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Abstract: In this paper, a model predictive control system for the depth of hypnosis is
proposed and analyzed. This approach considers simultaneous co-administration of the
hypnotic and analgesic drugs and their effect on the Bispectral Index Scale (BIS). The
control scheme uses the nonlinear multiple-input single-output (MISO) model to predict
the remifentanil influence over the propofol hypnotic effect. Then, it exploits a generalized
model predictive control algorithm and a ratio between the two drugs in order to provide
the optimal dosage for the desired BIS level, taking into account the typical constraints of
the process. The proposed approach has been extensively tested in simulation, using a set
of patients described by realistic nonlinear pharmacokinetic/pharmacodynamic models,
which are representative of a wide population. Additionally, an exhaustive robustness
evaluation considering inter- and intra-patient variability has been included, which demon-
strates the effectiveness of the analyzed control structure.

1. Introduction

In general anesthesia it is necessary to achieve the desired patient state, considering that depth of hypnosis (DoH),
analgesia and muscle relaxation must meet the requirements of the planned surgical intervention. The traditional
approach is based on the anaesthesiologists, who take advantage of their knowledge and experience to adjust
manually the drugs dosage basing on patient’s vital signs as a feedback information. The anesthesia process is
under continuous development with the aim of improving safety and efficacy. In this context, automatic control
systems are seen as a potential technological progress in the operating rooms [1–5].

From a clinical practice standpoint, hypnosis and analgesia are always required in general anesthesia as the
lack of one of these components produces serious intra-operative and post-operative complications. In total intra-
venous anesthesia, which is exclusively considered in this paper, propofol and remifentanil are commonly used
as hypnotic and analgesic drugs, respectively. The neuromuscular blockade can be treated as a separate issue. In-
deed, paralysis is not always required in general anesthesia. It is necessary only for specific types of surgery (e.g.
abdominal surgery) and to facilitate particular procedures (e.g. intubation). Moreover, the drugs used for the neu-
romuscular blockade do not interact significantly with the analgesic or hypnotic drugs [6–8]. In total intravenous
anesthesia, control systems have mainly focused on DoH, due to availability of its measure (e.g. Bispectral In-
dex Scale [Medtronic], Entropy [GE Healthcare] or NeuroSense [Neuro Wave Systems]) which permits feedback
control. There are several control structures where propofol is used as the hypnotic drug and the BIS signal is the
process variable [9–11]. However, the single-input-single-output (SISO) control system for the DoH by itself does
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not give a full support to the anaesthesiologist [2, 11]. In fact, hypnosis and analgesia should be addressed simul-
taneously due to the synergistic effect between the propofol and the analgesic drug remifentanil. The desirable
control architecture should have a multiple-input-multiple-output (MIMO) structure, in order to handle the mutual
interaction between control variables (the drugs dosage) and controlled variables (DoH and analgesia) [12–15].

A compromise between the MIMO and the SISO approaches is a multiple-input-single-output (MISO) process
structure, where the BIS (or another measure for the DoH) is the only controlled variable and the infusion of
propofol and remifentanil are the manipulated variables. Their mutual interaction has to be taken into account
because, when used simultaneously, the resulting effect of each drug is bigger than expected with respect to when
each drug is infused individually. In fact, in [16–18] it was shown that this interaction is especially important
when the propofol is administrated in boluses (in the induction phase of the anaesthesia) and in presence of the
surgical stimuli in the maintenance phase. The effect that this interaction has on DoH has also been well described
in a pharmacokinetic/pharmacodynamic (PK/PD) model using the generalization of the Hill function to a surface.
Among different parametrization techniques for the interaction surface model, the most accepted in the literature
has been developed in [18–23]. This model shows that the same BIS can be obtained with different combinations
of propofol and remifentanil dosages. This needs to be taken into account when designing the automatic control
system.

Control architectures for the MISO case in anaesthesia process have been analyzed in several works over the
last few years [24–33]. The effectiveness of classical proportional-integral-derivative (PID) control techniques has
been shown in [27, 29, 30]. Then, sustainability and safety aspects for feedback control have been analyzed in
[26,32], where it has been demonstrated that there are clear advantages in the application of automatic controllers.
A mid-ranging control technique exploiting the faster dynamics of remifentanil has been proposed in [33], where
simulation results showed a satisfactory performance for the considered virtual patients. A robust control system
considering additional compensator and base-line remifentanil dosage under habituating control technique has
been analyzed in [24] focusing on the DoH, represented by a WAVCNS signal. Moreover, some closed-loop control
systems with extended logic, like Bayesian and multi-centre systems, have been analyzed in [25, 28] looking for
the controller adaptability and focusing on the strong variability of the DoH process.

The availability of the interaction model between the propofol and the remifentanil has also stimulated the
development of model predictive control (MPC) systems [34–37] for the MISO case. In this context, the predictive
controller is built using a linearized interaction model for propofol and remifentanil, with the aim of keeping the
desired level of the DoH [34]. The analgesic drug infusion rate is adapted to the propofol dosage and the ratio
is kept constant. Another example where a habituating control technique and is reformulated for the DoH in
anaesthesia control task taking into account the effect of remifentanil was shown in [35]. In this control system, a
reference signal is established for the infusion rate of remifentanil and this is modified by the controller according
to the changes in propofol dosage. In this way, the hypnosis is the main controlled variable and analgesia is adapted
to the changes in the hypnosis feedback loop. Moreover, nonlinear MPC techniques have been analyzed in [36,37],
where conceptual developments are proposed for anaesthesia control.

