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Abstract
Understanding how Industry 4.0 technologies complement each other on one side, and human skills on
the other is becoming an increasingly important research concern. However, firm-level evidence on
patterns of conjoint adoption of Industry 4.0 technologies and upskilling is still scant. The present work
aims to cover this gap by leveraging a large cross-sectional database of Italian firms. Our analysis reveals
two distinct patterns of conjoint adoption, reflected in the propensity to adopt digital I4.0 technologies
on the one hand and the propensity to adopt physical I4.0 technologies on the other. Despite directing
investments toward well-defined subclusters of I4.0 technologies, the two propensities are not
mutually exclusive. Furthermore, not only the digital adoption propensity, but also the physical one
increases the likelihood of the firm upgrading the ICT skills of its ICT-specialized and non-ICT-specialized
employees conjointly. This result holds for medium and large firms, whereas small firms constitute an
interesting exception, calling for further research on the topic. 



1 
 

Technology adoption and upskilling in the wake of Industry 4.0 

 

 

 

 

Abstract 

Understanding how Industry 4.0 technologies complement each other on one side, and human skills 

on the other is becoming an increasingly important research concern. However, firm-level evidence 

on patterns of conjoint adoption of Industry 4.0 technologies and upskilling is still scant. The present 

work aims to cover this gap by leveraging a large cross-sectional database of Italian firms. Our 

analysis reveals two distinct patterns of conjoint adoption, reflected in the propensity to adopt digital 

I4.0 technologies on the one hand and the propensity to adopt physical I4.0 technologies on the other. 

Despite directing investments toward well-defined subclusters of I4.0 technologies, the two 

propensities are not mutually exclusive. Furthermore, not only the digital adoption propensity, but 

also the physical one increases the likelihood of the firm upgrading the ICT skills of its ICT-

specialized and non-ICT-specialized employees conjointly. This result holds for medium and large 

firms, whereas small firms constitute an interesting exception, calling for further research on the topic.  

 

 

 

 

 

 

 

 

 



2 
 

1. Introduction  

 

The Industry 4.0 (I4.0) phenomenon, often identified with the Fourth Industrial Revolution, is 

currently at the center of academic, managerial and institutional debates (EPO, 2017; OECD, 2017; 

Sung, 2018). Despite lacking a unique definition and a shared set of boundaries, it generally refers to 

the conjoint firm-level implementation of advanced digital and automation technologies like artificial 

intelligence, augmented reality, big data analytics, cloud computing, the internet of things, robots and 

3D printing. Taken together, these technologies enable automation, flexibilization,  human-machine 

interconnectivity and mass customization, leading to the emergence of innovative business models  

and smart factories (Kagermann, 2015; Osterrieder et al., 2020), with new skill requirements and far-

reaching effects on the labor market (Frey and Osborne, 2017) and the international competitive 

landscape (Strange and Zucchella, 2017).  

I4.0 technologies display remarkable dynamism and complementarity, but they have yet to become 

fully-fledged general purpose technologies, and their conjoint evolutionary pattern is still rather 

unpredictable (Martinelli et al., 2021). Although patent data indicate a general trend of convergence 

(EPO, 2017), it is still difficult to discern which I4.0 technological trajectories are truly 

interdependent and likely to form aggregate technological paradigms (Dosi, 1982; Pedota et al., 

2021). In such a dynamic context, the ability by firms to benefit from the ongoing revolution requires 

skillful adaptation from a variety of perspectives. The mere adoption of I4.0 technologies may be a 

necessary but certainly not a sufficient condition to become competitive within the emerging 

paradigms. To this end, firms also need to anticipate the coevolution of I4.0 technological trajectories 

(Ciarli et al., 2021), reorganize factories and employees (Calabrese et al., 2020), improve coordination 

across organizational units (Horvath and Szabo, 2019), gather sufficient know-how (Cugno et al., 

2021), overcome organizational resistance (Birkel et al., 2019) and endow themselves with 

complementary human skills (Kiel et al., 2017; Muller et al., 2018).  
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The latter factor is particularly important. Instantiations of I4.0 may be framed as sociotechnical 

systems, where technologies and workers are complementary and interdependent (Neumann et al., 

2020). However, more information on the characterization of such systems is needed. Although extant 

literature is almost unanimous in regarding I4.0 technologies as mutually complementary and the 

upskilling of human resources as a necessary step to reap their benefits, a fine-grained empirical 

analysis on this matter is missing. The I4.0 technological cluster is assumed to require new specific 

skills like statistical proficiency and data/information processing (Karre et al., 2017), as well as 

broader skills like sociability (Ciarli et al., 2021) and creativity (Pedota and Piscitello, 2020), but 

several issues remain relatively unexplored. First, clearer boundaries should be set within the broad 

I4.0 cluster, based on technological characteristics, epistemological trends and adoption patterns. 

Second, based on extant evidence it is difficult to ascertain whether it is I4.0 as a whole that requires 

an upskilling of the workforce or, rather, a subcluster of technologies within it. Third, it is unclear 

whether I4.0 technologies require a selective upskilling only of a part of the workforce, or a more 

holistic upskilling. Fourth, while some works imply that small firms may be impaired in their ability 

to benefit from I4.0 (e.g. Horvath and Szabo, 2019; Zolas et al., 2021), we lack a comprehensive view 

on the extent to which firm size plays a role in the adoption of different I4.0 technologies and the 

related upskilling of the workforce.  

The present work contributes to covering these gaps by leveraging the “survey on information and 

communication technology usage in enterprises - year 2018”, a cross-sectional database of 21,934 

Italian firms taken from the Italian National Institute of Statistics (ISTAT). The database includes 

information about firm-level investments in six key I4.0 technologies, namely augmented reality, big 

data analytics, cloud computing, the internet of things, robots and 3D printing, and it also indicates 

whether firms have upgraded the ICT skills of ICT-specialized workers and/or non-ICT-specialized 

workers. Our analysis unfolds in two-steps. First, we perform an exploratory factor analysis on the 

firm-level adoption of the six technologies to identify possible patterns of conjoint adoption. This is 

useful both in itself, as a way to identify possible subclusters of technologies, and as a preliminary 
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step to pave the way for the main analysis. The factor analysis yields a two-factor solution revealing 

two latent propensities to invest in digital and physical I4.0 technologies, respectively. Then, we run 

a bivariate probit model estimating the probability of  ICT upskilling of ICT-specialized and/or non-

ICT-specialized workers as a function of such latent propensities and a set of control variables 

including size, industry, location and ICT intensity. We compute the marginal effects of a percentage 

increase in the score on latent digital adoption and physical adoption propensities on the probability 

of all possible combinations of outcomes: no ICT upskilling, selective ICT upskilling of ICT workers, 

selective ICT upskilling of non-ICT workers, conjoint ICT upskilling. Finally, we run a multinomial 

logit with the same operationalizations and the same logic as a robustness check.  

Our factor analysis confirms that I4.0 is a systemic phenomenon, with significant firm-level 

interrelations among all the six technologies considered. However, it also highlights a propensity 

toward purely digital technologies, namely augmented reality, big data analytics and cloud 

computing, and a propensity toward purely physical technologies, namely robots and 3d printing, 

with the internet of things taking part in both categories coherently with its hybrid digital-physical 

status. Our analyses show that firms adopting I4.0 technologies (of any kind) have a greater relative 

tendency to upskill conjointly both ICT and non-ICT workers, rather than upskilling selectively either 

of the two. Furthermore, both our bivariate probit and our multinomial logit analyses align with 

intuition in confirming that the tendency to adopt purely digital technologies has a stronger 

association with the ICT upskilling of any part of the workforce than the tendency to adopt purely 

physical technologies. However, rather interestingly, we find that also the latter tendency is positively 

related to ICT upskilling, especially when it is directed toward the whole workforce.  These results 

hold, with slight variations in magnitude, across medium and large enterprises. Interestingly, small 

firms constitute an exception, with digital and physical adoption propensities showing no stronger 

association with conjoint upskilling and no difference in the strength of their association with  the 

upskilling of any part of the workforce (ICT vs non-ICT personnel). 
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The remainder of the paper is organized as follows. Section 2 reviews the relevant literature on the 

topic. Specifically, Subsection 2.1 lays a succinct theoretical background on technological 

complementarities and upskilling in general, while Subsection 2.2 focuses on the recent literature on 

the complementarities among I4.0 technologies and their relationship with human resources. Section 

3 develops our empirical analysis, presenting results (Subsection 3.2) after a thorough description of 

the database and methodology (Subsection 3.1). Section 4 concludes, discussing our findings in the 

light of extant literature and providing implications and future research directions.  

