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Artificial intelligence is being increasingly seen as a useful tool in medicine.
Specifically, these technologies have the objective to extract insights from
complex datasets that cannot easily be analyzed by conventional statistical
methods. While promising results have been obtained for various -omics
datasets, radiological images, and histopathologic slides, analysis of
videoendoscopic frames still represents a major challenge. In this context,
videomics represents a burgeoning field wherein several methods of computer
vision are systematically used to organize unstructured data from frames
obtained during diagnostic videoendoscopy. Recent studies have focused on
five broad tasks with increasing complexity: quality assessment of endoscopic
images, classification of pathologic and nonpathologic frames, detection of
lesions inside frames, segmentation of pathologic lesions, and in-depth
characterization of neoplastic lesions. Herein, we present a broad overview of
the field, with a focus on conceptual key points and future perspectives.
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Introduction

Use of artificial intelligence (AI) is currently increasing in every field of medicine,

progressively encompassing the entire patient care process, from embryo selection to

survival prediction (1). Machine learning (ML), a branch of AI, has the objective of

automatically extracting actionable insights from complex and large datasets that

cannot (or are hard to) be effectively analyzed by conventional statistical methods or

human intuition. ML algorithms have been designed to tackle the variability of

“-omics” datasets (e.g., genomics, epigenomics, transcriptomics, and proteomics), and

unstructured data as radiologic images (radiomics), histopathology (pathomics), and

surgical or videoendoscopic images (videomics) (2). In this area, ML is being applied

to identify disease patterns and predict specific characteristics that may assist

clinicians in diagnosis, therapeutic management, and follow-up.

While promising results have been obtained for -omics datasets and radiological and

histopathologic images, analysis of videoendoscopic frames still represents a challenge.

In this context, videomics represents a burgeoning field wherein several methods of
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computer vision are systematically used to organize the unstructured

data of frames obtained during diagnostic videoendoscopy. These

applications are still in the early stage of development, especially in

the field of otolaryngology—head and neck surgery, where the

term videomics was first introduced (2). In particular, one of the

main limits in developing robust and automatic ML algorithms

that can be translated in the clinical practice is represented by the

paucity of annotated datasets to train algorithms.
Aims of videomics

Diagnostic endoscopy is an essential component in the

assessment of the upper aerodigestive tract (UADT) and is a

cornerstone as a first-line diagnostic tool, especially after the

introduction of the “bioendoscopy” concept (3). The

introduction of videoendoscopy significantly improved this field

by the development of high-quality video recording, image

magnification, high-definition visualization, and advanced optical

filters such as Narrow Band Imaging (NBI), Storz Professional

Image Enhancement System (SPIES or Image 1S), and I-Scan.

These nuances, together with the constant advancement in ML,

have opened new possibilities for image analysis in a computer

vision-oriented approach. Here, deep learning (DL), a branch of

ML, is playing a paramount role.

In the field of supervised learning, when provided with both

the “problem” (i.e., unlabeled videoendoscopic frame) and the

“solution” (i.e., annotated frame or “ground truth”), DL

algorithms iteratively learn their internal parameters (i.e.,

weights) to progressively improve diagnostic performance and

specialize on a given objective. In this field, recent studies
FIGURE 1

Depiction of the potential input and output of a quality assessment algorithm

Frontiers in Surgery 02
have focused on five broad tasks with increasing complexity

and computational load, which can be summarized as follows:

• Quality assessment of endoscopic images (Figure 1);

• Classification of pathologic and nonpathologic frames

(Figure 2);

• Detection of lesions inside frames (Figure 3);

• Segmentation of pathologic lesions (Figure 4);

• In-depth characterization of neoplastic lesions (Figure 5).

In this area, a stepwise approach has the potential to make

use of incremental refinements of algorithms and develop

functional “minimal viable products” that can be introduced in

clinical practice as early as possible, even without the full suite of

the above-mentioned applications. This is especially true

considering that, as mentioned, the main limiting factor in this

field is the paucity of large dedicated datasets that are usable for

training. Gómez et al. (4) initially addressed this issue in the

field of high-speed laryngeal videoendoscopy by collecting and

publishing the Benchmark for Automatic Glottis Segmentation

(BAGLS) multihospital glottis segmentation dataset. However,

with the progressive expansion of the available training images,

it will be possible to tackle increasingly complex challenges.

Furthermore, the application of transfer learning techniques

may significantly improve algorithm training and reduce the

number of images needed to achieve optimal performance.