These works show that MPC controllers can address relevant issues that concern process constraints and predic-
tion capability of synergistic effect of drugs interaction. However, on the one hand, their applicability is limited by
the strong variability of the process, namely, inter- and intra-patient variability. On the other hand, due to nonlin-
ear process characteristics, resulting control systems are complex and rarely robust enough to be exploited at the
operating room. Additionally, there exists many types of medical interventions with different requirements during
the anaesthesia procedure, which makes difficult to develop one control system that is suitable for all situations.
Furthermore, a personalized controller design based on patient model can significantly improve the control per-
formance. This approach was previously investigated in a context of diabetes control system using a MPC-based
techniques proving the effectiveness of this methodology [38, 39]. All aforementioned questions stimulate the
development of new control systems based on MPC techniques.

In this paper, we propose an MPC system for the MISO process where the nonlinear propofol-remifentanil
interaction model on the BIS is exploited [18]. The method suitably generalizes the idea proposed in [40], where
the propofol is the only used drug. The control system employs an external predictor to compute the inverse of
the static nonlinear element (represented as the Hill surface) of the drug interaction model, which enables the
application of the linear MPC technique. In fact, the considered patient model has a Wiener structure, where the
PK element is linear and the PD part has a nonlinear behaviour. The linear component is computed individually
for each patient, while the nonlinear element is always the same since it cannot be obtained for each individual.
The feedback controller is designed considering the linear term of the personalized patient model. In particular,
a generalized predictive control (GPC) algorithm is used as feedback controller, which considers the effect of
remifentanil over the propofol. Therefore, it is able to handle the synergistic effect of both drugs in the computation
of the control signal for the DoH. The dosage of the two drugs is established by fixing a ratio between them [29].
The external predictor architecture is completed with the low-pass filter in the feedback loop. The tuning of the
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Fig. 1: A diagram interpretation of a PK/PD model of the patient using a three compartmental approach.

controller is performed by means of a genetic algorithm addressing separate requirements for the induction and
the maintenance stages. Finally, the proposed control system is evaluated using a Monte Carlo technique for inter-
and intra-patient variability using a wide distribution of patients population.

The remainder of paper is as follows. In Section 2, the propofol-remifentanil PK/PD interaction model exploited
in the proposed control architecture is briefly reviewed. Section 3 is devoted to the analysis of the proposed control
structure for the depth of hypnosis. Additionally, the GPC algorithm description and the tuning procedure are also
provided there. Next, in Section 4, the proposed control system is tested for induction and maintenance stages using
the simulation study. Moreover, exhaustive intra- and inter-patient variability tests using Monte Carlo analysis are
also included. Lastly, conclusions are provided in Section 5.

2. Interaction model for drug co-administration

It is well known that co-administration of analgesic drugs like remifentanil with propofol have a synergistic effect
that affects the hypnosis level of the patient [16,18,41]. Therefore, it is fundamental to have compartmental models
exploiting PK/PD concepts that characterize the patient’s response to these drugs. From a practical standpoint, the
synergistic action results into a reduction of the amount of dosed propofol that is required to reach a desired level
of hypnosis (measured by the BIS) if remifentanil is added [42]. From a model-based control system point of view,
it is required to build the MISO model that has the propofolol infusion rate up(t) and the remifentanil infusion rate
ur(t) as inputs (control variables) and the DoH, measured through the BIS signal, as output (controlled variable).

2.1. Patient model

For the DoH, the relationship between the used drugs is usually modeled through a MISO Wiener model rep-
resentation. In this architecture (see Figure 1), two linear systems representing two separate PK/PD models are
connected in parallel and coupled with a static nonlinear function [17, 43, 44]. The distribution and elimination
of the drug, considering the relation between drug administration and the plasmatic concentration in the patient
body, is described by the pharmacokinetics. Instead, the pharmacodynamics represents the relation between the
plasmatic concentration and resulting effect on site concentration. Moreover, in [16] it has been shown that propo-
fol pharmacokinetics do not interact with the remifentanil action and absorption. The combined effect of the two
drugs is considered in the pharmacodynamic part of the model, where a resulting Hill function gives the level of
the DoH (represented by the BIS signal) taking into account the concentrations of used drugs.

A mammillary three-compartmental representation of model is frequently used to characterize the PK term
of both drugs. Moreover, a homogeneous characteristic, like a uniform drug distribution, of the used model is
assumed.

In this case, the infusion rate of the drug u(t) is represented by the input of the model , while the plasmatic
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concentration of the drug Cp(t) is the output of the PK term. The resulting PK transfer function has the following
form:

PK(s) =
Cp(s)
U(s)

=
1

V1

(s+ z1)(s+ z2)

(s+ p1)(s+ p2)(s+ p3)
(1)

where the parameters p1, p2, p3, z1 and z2 are related to the patient’s physical characteristics (age, weight, height,
gender) [17, 44, 45].