2. Literature review 

2.1 Technological complementarities and human resources  

Technological change is one of the main engines of economic growth (Solow, 1956), but it is neither 

simple nor self-sufficient. Technologies often form complex systems where components are 

complementary (Brynjolfsson et al., 2018) and interdependent (Hughes, 1993; Rosenberg, 1979), and 

the architecture may matter more than its single building blocks.  Such a complexity brings 

opportunities as well as challenges. On the one hand, the systemic nature of technology is reflected 

in the consolidation of concepts like combinatorial and architectural innovation, whereby mixing up 

technological components or subverting their overarching structure may reveal novel uses and 

properties (Arthur, 2009; Fleming, 2001; Henderson and Clark, 1990; Yoo et al., 2012). On the other 

hand, single components lagging behind in development may restrain the potential of the entire 

system they belong to (Bijker et al., 1987). Furthermore, functional complementarities, recombination 

potential and technical constraints extend beyond the level of technologies to the level of knowledge 

and heuristics, with know-how accumulation and learning effects playing a crucial role in the 

determination of adoption patterns (Martinelli, 2012). Technological interdependence may even 

translate into epistemological interdependence, with different technologies possibly giving rise to a 

new aggregate paradigm after a process of convergence (Pedota et al., 2021). These reasons, among 
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others, underlie the frequent empirical observation of interdependencies in the adoption of 

technologies by firms (Battisti and Iona, 2009; Colombo and Mosconi, 1992; Wozniak, 1984).  

Within systems of interdependent technologies, the human factor cannot be disregarded. 

Technological components do not only interact among themselves, but also with human skills. 

Dynamics of complementarity and substitution between technology and skills have been largely 

investigated both theoretically and empirically. According to the skill-biased technological change 

hypothesis (Autor et al., 1998; Berman et al., 1994; Bresnahan et al., 2002), automation and 

computerization technologies complement high-skill workers and substitute for low-skill workers. A 

more recent hypothesis, routine-biased technological change (Goos et al., 2009, 2014), instead 

suggests that such technologies complement workers performing non-routine tasks, which tend to be 

at the opposite ends of the spectrum of skills (high and low). While informative at high levels of 

aggregation, the crude education-based distinction between high and low skills can be overcome with 

more fine-grained taxonomies of skills, recognizing cognitive and manual dimensions (Autor and 

Dorn, 2013); language, reasoning, vision and movement (Elliot, 2014); creative and social 

intelligence (Frey and Osborne, 2017). While the skill-biased and routine-biased hypotheses diverge 

on the focal determinant of complementarity, they both underline the necessity to couple 

technological advancement with adequate human resources.  

2.2. The case of I4.0   

These well-established facts seem to hold to an even greater extent in the case of I4.0 technologies. 

According to a recent categorization by the European Patent Office (2017), it is possible to distinguish 

between core technologies, enabling technologies and application domains in the realm of I4.0. Core 

technologies are basic functional constituents like advanced sensors, processors, adaptive databases 

and network protocols, and their combination forms the enabling technologies traditionally associated 

with I4.0, such as virtual reality, 3D printing, artificial intelligence and big data analytics. However, 

such enabling technologies can be combined further to form new solutions into a variety of 
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application domains, ranging from smart homes to autonomous driving and intelligent energy 

distribution networks. Notable examples are given by firms combining artificial intelligence with 3D 

printing to optimize production capacity and material selection (Valdivieso, 2020), and employing 

internet of things-enabled cloud-based additive manufacturing platforms to support rapid product 

development (Wang et al., 2019). 

While there is no doubt on the dynamism and combinability of I4.0 technologies in general, more 

evidence is needed on which I4.0 technologies exactly complement which other and why. A related 

problem is understanding technical and epistemological similarities and differences within the I4.0 

cluster. In an effort to evaluate whether the enabling technologies of I4.0 can be considered general 

purpose technologies (Bresnahan and Trajtenberg, 1995), Martinelli and colleagues (2021) provide 

some evidence in this direction, by estimating indicators of generality, originality and longevity for 

six I4.0 technologies based on patent data. They find that artificial intelligence, 3D printing, robots 

and the internet of things are more pervasive and original than cloud computing and big data analytics. 

They also find that cloud computing, big data analytics and artificial intelligence have similar 

industrial knowledge bases and are part of a stable pattern of joint development, diverging from 3D 

printing (which instead converges with robots). However, these results are not definite in highlighting 

technological complementarities in use at the firm level. Some micro-level evidence in this sense 

comes instead from a recent survey by the U.S. census bureau, finding that firms adopting advanced 

business technologies like robots and artificial intelligence very often also implement cloud services 

and widespread digitization (Zolas et al., 2021). While most mechanisms of firm-level 

complementarity in adoption are theoretically clear, notably data-gathering technologies (e.g. the 

internet of things) fueling data-hungry technologies (e.g. artificial intelligence and big data analytics), 

their relevance in practice is still uncertain, calling for more empirical investigations at all levels of 

analysis.  
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Besides technological complementarities, the human factor is of paramount importance in the I4.0 

context as well (Lorenz et al., 2015). At the level of the labor market, views are rather mixed (Ciarli 

et al., 2021): some are more pessimistic, forecasting the elimination of some jobs as a consequence 

of I4.0 (Acemoglu and Restrepo, 2019; Frey and Osborne, 2017; Korinek and Stiglitz, 2017); others 

are more optimistic, predicting the emergence of new jobs and the improvement of extant ones (Arntz 

et al., 2017; Autor and Salomons, 2018; Felten et al., 2019); still others take a neutral perspective 

(Das et al., 2020; Nedelkoska and Quintini, 2018). Conversely, at the level of skills there is a strong 

consensus emphasizing the need to bridge the skill gap and prepare the workforce for I4.0 (Galaske 

et al., 2017; Motyl et al., 2017; Ras et al., 2017; Schallock et al., 2018). However, research on the 

interaction between I4.0 technologies and human resources is still relatively scarce (Neumann et al., 

2020). Given their digital constituents and their data-driven nature, I4.0 technologies need to be 

complemented by STEM skills like statistical knowledge, programming, coding, and the ability to 

cope with large amounts of data and innovative interfaces. In this respect, Pinzone and colleagues 

(2020) provide a comprehensive overview of the technical skills required by I4.0 in the subfields of 

operations management, supply chain management, product-service information management, data 

science management and IT-OT integration management. Other works convey a more boundary-

spanning perspective, pointing to the necessity for cross-functional roles, broader skillsets and 

lifelong learning (Fisk, 2017; Onar et al., 2018). Furthermore, an increasing body of research is 

underlining the relevance of soft skills in the I4.0 era, including emotional intelligence, critical 

thinking, communication, leadership, and creativity (Ciarli et al., 2021; Deming, 2017; Maisiri et al., 

2019; Pedota and Piscitello, 2020).  

While this picture suggests the necessity by firms to endow themselves with adequate bundles of I4.0 

technologies and human skills to remain competitive, much is still to be learnt on the characterization 

of such bundles. For example, while it would be tempting to lean toward a selective upskilling of the 

workforce based on the precise technical requirements of I4.0, the boundary-spanning nature and soft 

skill orientation of I4.0 point to the necessity of a more holistic upskilling (Hecklau et al., 2016). 
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Firms are social context permeated by continuous multilevel interactions, facilitated and magnified 

by the massive machine-to-machine, human-to-machine and human-to-human interconnectivity 

provided by advanced technologies. Thus, upskilling isolated portions of the workforce (notably ICT 

employees) may no more be sufficient in the I4.0 context. A concurrent upskilling of ICT and non-

ICT employees may be necessary, constituting the embodiment of the systemic character of I4.0 

technologies at the level of human resources.  

With the present work, we perform a comprehensive empirical investigation taking into account both 

the technological and the human side of I4.0, which are usually considered separately. We aim to 

ascertain first the extent to which augmented reality, big data analytics, cloud computing, the internet 

of things, robots and 3D printing are correlated among themselves at the firm level. Most importantly, 

we do not only look at pairwise correlations, but we aim to capture patterns of conjoint adoption of 

multiple technologies, thus contributing to the literature on I4.0 technological complementarities. 

