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Abstract
Vinetti, G, Pollastri, L, Lanfranconi, F, Bruseghini, P, Taboni, A, and Ferretti, G. Modeling the power-duration relationship in
professional cyclists during the Giro d’Italia. J Strength Cond Res XX(X): 000–000, 2022—Multistage road bicycle races allow the
assessment of maximal mean power output (MMP) over a wide spectrum of durations. By modeling the resulting power-duration
relationship, the critical power (CP) and the curvature constant (W9) can be calculated and, in the 3-parameter (3-p) model, also the
maximal instantaneous power (P0). Our aim is to test the 3-p model for the first time in this context and to compare it with the 2-
parameter (2-p) model. A team of 9male professional cyclists participated in the 2014Giro d’Italia with a crank-based power meter.
The maximal mean power output between 10 seconds and 10 minutes were fitted with 3-p, whereas those between 1 and 10
minuteswith the 2-model. The level of significancewas set at p, 0.05. 3-p yieldedCP 3576 29W,W9 13.36 4.2 kJ, andP0 1,330
6 251Wwith a SEE of 106 5W, 3.06 1.7 kJ, and 5076 528W, respectively. 2-p yielded a CP andW9 slightly higher (+46 2W)
and lower (22.36 1.1 kJ), respectively (p, 0.001 for both). Model predictions were within610 W of the 20-minute MMP of time-
trial stages. In conclusion, during a single multistage racing event, the 3-p model accurately described the power-duration
relationship over a wider MMP range without physiologically relevant differences in CP with respect to 2-p, potentially offering a
noninvasive tool to evaluate competitive cyclists at the peak of training.
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Introduction

The hyperbolic relationship between power (P) and duration
(Tlim) is a well-established framework for human performance
modeling (4,22,23). Commercially available power meters
greatly expanded the knowledge on the P-Tlim relationship in
competitive cycling by recording themaximalmean power output
(MMP) over different durations and allowing the collection of a
large amount of data from training, testing, and competition
(14,25). Racing MMPs have been often collected without further
modeling attempts, both in single-day events (6,18) and in mul-
tistage “Grand Tours” (7,26,30,37,38), with the main aim of
quantifying the physical strain imposed by the race. When such
modeling occurred, the 2-parameter (2-p) hyperbolic model was
generally used, where the power asymptote (critical power [CP])
is the upper limit of the metabolic steady state (8,12), whereas the
curvature constant (W9) is the amount of energy available above
CP in the severe exercise-intensity domain (i.e., where maximal
values of oxygen consumption, intramuscular metabolites, and
blood lactate concentration are reached at exhaustion) (4,34).

In experienced cyclists, CP andW9 estimates were comparable
between laboratory tests and racing MMPs gathered from mul-
tiple national and international competitions (28). Moreover,
higher MMP profiles—and a higher CP—were recorded during
racing than training (15). Grand Tours are particularly suitable
for this approach because they are characterized by numerous
and various stages during which prolonged periods of sub-
maximal cycling are interspersed with supramaximal bursts for
intermediate and short durations, resulting in a wide-ranging P
spectrum (30). However, the simplicity of the 2-p model (the time
asymptote is constrained to 0, meaning that it predicts infinite P
when Tlim 5 0) makes it overestimate the performance below a
Tlim of 1–2 minutes (14,23,35), which indeed may represent a
great portion of theMMP profile expressed in a Grand Tour (30).
A solution for this issue is offered by the 3-parameter (3-p) model,
where the time asymptote is the third, unconstrained, parameter
(k), so that the predicted P for Tlim 5 0 takes a finite value (P0),
theoretically corresponding to the maximal instantaneous power
(20). In so doing, performance with a Tlim below 1–2 minutes is
no more overestimated, whereas estimations of CP are compa-
rable with that of 2-p (35). This allows 3-p to accurately describe
performance not only in the severe but also in the extreme
exercise-intensity domain, i.e., where Tlim is so low that exhaus-
tion occurs before of oxygen consumption and blood lactate
concentration can reach their maximal values (4,35). Although
only a few studies tested the 3-p in the extreme intensity domain,
in particular with Tlim , 60 seconds (27,35), they promisingly
showed a well-preserved goodness of fit to experimental data up
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to a Tlim of 20 (35) to 1 second (27). Therefore, 3-p has the
potential of encompassing a greater part of the P-Tlim spectrum
expressed in a Grand Tour with respect to 2-p.