Then Cp(t) (drug’s plasmatic concentration) is the input of the PD term of the model. Its first part includes two
linear first-order transfer functions corresponding to each drug. Each of them relates the plasmatic concentrations
Cp(t) to the effect-site concentrations Ce(t). The linear part of PD model results therefore in the following general
formulation:

Ċe(t) = k1eCp(t)− ke0Ce(t), (2)

where for propofol, k1e has fixed value equal to 0.456 min−1 and it is equal to ke0. For remifentanil, k1e and ke0
are related to the patient’s age:

k1e = k0e = 0.595−0.007(Age−40). (3)

Finally, the PD model is completed by a static nonlinear element, referred to as Hill function, which combines
the effect-site concentrations of opioid and hypnotic drugs, giving the BIS value as

BIS(t) = E0 −Emax


(

Yp(t)+Yr(t)
U50(φ)

)γ

1+
(

Yp(t)+Yr(t)
U50(φ)

)γ

 (4)

where:

• E0 refers to the state of the patient, where no infusion is provided (initial state);

• Emax −E0 is the maximum allowable effect;

• γ describes the gradient of the curve, characterizing the receptiveness of the patient to drugs;

• Yp and Yr are the propofol and remifentanil effect-site Ce,p(t) and Ce,r(t) concentrations (resulting from
the linear model (2)), respectively, normalized with respect to Ce50,p and Ce50,r. These are the propofol and
remifentanil concentrations necessary to get half of the maximum effect over the DoH measure (BIS level),
resulting in:

Yp(t) =
Ce,p(t)
Ce50,p

, Yr(t) =
Ce,r(t)
Ce50,r

, (5)

• U50(φ) represents the power of two drugs at the φ co-administration ratio, expressed as the number of units
related to the 50% of the maximum effect:

U50(φ) = 1−βφ +βφ
2 (6)

where β is used to correlate the number of units associated with 50% of the drug maximum effect with the
action of the drug and

φ =
Yp(t)

Yp(t)+Yr(t)
, (7)

expresses the power of the combination of drugs. An increased value of β results in a higher hypnotic effect
because of the synergistic properties of drugs

The resulting interaction is super-additive. In this case, the combined effect of propofol and remifentanil is greater
than the sum of the each one. The resulting BIS value is normalized in range 0 and 100, representing respectively,
isoline and patient in fully awake state.

2.2. Patients dataset

The introduced PK/PD model also includes the dynamics of the BIS monitor, as previously shown in [45, 46].
Hence, it can be used to develop and evaluate the automatic control of the DoH by the coadministration of hypnotic
and analgesic drugs. To this end, an already accepted set of PK/PD patient models, which are representative of
a wide population, has been considered. The propofol-related parameters of the model are obtained from [9, 47,
48], while the variables related to remifentanil are randomly generated basing on the normal distribution of the
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Id Age Height [cm] Weight [kg] Gender Ce50,p Ce50,r γ β E0 Emax
1 40 163 54 F 6.33 12.5 2.24 2.00 98.8 94.10
2 36 163 50 F 6.76 12.7 4.29 1.50 98.6 86.00
3 28 164 52 F 8.44 7.1 4.10 1.00 91.2 80.70
4 50 163 83 F 6.44 11.1 2.18 1.30 95.9 102.00
5 28 164 60 M 4.93 12.5 2.46 1.20 94.7 85.30
6 43 163 59 F 12.00 12.7 2.42 1.30 90.2 147.00
7 37 187 75 M 8.02 10.5 2.10 0.80 92.0 104.00
8 38 174 80 F 6.56 9.9 4.12 1.00 95.5 76.40
9 41 170 70 F 6.15 11.6 6.89 1.70 89.2 63.80

10 37 167 58 F 13.70 16.7 3.65 1.90 83.1 151.00
12 42 179 78 M 4.82 14.0 1.85 1.20 91.8 77.90
12 34 172 58 F 4.95 8.8 1.84 0.90 96.2 90.80
13 38 169 65 F 7.42 10.5 3.00 1.00 93.1 96.58

Table 1: Patient database for the propofol-remifentanil combined infusion models.

parameter values given in [49] to introduce inter-patient variability. The values for the considered population are
presented in Table 1. The thirteenth individual is the average patient of the group, obtained by calculating for each
available parameter its algebraic mean.

3. Control system

In this section, the design of the control system is described. First, the clinical requirements and the constraints for
the DoH are presented. Secondly, the proposed MISO MPC architecture is presented. Finally, the tuning procedure
for the control system is explained.

3.1. Control requirements

In the induction phase of the anesthesia, the goal of the coadministration control system is to bring the BIS
value to the set-point value of 50 in a time interval smaller than 5 minutes (preferably in about 2 minutes), with
a reduced undershoot. Values of BIS below 30 should be avoided, since they are correlated with the onset of
burst suppression [50], which has been associated with postoperative delirium [51]. Then, during the maintenance
phase, the BIS level should be maintained in the range between 40 and 60 as long as possible. Moreover, the
control system must also be robust against the variability of the model, being able to deal with different physical
characteristics (including estimation uncertainties) and health conditions of the patients.

An additional specification to be considered is the physical limitations of the actuators, that is, the saturation
and slew rate limits of the used pumps (in our case Graseby 3400, Smiths Medical, London, UK). For this device,
the lower saturation limit is set to 0 for two drugs, whereas the upper infusion limit for propofol is set to 6.67 mg/s
(Diprivan 20 mg/ml) and for remifentanil to 16.67 µg/s (Ultiva 50 µg/s) [45]. Additionally, the pump slew rate
limits, are 0.2 mg/s for the propofol and 0.4 µg/s for remifentanil, constraining the biggest allowed variation of
the infusion rate from the previous sampling interval to the current one.