Then, we build on the previous step to understand which patterns are most strongly associated with 

the ICT upskilling of which parts of the workforce (a selective ICT upskilling of ICT workers, a 

selective ICT upskilling of non-ICT workers, or the ICT upskilling of the whole workforce), thus 

contributing to the literature on the interaction between I4.0 and human skills.  In both steps, we 

replicate the analysis on subsamples according to firm size, in order to test for possible differences in 

I4.0 technologies adoption and upskilling patterns across small, medium and large enterprises.   

3. Empirical analysis  

3.1 Description of the sample and methodology 

The database1 underlying our empirical investigation comes from a cross-sectional survey on 

information and communication technologies (ICT) developed in 2018 conjointly by Eurostat and 

ISTAT, the Italian institute of statistics, in collaboration with the European commission. The survey 

 
1 Information on the database and the sampling procedure comes from the methodological note provided by ISTAT. 
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aims at providing a variegated ensemble of data about the implementation of ICT technologies in 

Italian firms with at least 10 employees. Such data include the presence and training of ICT workers, 

the use of e-commerce and social media, the use of electronic invoicing, the strategic determinants of 

the digital transformation, and, most notably, the presence of investments in augmented reality, big 

data analytics, cloud computing, the internet of things, robots and 3D printing, both in 2016 and 2017. 

The reference population for the survey consists of italian firms with at least 10 employees operating 

in any of the following sectors, according to the Italian ATECO classification: manufacturing (C); 

supply of electricity, gas, steam and air conditioning (D); water supply, sewerage and waste 

management (E); construction (F); wholesale and retail trade and repair of motor vehicles and 

motorcycles (G); transport and storage (H); accommodation and catering services (I); information 

and communication services (J); real estate activities (L); professional, scientific and technical 

activities (M, except division 75); rental, travel agencies and business support services (N); repair of 

computers and communications equipment (group 95.1 of section S). 

The whole sub-population of firms with at least 250 employees is included in the database, whereas 

firms with a number of employees between 10 and 249 have been sampled. The sampling method 

follows a stratified random logic whereby each observation belonging to a given stratum has the same 

probability of being selected. Strata are defined according to industry (at a predefined level of 

aggregation), number of employees (10-49, 50-99, 100-249, >= 250) and geographical location. The 

total dimension of the sample is 21,934 firms. As a first step, we divided the sample into three 

categories based on firm size, distinguishing between 13,761 small firms, 4,716 medium firms and 

3,457 large firms. To this end, we relied on the revenue criterion, using as reference boundaries those 

indicated by the European commission to recognize small and medium enterprises2. Subsequently, 

we identified the following variables of interest:  

 
2 Referring to the EU recommendation 2003/361, we identified firms with revenues lower than or equal to 10 million 
as small firms, firms with revenues between 10 and 50 million as medium-sized firms, and the remaining firms as large 
ones. While we are aware that revenues alone constitute an imperfect proxy for size, we believe it does not lead to 
significant biases for the purposes of the present study.  
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• A binary variable taking the value of 1 if the firm engaged in the ICT upskilling of ICT 

workers in 2017, and 0 otherwise. 

• A binary variable taking the value of 1 if the firm engaged in the ICT upskilling of non-ICT 

workers in 2017, and 0 otherwise. 

• A vector of six binary variables, each of which takes the value of 1 if the firm invested in the 

corresponding I4.0 technology in both years 2016 and 20173, the six technologies being 

augmented reality, big data analytics, cloud computing, the internet of things, advanced robots 

and 3D printing. 

The following tables provide a description of the sample with respect to these focal dimensions.  

INSERT TABLE I ABOUT HERE 

INSERT TABLE II ABOUT HERE 

INSERT TABLE III ABOUT HERE 

Not surprisingly, firm size seems to play a definite role in the frequency of adoption of I4.0 

technologies (see Table I). While most large firms and about one third of medium firms adopted at 

least one technology, the overwhelming majority of small firms did not adopt any of the six 

technologies in the dataset (12,061 out of 13,661 firms). Conversely, there is a high degree of 

uniformity in the patterns of adoption by adopting firms (see Table II). The most frequently adopted 

technology is cloud computing, constituting 60%, 49% and 41% of the total instances of adoption in 

small, medium and large firms, respectively. The internet of things follows, constituting 23% of total 

instances of adoption across all firm size categories. Big data analytics scores 10%, 13% and 16% in 

small, medium and large firms respectively, whereas augmented reality and 3D printing show a 

relatively low rate of adoption across all size categories (2% to 4%). Advanced robots are the only 

 
3 We opted to consider investment in both years 2016 and 2017 as a proxy for adoption of each of the six I4.0 
technologies in order to capture a more solid commitment to the technology. Given that the database lacks the extent 
of the investments, considering only 2017 or only 2016 would have entailed the risk of defining as adopters firms with 
minimal investments. 
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case where a significantly different pattern can be observed across size categories, as they constitute 

only 2% of total instances of adoption in small firms, as opposed to 9% and 13% in medium and large 

firms respectively. This may be due to medium and large firms being more skewed toward large-scale 

manufacturing and construction segments, where robots are more frequently used.  It is also worth 

noting that, while cloud computing is the most frequently adopted technology across all size 

categories, it has a much higher relative frequency of adoption in small firms. This may be due to the 

technical characterization of cloud computing, which allows adopting firms to tap into external 

storage and computing capacity, a feature that is most valuable for small firms due to their relatively 

limited resources.  

As for the ICT upskilling patterns, Table I provides valuable descriptive insights. There are relevant 

differences both between upskilling patterns of adopters vs non-adopters, and across firm size 

categories within adopters and non-adopters. Small firms tend to upskill the least, with 85% of non-

adopters and 56% of adopters performing no ICT upskilling. Conversely, large firms upskill the most, 

especially the whole workforce as opposed to a part of it (27% of non-adopters and 49% of adopters 

upskill conjointly). Medium firms lie in between, and they seem to show a relatively higher propensity 

toward selective non-ICT upskilling. Interestingly, there is a significantly lower proportion of non-

upskilling firms in the adopters category, across all firms sizes (56%, 47% and 25% as opposed to 

85%, 70% and 47% in small, medium and large firms, respectively). The other tendency that varies 

significantly and uniformly between adopters and non-adopters is conjoint upskilling, with adopters 

performing it much more frequently than non-adopters, across all firm size categories (18%, 25% and 

49% as opposed to 3%, 10% and 27% in small, medium and large firms, respectively) . On the 

contrary, patterns of selective upskilling are less uniform. Small adopting firms tend to selectively 

upskill ICT workers much more frequently (12% as opposed to 3%), and non-ICT workers slightly 

more frequently (12% as opposed to 9%), with respect to non-adopters of the same size. Medium 

adopting firms have a slightly higher selective upskilling frequency relative to non-adopters in both 

the ICT and the non-ICT case. Large adopting firms have a slightly higher selective ICT upskilling 
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frequency and, most interestingly, a lower selective non-ICT upskilling frequency with respect to 

non-adopters of the same size. This may suggest that the great tendency toward conjoint upskilling 

by large adopting firms eats away the propensity to upskill selectively non-ICT employees.  

These insights are corroborated by the tetrachoric correlation matrix (Table III). Both the ICT 

upskilling of ICT workers and the ICT upskilling of non-ICT workers have a definite negative 

correlation with the small size category and a definite positive correlation with the large size category, 

while being neutral with respect to the medium size category.  Furthermore, each of the six 

technologies has at least a moderate positive correlation with both kinds of upskilling, with 

coefficients ranging from 0.34 to 0.51. This complements from a different angle the indication given 

by Table I: adopting firms have a stronger tendency toward ICT upskilling, and this holds for each of 

the six I4.0 technologies considered. A further insight emerging specifically from the tetrachoric 

correlation matrix (Table III) concerns the interdependencies in technology adoption by firms. All 

the six technologies are indeed interrelated at least moderately, with pairwise correlation coefficients 

ranging from 0.32 to 0.64. However, a subtlety that can already be appreciated from the matrix 

concerns the different magnitudes of the correlation. For example, big data analytics has a much 

stronger correlation with cloud computing and augmented reality (0.64 and 0.61, respectively), rather 

than advanced robots and 3D printing (0.31 and 0.41, respectively). The latter two are instead strongly 

correlated among themselves (0.64). This evidence seems to resonate with the realization that big 

data and cloud computing have similar industrial knowledge bases, which  diverge from robots and 

3D printing (Martinelli et al., 2021). Overall, the correlation matrix indicates that patterns of conjoint 

adoption may be present. However, pairwise correlation coefficients on their own are not enough to 

spot them.   