Extracting CP, W9, and P0 from a single multiday event is
attractive, as it can provide insights into the physiological char-
acteristics of professional cyclists at their peak of physical fitness
without subjecting them to impractical exhaustive tests near
competitions. Therefore, the main aim of this study was to test the
hypothesis that the power profile generated by professional cy-
clists during a multistage road bicycle race are compatible with a
hyperbolic P-Tlim relationship, in particular the 3-p model. With
this aim, we tested both models in the prediction of racingMMPs
with longer Tlim than those used for curve fitting. Secondary aims
were to further test the 3-p model with data points including
Tlim , 60 seconds and to compare the obtained parameter esti-
mates with the 2-p model and previously published data
(7,15,28,31,35).

Methods

Experimental Approach to the Problem

Power output data from a professional cycling team competing
in the 2014Giro d’Italia (21 stages in 24 days: 3 time-trial, 6 flat,
7 mediummountain, and 5mountain stages) partially published
in a previous study (26) were retrospectively analyzed. The as-
sumption was that the wide-ranging environmental conditions
and team strategies of the Giro d’Italia allowed cyclists to
perform a maximal effort particularly for middle and short
durations (and thus selected time windows are assumed to
reflect Tlim).

Subjects

The study involved a team of 9 professional road cyclists (age: 28
6 5 years, range: 22-34, height: 176 6 6 cm, average body mass
throughout the race: 64.5 6 3.3 kg). After being informed of the
risks and the benefits, athletes gave signed written consent to
participate. The study conformed to the Declaration of Helsinki
and was approved by the Ethics Committee the University of
Milano-Bicocca.

Procedures

All bicycles were equipped with a crank-based power meter
(Power2Max, Chemnitz, Germany) with a precision within62%
(16). Before each stage, power meters were calibrated according
to manufacturer’s recommendations, including the reset of their
zero offset. Because of device malfunctions and the drop-out of 1
athlete after stage 17, 162 athlete 3 stage events were available
(86%), with an average of 18 stages per athlete (range 14–21).
Eight MMPs calculated over 8 predefined durations (10, 15, 30,
60, 300, 600, 1,200, and 1800 seconds) were available for each
stage, whereas raw power output time courses were no longer
available because of privacy restrictions. For the purposes of this
study, we selected the athlete’s highest MMPs for every duration
(MMPT, where T is the duration in seconds). Six P-Tlim points for
each athlete (MMP10, MMP15, MMP30, MMP60, MMP300, and
MMP600) were retained for the analysis of the P-Tlim relationship,
as they were within the recommended Tlim range (12,23).
MMP1200 and MMP1800 developed during time-trial stages,
where the effort can be assumed steadily maximal, were used to
test the models’ predictions by means of the Bland-Altman plot.

Statistical Analyses

All 6 P-Tlim points were fitted with a 3-p model (20) by means of
the nonlinear regression analysis. For comparison, the lowest 3
MMPs (MMP60, MMP300, and MMP600) were fitted also with a
2-p model, as performed by Quod et al. (28). The general form of
the fitted model was the 3-p (20):

Tlim ¼ W ’

P2CP
1 k (1)

where k is the time asymptote (i.e., the extent of the shift of the
hyperbola along the Tlim axis), which allows the curve to cross the
P-axis at P0 (Figure 1). Therefore, P0 was calculated by setting
Tlim 5 0 s and solving for P. The 2-p was derived as a particular
case of 3-p, by constraining k 5 0 s, where P0 cannot be de-
termined because it becomes infinite. Contrary to the laboratory
conditions, a random measurement error must be acknowledged
not only for Tlim (biological variability of endurance time (22),
plus the use of predefined time windows which may misestimate
real Tlim) but also for P because outdoor conditions and the de-
velopment of high P both affect the precision of power meter
technology (16). Therefore, the geometric mean regression
method (36) was used. The standard error of estimate (SEE) of
CP, W9, and k was calculated by bootstrapping when fitting
Equation 1, while that of P0 when fitting the parameterization of
Equation 1 that contains P0 instead of k (36), obtained by setting
k 5 W9/(CP2P0) (20). The 2-p and 3-p estimates of CP and W9
were compared by means of the paired sample t test and Pearson
product-moment correlation. The effect size was determined by
Cohen’s d, and with the Hopkin’s criteria: 0–0.2 trivial, 0.2–0.6
small, 0.6–1.2 moderate, 1.2–2.0 large, and.2.0 very large (11).
The level of significance was set at p , 0.05. The statistical
package SPSS (Version 23.00, IBM Corp., Armonk, NY) was
used.