For the control system design, analysis and evaluation we set a fixed ratio of 2 between propofol and remifentanil
dosage. Note that this ratio can vary as the type of surgical intervention changes. However, this value of the
ratio is the most typical one as it is obtained by applying the infusion pattern proposed in [52]. Its goal is to
achieve a balance between the propofol and remifentanil effect-site concentrations that ensures a 50% chance of
not responding to surgical stimuli and the quickest return to consciousness after the end of infusions.

3.2. Control system architecture using MISO approach for drug coadministration

The introduced control system is a generalization and extension to the MISO case of the architecture presented
in [40]. The main idea consists in the computation of the inverse of the nonlinear function present in the Wiener
model and in the use of a linear GPC algorithm. The MISO Wiener model approach is used to consider the
synergistic effect of the drug coadministration on the DoH represented by the BIS signal.

The control scheme is shown in Figure 2. The main objective is that the measured DoH level, shown as BIS(t),
follows the reference signal BIS(t). The patient model (see Section 2.1) has been conveniently reorganized into
three blocks Pprop, Premi f and H. In this configuration the Wiener structure is maintained, as the first two elements
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Fig. 2: The proposed control system for anesthesia using MISO approach for propofol-remifentanil coadministra-
tion.

represent the linear dynamics of the propofol and the remifentanil, respectively, and the H block represents the
nonlinear Hill function. The main idea consists in using this model to construct an external predictor to estimate
the patient state. The predictor blocks include the model of the linear dynamics P̃prop and P̃remi f and the inverse
of the nominal nonlinear function H̃−1. The GPC block represents the feedback controller, K is the ratio between
the co-administrated drugs and Fd is a low-pass filter. In this control architecture, the GPC controls directly Ỹp,
namely, the propofol concentration required to achieve the desired BIS value. This value can also be obtained from
the process (in this case it is denoted as Ŷp) by using the H̃−1 block that requires, as inputs, the actual BIS value and
the remifentanil concentration Ỹr estimated by the predictor. Due to the unavoidable process/model mismatches,
the resulting difference signal between Ŷp and Ỹp is filtered by Fd in order to compensate for this difference in the
feedback loop.

The introduced methodology requires a deeper analysis of the inverse nonlinear function block. The calculation
of the inverse of the Hill function, which provides the value of Ŷp, requires the values of the BIS and of Ỹr. The
BIS value is provided by the DoH monitor, while Ỹr can be computed from the patient model (see (5)). To apply
this methodology, Equation (4) needs to be rewritten as Yp(t) = f (BIS(t),Yr(t)). To obtain this structure, it is
necessary to rewrite (4) using a third-order polynomial form, resulting in following equation:

Y 3
p +bY 2

p + cYp +d = 0 (8)

where:

b = 3Yr −
(

E0 −BIS
Emax −E0 +BIS

)1/γ

c = 3Y 2
r −2Yr

(
E0 −BIS

Emax −E0 +BIS

)1/γ

+βYr

(
E0 −BIS

Emax −E0 +BIS

)1/γ

d = Y 3
r −Y 2

r

(
E0 −BIS

Emax −E0 +BIS

)1/γ

Now, exploiting the current BIS signal measure and Ỹr(t) (which represents the estimated effect site concentration
of remifentanil) it is possible to calculate Ŷp(t), by solving (8), to finally obtain the inverse of the Hill function.
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Once the inverse function is computed, its value from Equation (8) can be used to estimate the propofol concen-
tration Ŷp. However, to integrate the effect of the remifentanil over the propofol, it is necessary to relate the desired
propofol concentration (which is the reference signal for the GPC controller) to the remifentanil concentration and
to the BIS desired value BIS(t). This is achieved by integrating the drugs co-administration effect into the Ỹp(t)
value when computing the corresponding concentration for the BIS reference value. Thus, the calculation of the
reference value (represented as w(k) in the GPC structure, see Section 3.3) for the propofol concentration needs to
take into account the value of Yr. In the analyzed scheme the remifentanil dosage is related to the propofol infusion
using a fixed gain K (as shown in simplified representation in Figure 3). Therefore, using basic properties of such
a system, it is possible to obtain Yr as an expression that depends on Yp:

Yp = Gpup Yr = Grur = GrKup

From here, it is possible to obtain:
Yr = G−1

p GrKYp (9)

and from this, it is possible to obtain a difference equation:

Yr(k) = b0Yp(k)+ ...+bnbYp(k−nb)−a0Yr(k−1)− ...−anaYr(k−1−na) (10)

where the coefficients a, b and the degrees na, nb of the nominator and denominator are obtained from the G−1
p GrK

term.
At this point, Yr in the equation (8) can be substituted with Yr from equation (10). In this way, we obtain an

expression where the propofol concentration is linked only to the desired level of DoH (the BIS setpoint value
for the control system). Thus, we can determine an optimal reference signal for the propofol infusion that takes
into account the effect of the remifentanil. This is possible thanks to the ratio block and to the exploitation of
the propofol control signal values computed over the control horizon. The reference signal has slight variations
at each sampling instant because the relation between Yp and Yr depends on the past values of Yp and Yr. To take
into account this relationship, the reference w(t) is computed at every sampling instant, using a receding horizon
strategy. Thanks to the proposed architecture it possible to obtain MISO control system properties. However, the
SISO model is considered for the GPC controller design.