To this end, we conducted a factor analysis based on the correlation matrix among the six technologies 

in the dataset (leaving all the other variables aside). The Bartlett test of sphericity is significant at less 

than 1% and the Kaiser-Meyer-Olkin measure of sampling adequacy is 0.76, indicating the suitability 
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of a factor analysis.  We extracted two factors and applied the Varimax rotation technique to facilitate 

interpretation, identifying a latent propensity toward digital I4.0 technologies (i.e. augmented reality, 

big data analytics and cloud computing) and a latent propensity toward physical I4.0 technologies 

(i.e. robots and 3D printing) (more details on the interpretation of factor loadings in the next 

Subsection). Then, we replicated the whole process on each subsample based on firm size (small, 

medium and large firms), identifying the same two propensities in all cases, with little variation in 

factor loadings. Factor loadings of the whole sample as well as each subsample are reported in Table 

IV.  

INSERT TABLE IV ABOUT HERE 

Subsequently, we calculated the scores on the two extracted factors for each observation and used 

them as the focal independent variables in a bivariate probit regression4 concurrently estimating the 

probability of upskilling ICT and non-ICT employees as a function of a set of regressors. Besides the 

two factor scores (i.e. digital and physical adoption propensities), we included the following controls 

as independent variables, at the highest level of detail provided by the database:  

• The revenue class. Besides segmenting the sample in three subsamples based on revenues, we 

used classes of revenues at a finer level of granularity as control variables within each 

subsample. While we believe three classes of size are enough to analyze differences in the 

behavior of each variable of interest as size varies, a higher level of granularity is necessary 

to better control for the confounding effect of size.  

• The geographic location. We used 4 binary variables to capture the location of the firm within 

Italy: northeast, northwest, center, south and islands. Location plays indeed an important role 

due to the stronger presence of key industrial clusters in the north of Italy as opposed to the 

 
4 We multiplied the factor score by 100 to facilitate interpretation of the marginal effects, without affecting statistical 
significance.  
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south and the islands. This may confound the relationship between upskilling and technology 

adoption propensity.  

• The share of ICT workers employed by the firm. We used the percentage of ICT workers as 

a proxy for the degree of importance that ICT activities have within the firm. This is the most 

important confounder to control for, as it greatly affects both the probability of ICT upskilling 

and the propensity toward digital I4.0 technologies.  

• The industry. We used a vector of 11 binary variables to account for the sector each firm 

belongs to, according to the first level of aggregation of the ATECO classification: 

manufacturing (C); supply of electricity, gas, steam and air conditioning (D); water supply, 

sewerage and waste management (E); construction (F); wholesale and retail trade and repair 

of motor vehicles and motorcycles (G); transport and storage (H); accommodation and 

catering services (I); information and communication services (J); real estate activities (L); 

professional, scientific and technical activities (M, except division 75); rental, travel agencies 

and business support services (N); repair of computers and communications equipment (group 

95.1 of section S). Given the presence of the share of ICT workers as a very effective control 

for ICT intensity, we regard this level of aggregation as satisfactory.  

We performed four different bivariate probit regression with the ICT upskilling of ICT workers and 

the ICT upskilling of non-ICT workers as the two dependent variables. One was performed on the 

whole sample, while the remaining three were performed on each subsample based on firm size. The 

four regressions do not differ in any aspect except for the factor scores, which are calculated 

separately according to the four different factor analyses based on the specific correlation matrix of 

each subsample5. After running each biprobit model, we computed the marginal effects of a 

percentage increase in the factor scores capturing the digital and physical adoption propensities on 

each possible combination of outcomes: no ICT upskilling, selective ICT upskilling of ICT workers, 

 
5 However, even using the same factor scores would not have produced significantly different results, as the factor 
loadings are similar across the four separate factor analyses (see Table IV).  
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selective ICT upskilling of non-ICT workers, and conjoint ICT upskilling. Finally, we run a 

multinomial logit model adopting the three aforementioned combinations of ICT upskilling as the 

dependent variables (i.e. selective ICT upskilling of ICT workers, selective ICT upskilling of non-

ICT workers, and conjoint ICT upskilling) and the absence of upskilling as the baseline, keeping the 

same controls and focal independent variables (i.e. the two latent propensities).   

3.2. Results 

A first relevant result emerges from the factor analysis. As Table IV shows, augmented reality, big 

data analytics and cloud computing load heavily on the first factor, whereas 3D printing and robots 

load heavily on the second one. The remaining technology, the internet of things, has an average 

loading on both factors. This outcome offers a clear interpretation: the first and the second factor 

represent latent propensities to adopt digital and physical I4.0 technologies, respectively. Augmented 

reality, big data analytics and cloud computing are all characterized by a digital nature and high 

degree of immateriality: they are concerned with data elaboration and visualization, rather than object 

creation and manipulation. The exact opposite holds for 3D printing and robots, which are primarily 

used for manufacturing and moving physical objects. This interpretation is also coherent with the 

indetermined status of the remaining technology, the internet of things. Referring to the equipment 

of objects with intelligent sensors creating a bridge between the physical and the digital world, the 

internet of things is well-suited to represent a digital-physical hybrid having a comparable loading on 

both factors.   

Another aspect worth underlining is the absence of low or negative loadings on either factor. This 

suggests that the existence of two well-defined propensities does not induce a polarization in 

adoption. In other terms, the propensity to adopt digital (physical) technologies does not limit the 

adoption of physical (digital) technologies. On the contrary, it can be argued that each propensity 

implies the other, though to a significantly lower extent.  This reflects the positive bivariate 

correlations among all technologies (Table III), and it is coherent with the view of I4.0 as a systemic 
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phenomenon, characterized by multidirectional complementarities (EPO, 2017). Such 

complementarities seem to be correctly pursued by firms through conjoint adoption, and some 

technologies tend to be adopted conjointly with a higher relative frequency, according to the two 

patterns we identified (i.e. digital and physical adoption propensities). 

The associations between the two identified propensities and ICT upskilling are reported in the 

following tables. Table V reports the marginal effects of a percentage increase in each factor’s score 

on the probability of each outcome resulting from the bivariate probit estimations; Table VI reports 

the Wald tests for the difference in the coefficients of the two factors in the bivariate probit 

estimations; Table VII reports the multinomial logit coefficient of each factor score. All results refer 

to the whole sample as well as each subsample based on firm size.   

INSERT TABLE V ABOUT HERE 

INSERT TABLE VI ABOUT HERE 

INSERT TABLE VII ABOUT HERE 

First, both propensities have a negative, sizable and statistically significant relationship with the 

absence of upskilling (see Table V). This is true for all firm size categories. An increase of 10% in 

digital adoption propensity reduces by 2.7%, 3.7% and 4.1% the probability of no ICT upskilling in 

small, medium and large firms, respectively. An increase of 10% in physical adoption propensity 

reduces by 2.8%, 1.5% and 2.3% the probability of no ICT upskilling in small, medium and large 

firms, respectively. Delving into the specificities of the three combinations of upskilling, it is worth 

comparing the marginal effects of both propensities on the probability of conjoint upskilling as 

opposed to selective upskilling (see Table V). The propensity to adopt I4.0 technologies, whether 

physical or digital, correlates more strongly with conjoint upskilling rather than selective upskilling, 

at least in medium and large firms. A 10% increase in digital adoption propensity augments by 2.1% 

and 4.1% the probability of conjoint upskilling in medium and large firms respectively, while it only 

augments by 0.8% the probability of both kinds of selective upskilling in medium firms, and it has a 
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close to zero and statistically insignificant effect on selective upskilling in large firms. A 10% increase 

in physical adoption propensity augments by 0.8% and 2.3% the probability of conjoint upskilling in 

medium and large firms respectively, while it has a statistically insignificant effect on both kinds of 

selective upskilling both in medium and large firms. Small firms constitute an exception, with the 

marginal effects of both propensities being highest on non-ICT upskilling rather than conjoint 

upskilling (1.3% vs 0.8% and 1.6% vs 0.7%, in front of a 10% increase in digital adoption and 

physical adoption propensities respectively, as Table V shows). This may be due to the higher 

specialization and more limited resources of small firms, which makes conjoint upskilling a priori 

less likely (as also reflected in Table I) and the upskilling of non-ICT workers more urgent (more 

details on this conjecture in the concluding section).  