Results

The P-Tlim relationship and the parameter estimates with their re-
spective SEE of the 2 models are displayed in Figure 1 and Table 1,
respectively. CP estimates were significantly lower in 3-p with respect
to 2-p by a trivial amount (2462Wor21.060.5%p,0.001,d5
0.13), because of very small but systematically negative individual
differences (range 20.2% to 21.8%), resulting in an almost perfect
correlation (r51.00).W9 estimates in the 3-pmodelwere significantly
higher than 2-p (2.361.1 kJ or 2168%, p, 0.001, d5 0.62), with
excellent correlation (r 5 0.98). CP estimates of 2-p and 3-p were
significantly related toMMP1200 (r5 0.89 and 0.90, respectively) and
MMP1800 (r50.71 forboth), beingnot significantlydifferent between
them. Bias 6 95% limits of agreement between 2-p and 3-p predic-
tions and the longer MMPs developed during time-trial stages were,
respectively, 268Wand069WforMMP1200,whereas 10638W
and 126 38 W for MMP1800 (Figure 2).

Discussion

The P-Tlim relationship obtained in the field from data collected
during an extensive andmultifaceted road bicycle race such as the
Giro d’Italia resulted compatible with the hyperbolic model, both
2-p and 3-p. Short-term performance (10–60 seconds), which is
usually analyzed separately (31,32), can be included in the same
theoretical framework if the 3-p model is used instead of the 2-p.
A strength of this study is having selected MMPs from a large
amount of data generated in a relatively short period of time
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(21 stages in 24 days), which represents a trade-off between ho-
mogenous testing conditions and a high probability of catching
the “true” best performances. Model predictions highly agree
with measured MMP1200 but overestimate MMP1800, a reason-
able finding given the environmental and tactical characteristics
of the race that limit’s the possibility to perform long-lasting
maximal cycling bouts without planned, forced, or unexpected
slowdowns. The present findings are restricted to male athletes;
however, there is high likelihood that the model can be applied
also to women’s professional multistage races, where relative
exercise intensities were found to be greater than for men (29).

A limitation of this study was the lack of access to raw power
meter data,which restricted the number of available timewindows,
in particularly those of 2–3 and 12–15 minutes (23). Nonetheless,
concerning the 2-pmodel, almost the same timewindows (1, 4, and
10minutes)were able to yield similarCP andW9 estimates between
racing and laboratory conditions (28) and were recently recom-
mendedwhen assessingCP from the power profile of a cyclist (24).
Moreover, the 6 available P-Tlim data points were adequate for the
3-p model, in line with previous studies (average 6 data points,
range 4–9) (2,3,5,9,10,17,20,35), as well as with the recent rec-
ommendation of one sprint effort 10–15 seconds long plus at least
3 maximal efforts between 2 and 15 minutes (14).

The fact that 3-p provides a slightly lowerCPwith respect to 2-
p and a higher W9 is a universal finding (2,3,5,9,10,17,20,35),
and it has been ascribed tomathematical reasons as demonstrated
elsewhere (35). In brief, because the 3-p shifts a portion of the
curve in the negative Tlim-axis quadrant (Figure 1), the portion of
W9with negative Tlim coordinates becomes nonavailable, thus, to
fit the same data points, W9 must take a higher value, and this
occurs partly at the expense of CP (35). However, the observed
CP decrease is more of statistical than practical relevance, given
the trivial effect size and the fact that its relative size (1%) is lower
than the precision of the powermeter (2%).When comparedwith
previous studies, the CP estimated from our data is among the
highest values ever reported (15), much higher than that usually
reported for noncyclists (34,35) and slightly higher than that es-
timated from racing data in non-professional–experienced cy-
clists (28), whereas the opposite trend appears for W9 (Table 2).
Under the assumption that the difference between the CP and the
maximal aerobic power (MAP) is a constant (1), onemight expect
that athletes with elevated MAP also have elevated CP. More-
over, assuming a difference between MAP and CP similar to the
one reported in a previous study (35), the MAP estimates are
comparable with those measured in a similar athletic cohort of
professional cyclists (7,31) (Table 2).