Transfer learning consists in pretraining the algorithm with

images that are not directly correlated to the task to be

explored, but which have certain similarities with the target

dataset. For example, the weights of convolutional neural

networks (CNNs) for endoscopic image analysis are often

initialized with weights obtained by training CNNs on natural
.
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FIGURE 2

Example of a classification task. The algorithm distinguishes between normal and pathologic frames without identifying the area involved by the
disease.

FIGURE 3

Image showing a bounding box localizing a laryngeal lesion. This is
the typical output of detection algorithms.

FIGURE 4

Automatic segmentation of a laryngeal lesion provided by a
convolutional neural network after adequate training and
optimization.
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images from everyday objects (i.e., ImageNet dataset). This

allows CNNs to detect generic low-level features (e.g., corners,

edges). Pretraining with endoscopic images from a different

anatomic site may provide an adjunctive advantage, especially

in small datasets. CNNs are then fine-tuned to slightly adjust

their parameters using endoscopic images.

A potential approach to address the low number of

manually annotated images is offered by unsupervised and

self-supervised learning. Unlike supervised learning, which is

biased toward how it is being supervised, unsupervised

learning derives insights directly from the data itself, groups

the data, and helps make data-driven decisions without

external biases (5). This approach may be particularly useful
Frontiers in Surgery 03
to cluster endoscopic frames into different categories (e.g., low

visibility vs. good visibility) to help the clinician’s assessment.

On the other hand, self-supervised learning takes advantage of

unlabeled images of the same pathology but captured from

different views to significantly enhance the performance of

pretraining. However, these options still need to be fully

explored in the field of UADT endoscopy (6).
Quality assessment

The first step in which AI can be effectively applied to

diagnostic videoendoscopies is their quality control. In fact, in
frontiersin.org
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FIGURE 5

Endoscopic NBI frame showing an example of adjunctive data drawn from in-depth characterization by hypothetical machine learning algorithms.
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every examination, the majority of videoendoscopic frames are

not diagnostic due to the presence of technical or patient-

related factors that limit visualization. These factors, in the

field of UADT evaluation, are mainly represented by repeated

swallowing, gag reflex, secretions, blurring of the camera,

specular reflections, and over- and underexposure. Automatic

identification and classification of these issues can be of help

in real-time determination of the quality of an endoscopic

examination and may allow automatic detection of the most

significant frames in a given recording.

In this field, Patrini et al. (7) developed a ML-based strategy

for automatic selection of informative videolaryngoscopic

frames. This approach resulted in a recall (i.e., true positive

rate = true positives over true positives and false negatives) of

0.97 when classifying informative vs. uninformative frames

(i.e., blurred, with saliva or specular reflections, and

underexposed) with support vector machines (SVM) (i.e.,

conventional ML algorithms) and of 0.98 with a CNN-based

classification. Furthermore, their work demonstrated the

potential of transfer learning in medical image analysis.

As a proof of concept, recent advances in the field of

gastrointestinal endoscopy have led to the development of a

fully automatic framework that can detect and classify

different artifacts, segment artifact instances, provide a
Frontiers in Surgery 04
quality score for each frame, and restore partially corrupted

frames (8).
Classification

Classification is a typical task in the field of DL,

distinguishing between normal and pathological mucosa.

Here, the objective is not to localize or finely characterize a

particular lesion, but rather to distinguish entire frames into

different classes, usually pathologic vs. nonpathologic.

In this field, He et al. (9) applied CNN to interpret images of

laryngeal squamous cell carcinoma using static NBI frames to

determine whether a lesion was benign or malignant. The

model reached an accuracy of 90.6%, a sensitivity of 88.8%,

and a specificity of 92.2%. Furthermore, the authors

demonstrated that the accuracy of the CNN model was higher

than that of human experts. A similar approach was described

by Esmaeili et al. (10), training a CNN for the automatic

classification of NBI images into benign and malignant. A

pretrained ResNet50 architecture was adopted, and three

experiments with several models were generated and

validated. The model showed a striking diagnostic

performance and achieved a testing accuracy of 0.83.
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Considering multiple classification groups, Zhao et al. (11)

proposed a four class-system of vocal cord targets (i.e., normal

mucosa, polyp, keratinization, and carcinoma), and a

laryngoscopy dataset was divided into “urgent” (keratinization,

carcinoma) and “nonurgent” (normal mucosa, polyp) cases. An

overall accuracy of 80.2%, an F1 score (i.e., the harmonic mean

of the precision and recall, a measure of accuracy) of 0.78, and

an area under the curve (AUC) of 0.96 were achieved. The

proposed method delivered high classification performance of

normal mucosa, polyps, and carcinoma in extremely quick time.