Taken together, these pieces of evidence imply that adoption of I4.0 technologies goes in tandem with 

ICT upskilling. Depending on industrial specificities, resource availability and firm-level 

idiosyncrasies, upskilling may be directed toward either the whole workforce or a part of it, but it is 

in any case likelier than its absence, as confirmed indirectly by the bivariate probit estimations and 

directly by the multinomial logit coefficients, which employ “no upskilling” as the baseline  (see Table 

VII). However, the likelihood of  conjoint upskilling for medium and large adopting firms is even 

higher, suggesting that I4.0 and human skills form indeed a complex sociotechnical system, where 

technological adoption (whether digitally or physically oriented) should be ideally complemented by 

a holistic upskilling of the workforce.  

Unsurprisingly, there is a difference in the magnitude and, in some cases, even the statistical 

significance of the digital adoption propensity marginal effects as opposed to the physical adoption 

propensity ones (Table V). Digital adoption propensity almost always has a higher marginal effect on 

the probability of all kinds of upskilling (for both ICT-specialized and non-ICT specialized 
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personnel)6, the only exception being selective upskilling of non-ICT employees in small firms7. In 

the case of medium and large firms, the physical adoption propensity marginal effects on selective 

upskilling are not even statistically significant, besides being lower than their digital counterparts. A 

series of Wald tests for the difference in factor coefficients confirm that digital and physical adoption 

propensities are differently associated with the probability of ICT upskilling in all cases, except for 

small firms (see Table VI). The multinomial logit estimations corroborate these results, showing a 

higher coefficient for digital adoption propensity in all cases, except for small firms (see Table VII).  

The stronger association between digital adoption propensity and ICT upskilling is not surprising, as 

digital technologies are by definition closer to the domain of ICT. However, intuition would suggest 

that, precisely for this reason, the consequent ICT upskilling would be directed mainly toward ICT 

employees, who are supposed to be the direct operators of digital technologies. Intuition would also 

suggest that, being farther from the ICT domain, physical technologies have no significant 

relationship with ICT upskilling, whether it be directed toward ICT or non-ICT employees. Instead, 

our results seem to suggest that both physical and digital I4.0 technologies require ICT skills and, 

most importantly, they require a holistic upskilling on the part of both ICT-specialized and non-ICT 

specialized personnel. In particular, physical adoption propensity relates positively and significantly 

only to the conjoint ICT upskilling of both ICT and non-ICT employees, and not to the selective ICT 

upskilling of either of the two. Not only does this imply that even physical I4.0 technologies require 

ICT skills, but it also implies that, taken together, they definitely require those skills on the part of 

both ICT and non-ICT employees. Overall these results suggest that both digital and physical I4.0 

technologies form a new language that requires ICT skills to be interpreted and transmitted. Besides 

strengthening the ICT skills of ICT employees, this language also requires endowing non-ICT 

 
6 Please note that, in the case of “no upskilling”, the marginal effect of the digital adoption propensity is lower. 
However, being a negative marginal effect on the negative of upskilling, the direction is the same as in the other cases, 
from a conceptual viewpoint.  
7 Strictly speaking, the magnitude is (slightly) lower also in the case of selective ICT upskilling by large firms. However, 
it should not be considered, as the physical adoption propensity coefficient is not statistically significant in that case.  
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employees with ICT skills, in order to make sense of the new organizational reality together with 

their ICT-specialized colleagues.  

4. Discussion and conclusion 

Technological complementarities and upskilling constitute wide and intertwined research areas. 

Technologies form complex systems (Hughes, 1993; Rosenberg, 1979), and their interdependent 

characteristics determine patterns of coevolution over time (Martinelli et al., 2021), possibly 

culminating in the formation of aggregate technological paradigms after a process of convergence 

(Pedota et al., 2021). At the f irm level, these aspects, among others, make it optimal to adopt some 

technologies in conjunction with others, a frequently observed empirical occurrence (Battisti and 

Iona, 2009; Colombo and Mosconi, 1992; Wozniak, 1984). Furthermore, interdependence goes 

beyond the technological realm and extends to human resources.  To reveal their full potential, 

technologies need to be complemented by appropriate human skills. The skill-biased (Autor et al., 

1998; Berman et al., 1994; Bresnahan et al., 2002), and, subsequently, routine-biased (Goos et al., 

2009, 2014) technological change hypotheses have characterized a long-lasting debate about different 

types of human skills complementing or substituting for automation and computerization 

technologies, a debate that is still alive, also due to the dynamic nature of technological change.  

Nowadays, many find a discontinuity in the ongoing process of technological change, to the point of 

identifying a fourth industrial revolution, disrupting competition dynamics and givin g rise to the 

innovative business models and smart factories that underlie the so-called I4.0 (Kagermann, 2015; 

OECD, 2017; Osterrieder et al., 2020; Sung, 2018). Some works try to analyze the generally 

established concepts of technological complementarity and interdependence within the context of 

I4.0, ascertaining that some technologies have more compatible knowledge bases than others  (e.g. 

artificial intelligence, cloud computing and big data analytics) (Martinelli, 2021), and that firms tend 

to show patterns of hierarchical adoption, with advanced I4.0 business technologies often 

presupposing widespread digitization (Zolas et al., 2021). Other works instead focus on the human 
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side of the matter, adopting labor market perspectives (e.g. Acemoglu and Restrepo, 2019; Autor and 

Salomons, 2018; Das et al., 2020), skill-centric views (Galaske et al., 2017; Motyl et al., 2017; Ras 

et al., 2017; Schallock et al., 2018) or panoramic outlooks on the human factor (e.g. Neumann, 2020). 

However, research on both the technological and the human side is still scant, and, above all, the two 

sides are usually considered separately in extant theoretical and empirical investigations.  

In the present work, we provide a first attempt to investigate the technological and human sides of 

I4.0 conjointly, leveraging a large cross-sectional database of Italian firms to highlight a series of 

important findings. First, while confirming that I4.0 is a systemic phenomenon (EPO, 2017), we also 

identify two distinct latent propensities to invest primarily (though not exclusively) in either digital 

or physical I4.0 technologies at the firm level. Since a considerable part of the impulse toward 

technological development comes from R&D, this may have implications both at the level of the firm 

and at the level of technological change. Regarding the former, the present work indicates that firms 

may want to channel their resources (Barney, 1991), routines (Nelson and Winter, 1982) and 

absorptive capacity (Cohen and Levinthal, 1990) toward the exploitation of precise subclusters of 

I4.0 technologies, depending on their needs. For instance, managers of digitally oriented firms may 

want to hire employees well-versed not only in big data analytics, but also in cloud computing and 

augmented reality, and encourage the development of heuristics supporting the use and recombination 

of these particular technologies. These and many other strategic implications are likely to stem from 

the identification of subclusters of technologies that are complementary in use . Regarding general 

dynamics of technological change, our results resonate with the work of Martinelli and colleagues 

(2021), giving an indication on the fact that big data analytics, cloud computing and augmented 

reality, as well as robots and 3D printing, may eventually become part of two unique, aggregate 

technological paradigms (Pedota et al., 2021). However, overall evidence is still insufficient and 

technological trajectories are currently too unpredictable to draw definite conclusions in this regard.  
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The present work also sheds new light on the intertwinement between I4.0 technologies and skills. 

First, it provides evidence that the adoption of I4.0 technologies, whether digital or physical, is likelier 

to be coupled with a conjoint ICT upskilling of both ICT and non-ICT employees, rather than a 

selective upskilling of either of the two. Second, it suggests that even the propensity to adopt physical 

I4.0 technologies like robots and 3D printing is directly and positively related to the conjoint ICT 

upskilling of ICT and non-ICT specialized personnel (although with a weaker magnitude that the 

propensity to adopt digital I4.0 technologies). Beyond their inherent degree of digitalization, all I4.0 

technologies seem to constitute the foundation of a new language that all employees (both ICT and 

non-ICT) need to get familiar with, through the acquisition of appropriate ICT skills. This 

interpretation also resonates with the importance of sociability and creativity in the I4.0 domain 

(Ciarli et al., 2021; Pedota and Piscitello, 2020), which favor employee interconnection and 

technological recombination. 