The use of 3-p instead of 2-p model also provides the P0 esti-
mate, which is a challenging factor to accurately establish. In fact,
the local slope of the P-Tlim curve at extreme P (Figure 1) implies
that a small uncertainty greatly influences the P-axis intercept; as
a consequence, P0 has a higher relative SEE compared with CP
and W9 (Table 1). Moreover, we lack external validators such as
maximal instantaneous muscular power measurements, using
either a force platform (35) or a cycle ergometer (33). Nonethe-
less, a comparison with previously published data has been

Figure 1. Average power (P)—time to exhaustion (Tlim) points
and the related 2-parameter and 3-parameter hyperbolas (2-
p, dashed gray curve and 3-p, continuous black curve). 2-p
was fitted only to the highest 3 Tlim (1,200, 600 and 60 sec-
onds), whereas 3-p to all data points. For clarity, the lower part
of the Tlim-axis is magnified by 5 times.CP5 critical power; P0

5 maximal instantaneous power.

Table 1

Individual and average parameter estimates and standard errors (SEEs).*

CP (W) SEE (W) W9 (kJ) SEE (kJ)

k (s) SEE (s) P0 (W) SEE (W)2-p 3-p 2-p 3-p 2-p 3-p 2-p 3-p

A 372 369 3 7 9.9 11.5 0.8 2.1 29.8 4.5 1,542 394

B 347 342 6 9 8.5 11.0 1.6 3.3 212.5 10.2 1,223 301

C 367 363 2 6 10.8 13.4 0.8 1.0 217.6 2.7 1,126 79

D 365 364 5 6 7.9 8.4 1.3 2.1 25.6 4.1 1865 1888

E 328 323 12 15 18.3 21.8 3.1 5.3 220.0 10.4 1,413 372

F 323 320 10 9 11.2 12.8 2.6 2.7 212.6 7.1 1,335 395

G 414 410 4 16 8.6 10.7 1.1 2.7 212.5 6.3 1,263 444

H 343 340 1 6 9.9 12.2 0.2 1.4 216.6 4.3 1,072 366

I 386 379 8 20 14.0 18.4 0.7 6.1 224.5 12.0 1,129 323

Mean 361 357† 6 10† 11.0 13.3† 1.4 3.0† 214.6 6.8 1,330 507

SD 29 29 4 5 3.3 4.2 0.9 1.7 5.7 3.3 251 528

*2-p5 2-parameter; 3-p5 3-parameter; CP5 critical power; k5 time asymptote constant; P05 theoretical maximal instantaneous power; SEE5 standard error of estimate5W95 curvature constant.

†Significantly different from 2-p.
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attempted (Table 2). Although it is likely that P0 is inherently
lower than maximal instantaneous muscular power, as demon-
strated for untrained subjects (35), the predicted P for Tlim 5 1
second (P1) does not underestimate actual measurements in sim-
ilar élite cyclists cohorts (7,31). Thus, as previously hypothesized
(35), the validity of the 3-p model can be extended up to Tlim of
few seconds, but not near instantaneous. Interestingly, although
the absolute values of CP and P0 are clearly higher than those
observed in untrained subjects, the difference (P02CP) is not and
tends to be even lower (Table 2). This could be explained by the

fact that the higher relative proportion of type I muscle fiber in
élite road cyclists contributes to the enhancement of CP (19) but
decreases the peak power per unit of muscle mass. Of course,
whole-body P0 is still enhanced, thanks to higher quadriceps
muscle volume and pennation angle (13), but by a lower extent
with respect to CP. This increase of CP “at the expense” of other
parameters could be responsible also for the lower W9 with re-
spect to untrained subjects (Table 2), but the physiological ex-
planation of this difference is less clear, and the role of muscle
fiber composition as a determinant ofW9 is unproven to date (19).

Figure 2.Bland-Altman plots comparing the prediction of the 2-parameter (2-p) and
3-parameter model (3-p) with the measured maximal mean power output for 20
minutes (MMP1200, black dots) and for 30 minutes (MMP1800, gray dots). The
maximal mean power output from stages other than time trials were excluded from
the analysis (open dots). Dashed line, bias; dotted lines, 95% limits of agreement.
MMP 5 maximal mean power output.

Table 2

Comparison of selected parameters with literature data.*†

Model estimates Measurements

Current study Road racing data (15,28) Noncyclists (35) Professional cyclists (7,31) Noncyclists (35)

CP (W kg21) 5.4 6 0.4 5.5 6 0.4 (15)

5.0 6 0.4 (28)

2.6 6 0.5

W9 2-p(J kg21) 166 6 49 178 6 31 (28) 236 6 69

W9 3-p (J kg21) 201 6 63 251 6 66

MAP (W kg21) 6.1 6 0.4‡ 6.5 6 0.1 (7)

6.4 6 0.4 (31)

3.4 6 0.6

P0 (W kg21) 20.0 6 3.8 17.7 6 4.7 — 22.9 6 3.3§

P1 (W kg21) 18.9 6 2.9 17.4 6 2.5 (7)

17.4 6 1.8 (31)

P02CP (W kg21) 14.7 6 3.8 15.1 6 4.5

k (s) 214.6 6 5.7 218.6 6 9.0

*2-p5 2-parameter; 3-p5 3-parameter; CP5 critical power;W95 curvature constant; MAP5maximal aerobic power; P05 theoretical maximal instantaneous power; P15maximum mean power for 1 s

duration; k 5 time asymptote constant.