At this stage, the advantages of the proposed control scheme can be provided. Under nominal conditions, when
there are no uncertainties and modelling errors among the patient and the derived model, (i.e. P̃prop = Pprop,
P̃remi f = Premi f and H̃ = H) the analyzed scheme can be transformed to a linear syste, where the controller is
focused on the linear element of the patient model. In such a scenario, w(t) is obtained from BIS(t) by applying
H−1, which includes the effect site concentration of remifentanil. In this way the BIS is linked to the Ce,p(t)
value, which is the estimated propofol effect-site concentration the patient. Then, Ŷp(t) = Ỹp(t) is obtained and
the feedback signal corresponds to Ỹp(t). In this case, the controller reacts only when the reference changes or
the process disturbances d(t) influence the controlled variable. The algorithm flow chart for the proposed control
scheme is shown in Figure 4.

In the real case, there are model uncertainties, especially those related to the static nonlinearity in the Wiener
model, since it is virtually impossible to know the exact values of the parameters a priori. Actually, the linear part
of the PK/PD model is also affected by uncertainties, related to parameters variability and model inaccuracies.
Taking into account these issues, the i(t) signal is used both to compensate modelling uncertainties and to react to
the disturbances induced by surgical stimuli. As shown in Figure 2, the i(t) value is related to the error between
Ỹp(t) (estimated propofol effect-site concentration using linear part of the model, P̃prop) and Ŷp(t) (propofol effect-
site concentration obtained via average Hill function inversion based on the real BIS measure). Thus, the GPC

𝐺𝑝
𝐻

𝑌𝑝𝑢𝑝

𝐵𝐼𝑆

𝐾 𝑌𝑟

𝑢𝑟 𝐺𝑟

Fig. 3: Simplified scheme for the external predictor.

7



START

Triggered new BIS 

measurement

Control task 

terminated

STOP

Filter the difference signal between and 

, using and introduce into the 

feedback control loop

Compute new control signals  ,      ,

and apply them to the pumps

No

Yes

Yes

No

𝑤(𝑡)

෨𝑌𝑝(𝑡)
𝑌𝑝(𝑡) 𝐹𝑑 𝑖(𝑡)

𝑢𝑝(𝑡) 𝑢𝑟(𝑡)

Compute and      with the linear 

dynamics of the model and          using

average Hill function inverse             

෨𝑌𝑝(𝑡) ෨𝑌𝑟(𝑡)

෩𝐻
−1

𝑌𝑝(𝑡)

Calculate the new reference signal ,

considering effect of remifentanil over the 

BIS signal

Fig. 4: Algorithm flow chart for developed control scheme.

controller uses Y̆p(t) as a feedback signal, which contains information regarding patient model mismatches and
influence of disturbances.

In the same way, the proposed control system handles the patient’s state changes along the time, which result
in model inaccuracies. These could be related to a sudden change in patient’s hemodynamics (which affects drugs
clearances) that can be due to a severe blood loss or to the administration of vasoactive medications. As a con-
sequence, the variation of the model parameters are considered as unmeasurable disturbances that needs to be
compensated by the controller among other modelling errors.

Moreover, the i(t) signal passes through the low-pass filter Fd . The main purpose of Fd is to attenuate the
result of disturbances and uncertainties on the GPC feedback controller and, at the same time, to guarantee a null
steady-state reference tracking error in the feedback loop.

The Fd filter is represented as a first order transfer function of the following form:

Fd(s) =
1

Tds+1
(11)

where Td is a time constant that needs to be adjusted. Therefore, to obtain the satisfactory performance of the con-
trol system, it is required to tune the GPC controller parameters as well as Td . The detailed information regarding
the control system tuning is in Section 3.4
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It is worth stressing again that P̃prop, P̃remi f are computed using demographic parameters that result in an indi-
vidualized controller. On the contrary, H̃ and H̃−1 are obtained using average values for the population that can
be found in the literature [53,54]. These values are Emax = 87.5, Ce50,p =4.92 µg/ml, Ce50,r = 12.5 ng/ml, γ=2.69,
β=1.5. The parameter E0 can be measured and the precise individualized value can be provided for each patient
before the induction phase (it is the BIS measure obtained for patient in the fully awake state).

3.3. Generalized Predictive Controller algorithm

As it is well known [55], GPC consists of applying a control sequence that minimizes a multistage cost function
of the form:

J =
N

∑
j=N1

[ŷ(t + j|t)−w(t + j)]2 +
Nu

∑
j=1

λ [∆u(t + j−1)]2 (12)

where ŷ(k+ j|t) is an optimal system output prediction sequence performed with data known up to discrete time
t, ∆u(t + j − 1) is a future control increment sequence obtained from the cost function minimization with ∆ =
(1− z−1), N1 and N are the minimum and maximum prediction horizons respectively, Nu is the control horizon
and λ is weighing factor for the future control signal. The desired control performance is obtained through the
selection of appropriate values for horizons and weighting factor (the tuning procedure is shown in Section 3.4).
The reference signal is represented by w(k+ j) along the prediction horizon [55]. As highlighted previously, the
w(t) signal is calculated at every sampling period, with a receding horizon strategy and considering the interaction
of the remifentanil over the propofol. In (12), the j-step ahead prediction of the system output with data up to time
t (that is, ŷ(k+ j|t)), is computed by means of the following model [55]:

A(z−1)ỹ(t) = B(z−1)u(t −1)+
e(t)
∆

(13)

where A and B are polynomials in discrete time using the backward shift operator z−1. The e(t) term is related to
the white noise and is set to zero. The future process output predictions can be expressed using vectorial form as
follows:

ŷ = Gu+ f (14)

where ŷ refers to the vector of the future prediction of the process outputs, G is the matrix representing the process
dynamics, u is the vector of future control signal values and f is the free response of the process (for more details
see [55]).