A second implication descending from the findings above concerns the labor market. The tendency 

for conjoint upskilling seems to indicate that there is no clear-cut separation between the ICT skills 

needed by ICT employees and non-ICT employees. While ICT employees are inherently drawn 

toward the corpus of skills needed for I4.0, non-ICT employees may be tempted to believe that they 

can disregard the digital side of technology. In the light of our findings, familiarity with digital I4.0 

technologies and innovative interfaces (e.g. augmented reality) may constitute an increasingly 

important competitive advantage in the labor market, having the two-fold effect of making workers 

possessing it more appealing ex-ante, and facilitating ex-post the process of upskilling enacted by 

medium and large firms, thanks to the self -sustaining properties of learning and knowledge 

cumulation.  

As a future research direction, we recommend developing additional empirical and theoretical 

insights into the reasons why small firms constitute an exception to our findings. Unlike the other 

cases, in small firms digital adoption propensity does not relate more strongly to ICT upskilling than 
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physical adoption propensity. Furthermore, selective non-ICT upskilling is the outcome most strongly 

associated with either propensity, rather than conjoint upskilling. We conjecture that this may be due 

to a combination of resource constraints and higher specialization. The former limits the ability of 

small firms to engage in conjoint upskilling, while the latter implies a lower indirect exposure of non-

ICT employees to digital technologies. Taken together, these facts make it necessary to selectively 

upgrade the ICT skills of non-ICT employees, to help them take part in the new I4.0-driven 

interconnected organizational reality together with their ICT colleagues. However, it is impossible to 

draw conclusions in this regard without ad hoc qualitative insights. If the hypothesis on resource 

constraints were true, it would have important policy implications, as small firms would need to be 

subsidized not only for the adoption of I4.0 technologies, but also for the appropriate upskilling of 

their workforce. More generally, we encourage further empirical and theoretical efforts aimed at 

making sense of the intertwinement between technological and skill complementarities in the context 

of I4.0. As the fourth industrial revolution unfolds, sociotechnical interactions are likely to become 

even more important than each component on its own.  

References  

Acemoglu, D., & Restrepo, P. (2019). The wrong kind of AI? Artificial intelligence and the future of 

labor demand. Cambridge, MA: National Bureau of Economic Research, 

https://doi.org/10.3386/w25682. 

Arntz, M., Gregory, T., & Zierahn, U. (2017). Revisiting the risk of automation. Economics Letters, 

159, 157-160. 

Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. New York, NY: 

Simon and Schuster. 

Autor, D. H., Katz, L. F., & Krueger, A. B. (1998). Computing inequality: have computers changed 

the labour market? The Quarterly Journal of Economics, 113(4), 1169-1213. 

Autor, D., & Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of the US 

Labor Market. American Economic Review, 103(5), 1553-1597. 

https://doi.org/10.3386/w25682


24 
 

Autor, D., & Salomons, A. (2018). Is automation labor-displacing? Productivity growth, 

employment, and the labor share. Brookings Papers on Economic Activity Conference Drafts (pp. 1-

72). 

Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17 

(1), 99–120. 

Battisti, G., & Iona, A. (2009). The intra-firm diffusion of complementary innovations: Evidence 

from the adoption of management practices by British establishments. Research Policy, 38(8), 

1326-1339. 

Berman, E., Bound, J., & Griliches, Z. (1994). Changes in the demand for skilled labour within US 

manufacturing: evidence from the annual survey of manufactures. The Quarterly Journal of 

Economics, 109(2), 367-397. 

Bijker, W. E., Hughes, T. P., & Pinch, T. J. (1987). The social construction of technological 

systems: New directions in the sociology and history of technology. Cambridge, MA: MIT press.  

Birkel, H. S., Veile, J. W., Müller, J. M., Hartmann, E., & Voigt, K. I. (2019). Development of a 

risk framework for Industry 4.0 in the context of sustainability for established 

manufacturers. Sustainability, 11(2), 384. 

Bresnahan, T. F., Brynjolfsson, E., & Hitt, L. M. (2002). Information technology, workplace 

organisation, and the demand for skilled labour: Firm-level evidence. The Quarterly Journal of 

Economics, 117(1), 339-376. 

Brynjolfsson, E., Rock, D. & Syverson, C. (2018). The productivity J-curve: How intangibles 

complement general purpose technologies. Cambridge, MA: National Bureau of Economic 

Research, Working Paper n. 25148. 

Calabrese, A., Levialdi Ghiron, N., & Tiburzi, L. (2020). ‘Evolutions’ and ‘revolutions’ in 

manufacturers’ implementation of industry 4.0: a literature review, a multiple case study, and a 

conceptual framework. Production Planning & Control, 32(3) 1-15. 

Ciarli, T., Kenney, M., Massini, S., & Piscitello, L. (2021). Digital Technologies, Innovation, and 

Skills: Emerging Trajectories and Challenges. Research Policy, forthcoming. 

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and 

innovation. Administrative Science Quarterly, 35(1) 128-152. 



25 
 

Colombo, M. G., & Mosconi, R. (1995). Complementarity and cumulative learning effects in the 

early diffusion of multiple technologies. The Journal of Industrial Economics, 43(1), 13-48. 

Cugno, M., Castagnoli, R., & Büchi, G. (2021). Openness to Industry 4.0 and performance: The 

impact of barriers and incentives. Technological Forecasting and Social Change, 168, n. 120756. 

Das, S., Steffen, S., Clarke, W., Reddy, P., Brynjolfsson, E., & Fleming, M. (2020). Learning 

occupational task-shares dynamics for the future of work. Proceedings of the AAAI/ACM 

Conference on AI, Ethics, and Society (pp. 36–42).   

Deming, D., 2017. The growing importance of social skills in the labor market. The Quarterly 

Journal of Economics, 132(4), 1593-1640. 

Dosi, G. (1982). Technological paradigms and technological trajectories: a suggested interpretation 

of the determinants and directions of technical change. Research Policy, 11(3), 147-162. 

Elliott, S. (2014). Anticipating a Luddite Revival. Issues in Science and Technology (pp. 27- 36). 

European Patent Office (2017). Patents and the Fourth Industrial Revolution. Retrieved May 1, 

2020 from: http://www.lemoci.com/wp-content/uploads/2017/12/Patents-and-the-Fourth-industrial-

Revolution-2017.pdf 

Felten, E., Raj, M., & Seamans, R. (2019). The effect of artificial intelligence on human labor: An 

ability-based approach. Academy of Management Proceedings (p. 15784).  

Fisk, P. (2017). Education 4.0. Retrieved May 05, 2021 from: 

http://www.thegeniusworks.com/2017/01/future-education-youngeveryone-taught-together/ 

Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 

117-132. 

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to 

computerisation? Technological Forecasting and Social Change, 114, 254-280. 

Galaske, N., Arndt, A., Friedrich, H., Bettenhausen, K. D., & Anderl, R. (2017). Workforce 

management 4.0-assessment of human factors readiness towards digital manufacturing. 

International Conference on Applied Human Factors and Ergonomics  (pp. 106-115).  

Goos, M., Manning, A., & Salomons, A. (2009). Job polarisation in Europe. American Economic 

Review, 99(2), 58-63. 



26 
 

Goos, M., Manning, A., & Salomons, A. (2014). Explaining job polarisation: Routine-biased 

technological change and offshoring. American Economic Review, 104(8), 2509-2526. 

Hecklau, F., Galeitzke, M., Flachs, S., & Kohl, H. (2016). Holistic approach for human resource 

management in Industry 4.0. Procedia Cirp, 54, 1-6. 

Henderson, R. M., & Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing 

product technologies and the failure of established firms. Administrative Science Quarterly, 35(1), 

9-30. 

Horváth, D., & Szabó, R. Z. (2019). Driving forces and barriers of Industry 4.0: Do multinational 

and small and medium-sized companies have equal opportunities? Technological Forecasting and 

Social Change, 146, 119-132. 

Hughes, T. P. (1993). Networks of power: electrification in Western society, 1880-1930. Baltimore, 

MD: JHU Press. 

Kagermann, H. (2015). Change through digitalization: Value creation in the age of Industry 4.0. In 

Albach, H., Meffert, H., Pinkwart, A., Reichwald, R (Eds.), Management of Permanent Change (pp. 

23-45). Wiesbaden: Springer. 

Karre, H., Hammer, M., Kleindienst, M., & Ramsauer, C. (2017). Transition towards an Industry 

4.0 state of the LeanLab at Graz University of Technology. Procedia Manufacturing, 9, 206-213. 