†Numerical values of CP 2-p and 3-p are equal to the first decimal when normalized per body mass.

‡Estimated as CP 1 50 W (average difference between CP and MAP in (35)).

§Single leg (halved) maximal instantaneous power measured by the force platform.

Power-Duration Giro d’Italia (2022) 00:00

4



Since W9 has both anaerobic and aerobic components (34), we
interpret these results as a relative reduction of the former with
respect to the latter.

From a physiological perspective, k remains themost enigmatic
parameter of the 3-pmodel. Starting from the observation that the
utilization of anaerobic energy reserves has finite kinetics, Mor-
ton introduced this parameter to account for a linear feedback
control system on the availability ofW9 (21). Therefore, when P is
high (and Tlim is short), W9 cannot be entirely exploited. In this
context, k represents the amount of decrease in the available W9
per every increment of P above CP, as formally demonstrated by
Equation 10 of Vinetti et al. (35). It seems to be less negative in
élite cyclists with respect to normal subjects (35), probably as an
effect of the correlation that exists between k and W9 (Figure 3).
Strikingly, this correlation holds also with theW9 calculated from
the 2-p model, where k is absent. Therefore, it seems that k is
dependent on the intrinsic curvature of experimental data, so that
its correlation with W9 is more than a mere statistical artifact,
possibly reflecting different athletic phenotypes. We speculate
that the higher the maximal anaerobic lactic capacity (i.e., the
higher W9), the lower is its “exploitability” at short Tlim (i.e., the
more negative is k), because the maximal rate of anaerobic lactic
energy release (maximal lactic power) is finite. Vice versa, subjects
with a low maximal lactic capacity (lowerW9) have “less to lose”
at short Tlim (k is less negative). Moreover, k seems to have a
narrow acceptable “physiological” range: the Gaussian distri-
bution of current and previous data shows that the 95th and fifth
percentiles of k estimates are 27 and 221 seconds, respectively
(Figure 3). However, when the quality or quantity of data points
with Tlim , 60 seconds is scarce, the 3-p model can generate
unreliable k and P0 estimates, with negative repercussions also on
the other parameters (35). This is well exemplified in Table 1,

subject D, where the only value of k beyond the proposed upper
limit of27 was associated with an exceptionally high SEE of P0.
In this setting, constraining k into this “physiological” range
during the fitting procedure may avoid excessive distortions, al-
though, at least with data of Figure 3, this will not abolish, but
only attenuate, the correlation with W9. Future studies should
better define the “physiological” range of k, possibly including
highly specialized athletes of both sexes.

In conclusion, the 3-pmodel can efficiently describeMMPs in the
10 seconds—10 minutes duration range collected in a single multi-
stage road bicycle race, with acceptable predictions up to 1 second
and 20 minutes. Although the uncertainty regarding P0 remains
high, the time asymptote of the power-duration relationship (k)
shows a Gaussian distribution; therefore, it can be potentially con-
strained to a “normal” range to reduce the variability of P0. The
resulting parameter estimates offer an objective and noninvasive
assessment of cyclists’ physical fitness and performance.

Practical Applications

With the methods and limitations described above, it is
possible to reasonably assess the power-duration relation-
ship during a multistage racing event. Using such an ap-
proach, the resulting parameter estimates are representative
of the peak in physical fitness of élite cyclists (in particular,
CP for the maximal sustainable aerobic power, whereas W9
and P0 for the short-term maximal power output), a condi-
tion where multiple time-to-exhaustion tests are intolerable
or impractical. These findings may be useful for coaches and
sports scientists to obtain a “snapshot” of a cycling team’s
condition.

Figure 3. Top panel: Relationship between the time asymptote (k) and the curvature
(W9) obtained with the 2-parameter (2-p) and the 3-parameter (3-p) critical power
model. Lower panel: Frequency distribution of k values and the corresponding
Gaussian distribution obtained with nonlinear regression. The calculated 95th and
fifth percentiles are also shown. Data of the current study are pooled with those of a
previous study (35) to increase statistical power and generalizability.
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