3.3.1. Process constraints handling

The GPC algorithm is able to handle a variety of process constraints, ranging from those representing hardware
limitations like actuator saturation and slew rates to those that allow a specific behavior of the controlled variable
to be obtained, namely, process output constraints. However, to obtain the desired performance in the proposed
control system, only those related to the infusion pumps are necessary. Given the limitations of the actuators,
the constraints of the control signal (given as umin = 0 mg/s and umax = 6.67 mg/s for propofol) have to be
handled during the control signal computation through the optimization procedure. The pump saturation limits
umin ≤ u(t)≤ umax can be included as a set of inequalities imposed on the future control signal increments:

lumin ≤ T∆u+u(t −1)≤ lumax.

where T is a lower triangular matrix of ones with N ×N size and l is a vector of ones (1×N). Due to the ratio
approach with a fixed gain K = 2, the constraints for remifentanil are umin = 0 µg/s and umax = 13.34 µg/s.

The slew-rate constraints can be taken into account using a set of inequalities ∆umin ⩽ u(t)−u(t −1)⩽ ∆umax
and considered on the control signal increments vector ∆u. Using the vectorial form, they can be rewritten as:

l∆umin ⩽ ∆u ⩽ l∆umax

In this case the limitations of infusion pump related to slew-rate constraints are set to −0.2 ⩽ ∆u ⩽ 0.2 mg/s for
propofol and, as a consequence, to −0.4 ⩽ ∆u ⩽ 0.4 µg/s for remifentanil.

Note that the constraints on the manipulated variable (the propofol infusion) are considered in the optimiza-
tion procedure, while the constraints for the remifentanil are applied in accordance with the values obtained for
propofol by taking into account the ratio gain K.

9
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Fig. 5: The Fd block implementation details.

In general, the defined constraints can be expressed as R∆u ⩽ c, where:

R =


IN×N
−IN×N

T
−T

 ;c =


l∆umin
−l∆umax

lumax − lu(t −1)
−lumin + lu(t −1)

 .

where IN×N is the identity matrix (with N ×N size). Lastly, all formulated constraints are handled in the QP
optimization procedure, which is stated as:

J(u) =
1
2

uT Hu+bT u+ f0

subject to:
R∆u ⩽ c

where H = 2(GT G+λ I), bT = 2(f−w)T G, f0 = (f−w)T (f−w) and w is the vector of the reference signal [55].

3.4. Control scheme parameters tuning

The controller parameters (N, Nu, and λ related to the GPC algorithm and Td for the low-pass filter Fd) need to
be selected in order to provide the desired performance and to assure the required robustness. It has been decided
to tune the parameters for the set-point following and disturbance rejection tasks (namely, for the induction and
maintenance phases) separately in a two steps approach [56–59]. In the first step of tuning procedure, the controller
is setup to provide an optimal set-point tracking response. During second step, an additional tuning process is
performed by keeping the values N and Nu obtained in the previous step and looking for λ and Td values being
optimized for disturbance rejection task. Thus, there are two sets of parameters; one is applied in the induction
phase and the other one in the maintenance phase. In order to apply a bumpless switching for Td , it is necessary
to implement two different low-pass filters in the scheme, see Figure 5. When the filter of the induction phase is
operating, the other one, for the maintenance phase, is in tracking mode assuring that its output is changed to be
the same as i(t) at the switching time instant.

By following the same approach used in [10,40,60], the tuning is performed using an optimization technique, in
order to minimize the worst-case IAE (Integrated Absolute Error) taking into account the representative population
of the 13 patients described in [10]. The optimization is performed by means of a genetic algorithm, where the
initial population (of 40 elements) was generated using a uniform distribution provided by the a Gaussian mutation
function. Being the IAE defined as:

IAE =
∫

|r(t)−BIS(t)|dt (15)
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finally, the objective function that minimizes the worst-case IAE is defined as:

min
N,Nu,λ ,Td

max
k∈{1,...,13}

IAEk(N,Nu,λ ,Td), (16)

where IAEk(N,Nu,λ ,Td) refers to the IAE value computed for the kth patient from the database. The resulting
parameters for the induction phase (set-point following) are N = 36, Nu = 34, λ = 10 and Td = 96. For the
maintenance phase, the λ and the Td values are changed respectively to 3 and 23.

4. Simulation results

In this section, the results obtained in simulation with the proposed control architecture are presented. Both in-
duction and maintenance phases of anesthesia have been simulated, in order to verify the fulfilment of the clinical
specifications and to assess the performance. The induction phase, which is a set-point following task, has been
simulated providing to the controller a step reference signal, r(t), that goes from the initial BIS value, E0, to the
target BIS value of 50. The maintenance phase is a disturbance rejection task where the BIS level of the patient is
perturbed by the effect of the surgical stimulation. This has been simulated as an additive disturbance, d(t), acting
on patient’s BIS. In particular, a double step disturbance signal has been applied. It consists of a positive step of
amplitude 10 followed by a negative step of the same amplitude that brings the disturbance back to zero. This
particular profile has been chosen since it is the most challenging one for a feedback controller. Moreover, the
simulation results obtained with this disturbance profile can be easily interpreted and they are well representative
of the disturbance rejection performance.
In order to evaluate the performance of the controller, the indexes proposed in [9] have been used. For the induction
phase, the indexes are:

• TT: measured time-to-target for the BIS required to reach the target interval, [45÷55], for the first time;

• BIS-NADIR: is the lowest value of BIS measure that is reached;

• ST10: is the settling time of the control system and it is calculated as the time period required for the BIS
signal to get and continue within the interval of [45÷55];

• ST20: the same of ST10, but it considers a BIS interval of [40÷60];

• US: undershoot, defined as the difference between the BIS value of 45 and the BIS-NADIR.