Kiel, D., Müller, J. M., Arnold, C., & Voigt, K. I. (2020). Sustainable industrial value creation: 

Benefits and challenges of industry 4.0. International Journal of Innovation Management, 21(8), 

n.1740015. 

Korinek, A., & Stiglitz, J. (2017). Artificial intelligence and its implications for income distribution 

and unemployment. Cambridge, MA: National Bureau of Economic Research, Working Paper n. 

24174.  

Lorenz, M., Rüßmann, M., Strack, R., Lueth, K. L., & Bolle, M. (2015). Man and machine in 

industry 4.0: How will technology transform the industrial workforce through 2025. Retrieved June 

09, 2021 from: http://englishbulletin.adapt.it/wp-

content/uploads/2015/10/BCG_Man_and_Machine_in_Industry_4_0_Sep_2015_tcm80-197250.pdf 

Martinelli, A. (2012). An emerging paradigm or just another trajectory? Understanding the nature of 

technological changes using engineering heuristics in the telecommunications switching 

industry. Research Policy, 41(2), 414-429. 



27 
 

Martinelli, A., Mina, A., & Moggi, M. (2021). The enabling technologies of industry 4.0: 

Examining the seeds of the fourth industrial revolution. Industrial and Corporate Change, 

forthcoming. 

Motyl, B., Baronio, G., Uberti, S., Speranza, D., & Filippi, S. (2017). How will change the future 

engineers’ skills in the Industry 4.0 framework? A questionnaire survey. Procedia 

Manufacturing, 11, 1501-1509. 

Müller, J. M., Buliga, O., & Voigt, K. I. (2018). Fortune favors the prepared: How SMEs approach 

business model innovations in Industry 4.0. Technological Forecasting and Social Change, 132, 2-

17. 

Nedelkoska, L., & Quintini, G. (2018). Automation, Skills Use and Training. Paris: OECD, 

Working Paper n. 202.  

Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic behavior and 

capabilities. Cambridge, MA: Harvard University Press. 

Neumann, W. P., Winkelhaus, S., Grosse, E. H., & Glock, C. H. (2021). Industry 4.0 and the human 

factor–A systems framework and analysis methodology for successful development. International 

Journal of Production Economics, 233, n. 107992. 

OECD. (2017). Enabling the Next Production Revolution. Retrieved February 08, 2021 from: 

https://www.oecd.org/sti/ind/next-production-revolution.htm.  

Onar, S. C., Ustundag, A., Kadaifci, Ç., & Oztaysi, B. (2018). The changing role of engineering 

education in industry 4.0 Era. Industry 4.0: Managing the digital transformation  (pp. 137-151).  

Osterrieder, P., Budde, L., & Friedli, T. (2020). The smart factory as a key construct of industry 4.0: 

A systematic literature review. International Journal of Production Economics, 221, n. 107476. 

Pedota, M., Grilli, L., & Piscitello, L. (2021). Technological paradigms and the power of 

convergence. Industrial and Corporate Change, forthcoming. 

Pedota, M., & Piscitello, L. (2020). Additive manufacturing and creativity enhancement: An 

undervalued form of complementarity. 21st CINet Conference. 

Pinzone, M., Fantini, P., Perini, S., Garavaglia, S., Taisch, M., & Miragliotta, G. (2017). Jobs and 

skills in Industry 4.0: an exploratory research. IFIP International Conference on Advances in 

Production Management Systems (pp. 282-288). 



28 
 

Ras, E., Wild, F., Stahl, C., & Baudet, A. (2017). Bridging the skills gap of workers in Industry 4.0 

by human performance augmentation tools: Challenges and roadmap. Proceedings of the 10th 

International Conference on Pervasive Technologies Related to Assistive Environments (pp. 428-

432). 

Rosenberg, N. (1979). Technological interdependence in the American economy. Technology and 

Culture, 20(1), 25-50. 

Schallock, B., Rybski, C., Jochem, R., & Kohl, H. (2018). Learning Factory for Industry 4.0 to 

provide future skills beyond technical training. Procedia Manufacturing, 23, 27-32. 

Solow, R. M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of 

Economics, 70(1), 65-94. 

Strange, R., & Zucchella, A. (2017). Industry 4.0, global value chains and international 

business. Multinational Business Review, 25(3), 174-184. 

Sung, T. K. (2018). Industry 4.0: a Korea perspective. Technological Forecasting and Social 

Change, 132, 40-45. 

Valdivieso, C. (2020). Why combine artificial intelligence and 3D printing?  Retrieved July 30, 

2020 from: https://www.3dnatives.com/en/artificial-intelligence-and-3d-printing-060120204/ 

Wang, Y., Lin, Y., Zhong, R. Y., & Xu, X. (2019). IoT-enabled cloud-based additive manufacturing 

platform to support rapid product development. International Journal of Production 

Research, 57(12), 3975-3991. 

Wozniak, G. D. (1984). The adoption of interrelated innovations: A human capital approach.  The 

Review of Economics and Statistics, 66(1), 70-79. 

Yoo, Y., Boland Jr, R. J., Lyytinen, K., & Majchrzak, A. (2012). Organizing for innovation in the 

digitized world. Organization Science, 23(5), 1398-1408. 

 

 

 

 

 

 



29 
 

Table I. Type of upskilling by firm size and adoption  

 

 

 

 

 

 

Status Type of upskilling Small Medium Large Total 

Adopter 

 
No upskilling 

 
901 (50%)  

 
542 (30%) 

 
371 (20%) 

 
1814 (100%) 

 
(56%) 

 
(47%) (25%) (43%) 

Only ICT upskilling 
208 (38%) 

(13%) 
124 (23%) 

(11%) 
215 (39%) 

(15%) 
547 (100%) 

(13%) 

 
    

Only NON-ICT upskilling 
198 (35%) 

(12%) 
192 (34%) 

(17%) 
174 (31%) 

(12%) 
564 (100%) 

(13%) 

 
    

Conjoint upskilling 
293 (23%) 

(18%) 
288 (22%) 

(25%) 
717 (55%) 

(49%) 
1298 (100%) 

(31%) 

     

 
Total 

 
1600 (38%) 

 
1146 (27%) 

 
1477 (35%) 

 
4223 (100%)  

 
 

(100%) (100%) (100%) (100%) 
 

 
 

    

Non-adopter 

     

No upskilling 
10338 (75%) 

(85%) 
2505 (18%) 

(70%) 
926 (7%) 

(47%) 
13769 (100%) 

(78%) 

 
    

Only ICT upskilling 
383 (47%) 

(3%) 
209 (26%) 

(6%) 
221 (27%) 

(11%) 
813 (100%) 

(5%) 

 
    

Only NON-ICT upskilling 
1079 (58%) 

(9%) 
490 (26%) 

(14%) 
291 (16%) 

(15%) 
1860 (100%) 

(11%) 

 
    

Conjoint upskilling 
361 (28%) 

(3%) 
366 (29%) 

(10%) 
542 (43%) 

(27%) 
1269 (100%) 

(7%) 

     
 
Total 

 
12161 (69%) 

 
3570 (20%) 

 
1980 (11%) 

 
17711 (100%) 

 

(100%) (100%) (100%) (100%) 

The Table shows the number of firms that do not upskill, upskill selectively ICT employees, upskill selectively non -ICT employees 

and upskill conjointly, categorizing them according to their size and their status in terms of technological adoption. The status o f 

adopter means that the firm has adopted at least one of the six technologies in the dataset, while the status of non -adopter means that 

the firm has adopted none of the six technologies in the dataset. Percentages to the side of absolute numbers indicate  the relative 

frequency with respect to the horizontal dimension (i.e. type of upskilling), whereas percentages below indicate the relative 

frequency with respect to the vertical dimension (i.e. firm size). Percentages are rounded to the nearest integer.  
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Table II. Technologies adopted by firm size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Technology Small Medium Large Total 

Augmented reality 

 
52 (32%) 
(3%) 

 
38 (23%) 
(2%) 

 
73 (45%) 
(3%) 

 
163 (100%) 

(3%) 

     

Big data analytics 
201 (26%) 
(10%) 

194 (25%) 
(13%) 

388 (50%) 
(16%) 

783 (100%) 
  (13%) 

     

Cloud computing 
1200 (40%) 

(60%) 
765 (26%) 
(49%) 

1003 (34%) 
(41%) 

2968 (100%) 
(50%) 

     

Internet of things 
461 (33%) 
(23%) 

362 (26%) 
(23%) 

558 (40%) 
(23%) 

