979514
http://aip.scitation.org/doi/10.1063/1.4979514
https://doi.org/10.1063/1.1396848
https://doi.org/10.1063/1.1396848
https://aip.scitation.org/doi/10.1063/1.1396848
https://doi.org/10.1063/1.1515774
https://aip.scitation.org/doi/10.1063/1.1515774
https://aip.scitation.org/doi/10.1063/1.1515774
https://doi.org/10.1021/1ct200909j
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://www.sciencedirect.com/science/article/pii/S002199918571039X
https://www.sciencedirect.com/science/article/pii/S002199918571039X
https://www.osti.gov/pages/biblio/1252791
https://www.osti.gov/pages/biblio/1252791
https://doi.org/10.1063/5.0014475
https://aip.scitation.org/doi/10.1063/5.0014475
https://aip.scitation.org/doi/10.1063/5.0014475
https://doi.org/10.1021/ct9000685
https://doi.org/10.1016/j.commatsci.2019.109363
http://www.sciencedirect.com/science/article/pii/S0927025619306627
http://www.sciencedirect.com/science/article/pii/S0927025619306627
https://doi.org/10.1063/1.4981136
https://aip.scitation.org/doi/abs/10.1063/1.4981136
https://aip.scitation.org/doi/abs/10.1063/1.4981136
https://doi.org/10.1016/j.cpc.2019.106874
https://doi.org/10.1016/j.cpc.2019.106874
https://www.sciencedirect.com/science/article/pii/S0010465519302619
https://www.sciencedirect.com/science/article/pii/S0010465519302619
https://doi.org/10.1016/j.cpc.2020.107159
https://www.sciencedirect.com/science/article/pii/S0010465520300199
https://www.sciencedirect.com/science/article/pii/S0010465520300199
https://doi.org/10.1080/08927022.2013.772297
https://doi.org/10.1209/0295-5075/30/4/001
https://doi.org/10.1209/0295-5075/30/4/001
https://doi.org/10.1063/1.468663
https://doi.org/10.1063/1.468663
https://aip.scitation.org/doi/abs/10.1063/1.468663
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198803195.001.0001/oso-9780198803195
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198803195.001.0001/oso-9780198803195
https://doi.org/10.1016/S0010-4655(99)00341-0
https://www.sciencedirect.com/science/article/pii/S0010465599003410
https://www.sciencedirect.com/science/article/pii/S0010465599003410
http://link.springer.com/book/10.1007/978-0-387-21656-0
https://doi.org/10.1103/PhysRevLett.87.225702
https://doi.org/10.1103/PhysRevLett.87.225702

	A scalable algorithm for many-body dissipative particle dynamics using multiple general purpose graphic processing units
	1 Introduction
	2 Mathematical model
	2.1 Equations of DPD
	2.2 Numerical methods
	2.3 Equations for many-body DPD

	3 Scalable many-body DPD algorithm
	3.1 Other improvements
	3.1.1 Extension to LONG INT and hard surfaces boundary conditions
	3.1.2 Wall boundary conditions

	4 Results
	4.1 Single GPU performance
	4.2 64-bit integer arrays extension
	4.3 Many-body DPD algorithm scaling
	4.4 Memory usage and load balance between GPUs

	5 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