For the maintenance phase, the indexes are:

• TTp: measured time-to-target necessary for bringing the BIS signal back into [45÷ 55] interval after the
positive step disturbance has occurred;

• TTn: measured time-to-target necessary for bringing the BIS signal back into [45÷ 55] interval after the
negative step disturbance occurred;

• BIS-NADIRp: the lowest observed BIS value after the positive step disturbance occurred and before the
negative step disturbance occurred (undershoot);

• BIS-NADIRn: the highest observed BIS value after the negative step disturbance occurred (overshoot).

Initially, the controller performance has been assessed on the patient database of Table 1. Then, the robustness of
the proposed control architecture has been analyzed by simulating the effect of intra- and inter-patient variability.

4.1. Test on a sample dataset

In this section, simulation results obtained on the patients dataset of Table 1 are presented. In this test, is assumed
that the linear term of the considered process model is perfectly known (P̃prop = Pprop and P̃remi f = Premi f ). How-
ever, the nonlinear element represented by the average Hill function is used instead of the actual patient’s one
(H̃ ̸= H). Figure 6 shows the control system performance for the induction and maintenance phases. The per-
formance indexes related to the induction phase are shown in Table 2, while those of the maintenance phase are
shown in Table 3. From the obtained results, it is possible to notice that the proposed control system provides a
fast induction of anesthesia. Indeed, the mean TT over the whole dataset is 1.75 minutes, with a maximum value
of 2.10 minutes obtained for patient 11. These values are fully compatible with the clinical specifications. The
short TT has been achieved without causing an excessive undershoot of the BIS. In particular, BIS values below
50 have occurred in only two out of thirteen patients. Nevertheless, the BIS-NADIR has always remained above
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Table 2: Induction phase - performance indexes for all patients.

Patient TT [min] BIS-NADIR ST20 [min] ST10 [min] US
1 1.38 49.67 1.27 1.38 0.00
2 1.53 49.61 1.33 1.53 0.00
3 1.87 49.65 1.38 1.87 0.00
4 1.27 40.98 1.18 2.42 4.02
5 2.02 49.71 1.42 2.02 0.00
6 1.78 49.56 1.40 1.78 0.00
7 1.92 49.74 1.45 1.92 0.00
8 1.65 49.61 1.38 1.65 0.00
9 1.30 44.04 1.20 2.10 0.96
10 2.02 49.57 1.43 2.02 0.00
11 2.10 49.79 1.52 2.10 0.00
12 2.03 49.53 1.45 2.03 0.00
13 1.83 49.62 1.43 1.83 0.00

mean 1.75 48.54 1.37 1.89 0.38
std.dev 0.29 2.75 0.11 0.27 1.12

max 2.10 49.79 1.52 2.42 4.02
min 1.27 40.98 1.17 1.38 0.00

the recommended value of 40, and the undershoot has been short-lasting, as it appears from the values of ST10 and
ST20. Indeed, ST20 is always shorter than TT. This indicates that the BIS quickly settles inside the recommended
range 40-60. As regards the ST10, it is equal to TT for all the patients, except in the two patients for which an
undershoot occurs. In any case, the maximum value is 2.42 minutes, hence the BIS always settles in the range
45-55 in less than 3 minutes. As regards the maintenance phase, the control system quickly compensates for the
positive step disturbance as indicated by the TTp, without causing undershoot as the BIS-NADIRp never drops
below 48. The TTn is longer than the TTp because the compensation of the negative step disturbance is mainly
dominated by the patient natural dynamics. Indeed, when the negative step disturbance occurs, the controller re-
acts by decreasing the drugs flows until they saturate to zero. Anyway, the controller behaviour is sensible and the
negative disturbance is compensated without causing a BIS overshoot, as it appears from the BIS-NADIRn index.

4.2. Test on a sample dataset subject to intra-patient variability

The robustness of the proposed control system has been assessed in the case of intra-patient variability. For this,
a mismatch has been introduced also in the linear term of the analyzed process model. To this end, each of the
thirteen patients of the considered dataset, P̃prop and P̃remi f are calculated with the average parameters values,
while a set of 500 perturbed Pprop and Premi f models is generated by a Monte Carlo Method (MCM) based on the
statistical properties of the PK models given in [17] and [43]. For each of these perturbed models, the induction
and maintenance phases have been simulated. As regards the induction phase, the results for the average patient
are shown in Figure 7 and the corresponding performance indexes are given in Table 4. The defined clinical
requirements are always fulfilled. The same behaviour has been obtained for all the other patients of the dataset
and the corresponding results are shown in Figure 8. As regards the maintenance phase, the results for the average
patient are shown in Figure 9 and the corresponding performance indexes are given in Table 5. Even in this
scenario, the clinical requirements are always met. Moreover, the same behaviour has been obtained for all the
other patients of the dataset and the results obtained are shown in Figure 10.