1381 (100%) 
(23%) 

     

3D printing 
34 (18%) 
(2%) 

49 (26%) 
(3%) 

103 (55%) 
(4%) 

186 (100%) 
(3%) 

     

Advanced robots 
45 (9%) 
(2%) 

139 (28%) 
(9%) 

318 (63%) 
(13%) 

502 (100%) 
(8%) 

     

 
Total 

 
1993 (33%) 

 
1547 (26%) 

 
2443 (41%) 

 
5983 (100%) 

 

  (100%)   (100%)  (100%)   (100%) 

The Table shows the number of firms that adopt each of the six I4.0 technologies in the dataset, 

categorizing them according to their size. Percentages to the side of absolute numbers indicate the 

relative frequency with respect to the horizontal dimension (i.e. the technology), whereas percentages 

below indicate the relative frequency with respect to the vertical dimension (i.e. firm size). Percentages 

are rounded to the nearest integer.  
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Table III. Tetrachoric correlation matrix among focal variables 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

(1) ICT 
upskilling 

1.00 
    

    
  

(2) NON-ICT 
upskilling 

0.72 1.00 
   

    
  

(3) Firm 
size: small 

-0.51 -0.45 1.00 
  

    
  

(4) Firm 
size: 
medium 

0.08 0.13 -1.00 1.00 
 

    
  

(5) Firm 
size: large 

0.59 0.49 -1.00 -1.00 1.00     
  

(6) Big data 
analytics 

0.51 0.43 -0.42 0.05 0.45 1.00    
  

(7) 
Augmented 
reality 

0.46 0.36 -0.28 0.02 0.32 0.61 1.00   
  

(8) Cloud 
computing 

0.52 0.39 -0.35 0.09 0.38 0.64 0.48 1.00  
  

(9) Internet 
of things  

0.44 0.35 -0.37 0.08 0.40 0.55 0.49 0.50 1.00  
 

(10) 3D 
printing 

0.44 0.36 -0.42 0.06 0.41 0.41 0.53 0.41 0.48 1.00 
 

(11) 
Advanced 
robots 

0.39 0.34 -0.60 0.08 0.55 0.37 0.36 0.32 0.51 0.64 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Table shows the tetrachoric correlation coefficients for every couple of focal variables. Variables are arbitrarily listed from 1 to 

11. The leftmost column reports the full name of the variable besides its reference number, whereas the uppermost row reports  only 

the reference number, for graphical convenience.  



32 
 

Table IV. Factor loadings by firm size  

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor Technology  Small Medium Large 
Whole 

sample 

 

 
 
 
 
 

Digital adoption 

propensity 

     
Augmented reality 0.6271 0.6321 0.5589 0.6080 
     
Big data analytics 0.7603 0.6902 0.7861 0.7591 

     
Cloud computing  0.7745 0.5862 0.6456 0.6768 
     
Internet of things 0.5054 0.5184 0.4912 0.5269 
     

 3D printing 0.2289 0.2420 0.2974 0.3274 
      
 Advanced robots 0.1116 0.1782 0.1226 0.2340 

 
 

    

 
 

    

Physical adoption 

propensity 

     Augmented reality 0.3381  0.2814 0.3956 0.3740 
     
Big data analytics 0.1892 0.1358 0.1979 0.2696 
     
Cloud computing  0.1086 0.2541 0.1602 0.2491 
     

Internet of things 0.4893 0.4361 0.4072 0.4774 
     
3D printing 0.7191 0.6455 0.6847 0.7033 
     

 Advanced robots 0.6591 0.6021 0.7112 0.7012 
      

The Table summarizes the output of the factor analyses on the whole sample and on each subsample based on firm size. Each column 

from “small” to “whole sample” constitutes the output of a separate factor analysis based on the polychoric correlation matri x of the 

corresponding subsample, and reports the rotated factor loadings for each technology on the factor indicated in the leftmost colu mn 

(digital adoption propensity and physical adoption propensity).    
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Table V. Bivariate probit marginal effect coefficients by firm size 

Firm size category Outcome Digital propensity  
marginal effect 

Physical propensity 
marginal effect 

 
 

Whole sample 

 
No upskilling 

 
-0.0036*** 

- 
-0.0024*** 

Only ICT upskilling 0.0008*** 0.0005*** 
Only NON-ICT upskilling 0.0012*** 0.0002*** 
Conjoint upskilling 0.0016*** 0.001*** 
   

 
 

Small 

No upskilling -0.0027*** -0.0028*** 
Only ICT upskilling 0.0006*** 0.0005*** 
Only NON-ICT upskilling 0.0013*** 0.0016*** 
Conjoint upskilling 0.0008*** 0.0007*** 
   

 
 

Medium 

No upskilling -0.0037*** -0.0015** 
Only ICT upskilling 0.0008*** 0.0002 
Only NON-ICT upskilling 0.0008** 0.0005 
Conjoint upskilling 0.0021*** 0.0008** 
   

 
 

Large 

No upskilling -0.0041*** -0.0023*** 
Only ICT upskilling 0.0004* 0.0005 
Only NON-ICT upskilling -0.0004 -0.0005 
Conjoint upskilling 0.0041*** 0.0023*** 
   

 
Industry controls: included 
Size controls: included  
Geographical controls: included  
ICT intensity controls: included 
 

 
The Table summarizes the output of the bivariate probit analyses on the whole sample and on each subsample based on firm size . It 

reports the marginal effect of a percentage increase in each of the two factor scores indicated in the last two columns on ev ery possible 

outcome in terms of upskilling, for the whole sample as well as each subsample based on firm size (as indicated by the leftmost column). 

Three stars indicate a p-value of 1% or lower; two stars indicate a p-value between 1% and 5%; one star indicates a p-value between 

5% and 10%. The absence of stars indicates that the coefficient is not statistically significant.  
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Table VI. Wald tests for the difference in factor coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outcome  Small Medium Large 
Whole 

dataset 

     
ICT upskilling 0.4304 0.0061 0.0142 0.0001 
     
Non-ICT upskilling 0.6105 0.0759 0.0053 0.0029 

     

The Table reports the level of significance of a series of Wald tests following the bivariate probit 

estimations on the whole sample as well as each subsample based on firm size. The null hypothesis is “the 

difference between the coefficients for digital adoption propensity and physical adoption propensity is 

zero”, with coefficients referring to the dependent variable indicated in the leftmost column. Levels of 

significance suggest that the null hypothesis can be safely rejected for the whole database as well as lar ge 

firms with respect to both ICT and non-ICT upskilling. It can also be rejected in the case of medium 

firms, although with a weaker level of significance with respect to non -ICT upskilling. It can definitely 

not be rejected in the case of small firms.  
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Table VII. Multinomial logit coefficients by firm size 

Firm size category Outcome Digital propensity  
multinomial logit 

coefficient 

Physical propensity 
multinomial logit 

coefficient 

 
 

Whole sample 

 
No upskilling 

 
baseline 

- 
baseline 

Only ICT upskilling 0.0195*** 0.0132*** 
Only NON-ICT upskilling 0.0119*** 0.0079*** 
Conjoint upskilling 0.028*** 0.0175*** 
   

 
 

Small 

No upskilling baseline baseline 
Only ICT upskilling 0.023*** 0.027*** 
Only NON-ICT upskilling 0.0136*** 0.0222*** 
Conjoint upskilling 0.0327*** 0.0292*** 
   

 
 

Medium 

No upskilling baseline baseline 
Only ICT upskilling 0.0181*** 0.0072 
Only NON-ICT upskilling 0.0111*** 0.006 
Conjoint upskilling 0.0235*** 0.009** 
   

 
 

Large 

No upskilling baseline baseline 
Only ICT upskilling 0.0129*** 0.0033 
Only NON-ICT upskilling 0.0074*** -0.004 
Conjoint upskilling 0.0234*** 0.0123*** 
   

 
Industry controls: included  
Size controls: included 
Geographical controls: included  
ICT intensity controls: included 
 

 

The Table summarizes the output of the multinomial logit analyses on the whole sample and on each subsample based on firm siz e. 

For each subsample indicated in the leftmost column, it reports the multinomial logit coefficients for the two factors on each 

combination of upskilling, adopting “no upskilling” as the baseline. Three stars indicate a p -value of 1% or lower; two stars indicate 

a p-value between 1% and 5%; one star indicates a p-value between 5% and 10%. The absence of stars indicates that the coefficient 

is not statistically significant. 