4.3. Test on a wide population

In order to assess further the robustness of the proposed control architecture, a random population of 500 patients
has been generated again with a MCM. The population has been generated by selecting randomly the gender, and
by employing a uniform distribution of the parameters. For the analyzed scenario, we select the ranges for age
between 18 and 70, weight between 50 kg and 100 kg and height between 150 cm and 190 cm. The parameters of
the nonlinear interaction model have been generated considering the statistical distribution given in [41,49,53]. In
this context, it is assumed that the linear term of the considered process model is known (P̃prop =Pprop and P̃remi f =
Premi f ). On the contrary, the nonlinear element is represented by the average Hill function, that is implemented
in the control scheme (H̃ ̸= H). The responses of the induction phase are shown in Figure 11 and the obtained
performance indexes are given in Table 6.
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Fig. 7: Induction phase subject to intra-patient variability - MCM simulation results for the average patient.
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Fig. 9: Maintenance phase subject to intra-patient variability - MCM simulation results for the average patient.
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Fig. 11: Induction phase - MCM simulation results for the inter-patient variability.
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Table 3: Maintenance phase - performance indexes for all patients.

TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
1 0.47 48.56 1.05 50.08
2 0.48 49.63 0.80 50.08
3 0.48 49.72 0.78 50.09
4 0.47 49.23 0.72 50.02
5 0.55 49.64 1.02 50.09
6 0.52 49.60 0.83 50.06
7 0.58 49.77 1.00 50.06
8 0.55 49.69 0.88 50.03
9 0.48 49.57 0.78 50.04

10 0.50 48.97 1.05 50.08
11 0.73 49.85 1.32 50.06
12 0.53 49.24 1.13 50.28
13 0.53 49.69 0.85 50.06

mean 0.53 49.47 0.94 50.08
std.dev 0.07 0.37 0.17 0.06

max 0.73 49.85 1.32 50.28
min 0.47 48.56 0.72 50.02

Table 4: Induction phase subject to intra-patient variability - performance indexes for the average patient with
MCM evaluation.

TT [min] BIS-NADIR ST20 [min] ST10 [min] US
mean 1.91 49.40 1.46 1.91 0.00

std.dev 0.24 0.40 0.13 0.24 0.00
min 1.37 47.89 1.13 1.37 0.00
max 2.67 49.86 1.93 2.67 0.00

The controller quickly induces anesthesia in all patients. Indeed, the mean TT is 1.13 minutes and its maximum
value is 2.23 minutes. Thus, the clinical requirements are fully satisfied. As regards the BIS-NADIR, the mean
value of 44.23 implies that the control system does not cause an excessive undershoot of the BIS. In some patients
the BIS falls below the recommended threshold of 40, as it is possible to notice by observing the minimum
value of the BIS-NADIR, which is 31.46. However, the undershoot values obtained are acceptable as BIS values
up to 30 are commonly reached in clinical practice and are not harmful to the patient health. The ST20 and
ST10 values are, also in this case, fully compatible with the clinical practice. With respect to the test on the
dataset of thirteen patients, it is possible to observe an increase in their maximum values that is due to the more
pronounced undershoot observed in some patients of the population. However, these values remain well below the
recommended value of 5 minutes given in the clinical requirements. Figure 12 shows the responses obtained in the
maintenance phase and the performance indexes corresponding to this scenario are given in Table 7. The results
on the whole population confirmed those obtained on the dataset of thirteen patients. Indeed, the control system is
able to reject the disturbances quickly without causing undershoot or overshoot of the BIS.

It should be highlighted that the proposed control system based on the constant ratio between the two drugs is
one of approaches that could be exploited in clinical practice. For instance, it will be also interesting to develop a
control system that will allow the anaesthesiologist to use a mix between manual and automatic control for multi
drug infusion system. Such a hybrid system architecture will be addressed in our future works.

5. Conclusions

In this paper, a model predictive control strategy using a MISO approach for the anaesthesia process has been pre-
sented. The proposed control structure is based on the individualized multi-variable Wiener model, which is also
used to decouple the drugs interactions effect for control purposes. The designed controller also takes advantage
of the constraints handling mechanism, considering saturation and slew rates limitations on the computed control
signals. The optimal control system parameters adjustment has been performed by means of genetic algorithms,
taking into account a database of patients that is representative of a wide population. Moreover, the proposed con-
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Fig. 12: Maintenance phase - MCM simulation results for the inter-patient variability.
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Table 5: Maintenance phase subject to intra-patient variability - performance indexes for the average patient with
MCM evaluation.

TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
mean 0.55 49.82 0.86 50.09

std.dev 0.02 0.08 0.06 0.03
min 0.50 49.36 0.68 50.03
max 0.62 49.95 1.05 50.27

Table 6: Induction phase - performance indexes with the MCM for inter-patient variability.

TT [min] BIS-NADIR ST20 [min] ST10 [min] US
mean 1.13 44.23 1.27 1.95 2.23

std.dev 0.15 4.38 0.62 0.78 3.02
min 0.83 31.46 0.78 0.95 0.00
max 2.23 49.81 3.27 3.78 13.54

troller can be easily implemented and executed in real time on a standard PC. The effectiveness of the methodology
has been demonstrated using an in silico approach exploiting the nonlinear patient model. Indeed, the obtained
results have demonstrated that the proposed control structure gives a satisfactory performance despite inter- and
intra-patient variability.

Future work will be oriented to provide practical evaluation of the developed controller under a real clinical
conditions through an in vivo study. Moreover, it is planned to provide a hybrid control system architecture that
enables the manual control of the remifentanil, providing optimal control of the propofol taking into account the
synergistic relation between the drugs.
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