Other studies (12, 13) have employedML to classify pharyngo-

laryngeal benign lesions during videoendoscopy, demonstrating

notable results. A preliminary attempt was described in 2014 by

Huang et al. (12), who proposed an automatic system aimed at

recognizing the dynamic image of the glottis and classifying

different vocal fold disorders (“normal vocal fold,” “vocal fold

paralysis,” “vocal fold polyp,” and “vocal fold cyst”). This study

used an SVM classifier and reached an accuracy of 98.7%.

However, the patterns to be classified did not include dysplasia or

malignancy. Dunham et al. (13) proposed the concept of “optical

biopsy” (already introduced by our group before implementing AI

applications in videomics) (14) using CNN technology. The first

objective was to classify endoscopic images into one of five benign

classes (normal mucosa, nodules, papilloma, polyps, and webs).

The second was, using a binary classifier, to distinguish malignant/

premalignant from benign lesions. The overall accuracy for the

multiclass benign vocal fold lesion classifier was 80.8%, while the

binary test achieved an overall accuracy of 93%.

Different authors (15, 16) also demonstrated the feasibility

of classifying oropharyngeal and oral cavity (OC) lesions

using ML technology. For the oropharynx (OP), Mascharak

et al. (15) used a naive Bayesian classifier (color and texture)

to demonstrate the value of NBI imaging instead of white

light (WL) videoendoscopy, which added more definition to

tumor margins and highlighted submucosal vascularization.

Fivefold cross-validation provided an AUC of over 80% for

NBI and under 55% for WL endoscopy models (p < 0.001).

In the oral cavity, in 2018, Song et al. (16), employing

CNNs, proposed a low-cost, smartphone-based, automatic

image classification system. The authors collected data from

190 patients across several centers in India to detect oral

dysplasia and malignancy using a dual-mode image analysis

with WL and autofluorescence (AF). The study compared the

accuracy of the single- (WL or AF) and dual-mode (WL and

AF) image analysis, demonstrating that the latter had a better

diagnostic performance. The final model reached an accuracy

of 87%, a sensitivity of 85%, and a specificity of 89%.
Detection

Lesion detection remains the main objective of DL-based

strategies in contemporary clinical videoendoscopy. Different
Frontiers in Surgery 05
authors have described the potential of CNN in the detection

of cancer, premalignant lesions, benign lesions, and normal

tissue. In this setting, algorithms are constantly being

improved that better conform to specific tasks or subsites.

Inaba et al. (17) trained a CNN-based algorithm (RetinaNet)

to detect superficial laryngo-pharyngeal cancer. To evaluate

diagnostic accuracy, 400 pathologic images and 800 of normal

mucosa were collected, reaching an accuracy, sensitivity, and

specificity of 97%, 95%, and 98%, respectively. The definition of

correct diagnosis was set with an intersection over union (IoU)

(i.e., the measure of overlap between prediction and ground

truth) >0.4. Interestingly, the authors showed a direct

correlation between the algorithm diagnostic performance and

the number of images used for training. This is a not surprising

outcome and clearly highlights the importance of training data,

both in quantitative and in qualitative terms, during the training

phase of an algorithm. In fact, to date, the low number and

small size of the available medically oriented datasets are the

real bottlenecks that limit the development of clinically relevant

computer vision algorithms. A similar approach was described

by Xiong et al. (18), who developed a CNN-based diagnostic

system using videoendoscopic images of laryngeal cancer,

premalignant lesions, benign lesions, and normal tissue. The

CNN detected lesions with an accuracy of 87%, a sensitivity of

73%, a specificity of 92%, and an AUC of 92%. Moreover, the

results were comparable to those obtained by a human expert

with 20 years of experience.

With regard to real-time detection, Matava et al. (19) and

Azam et al. (20) developed CNN algorithms that were applied in

real time during videoendoscopy and which aimed at identifying,

on the one hand, normal airway anatomy and, on the other hand,

UADT lesions. Using this type of approach, DL may be a useful

complementary tool for clinicians in endoscopic examinations,

progressively implementing the concept of human–computer

collaboration. In detail, Matava et al. (19) compared the

predictive performance of three models (ResNet, Inception, and

MobileNet) in the identification of normal components of

laryngeal and tracheal airway anatomy. ResNet and Inception

achieved a specificity of 0.98 and 0.97 and a sensitivity of 0.89

and 0.86, respectively. Finally, Azam et al. (20) identified a CNN

model for real-time laryngeal cancer detection in WL and NBI

videoendoscopies. The dataset, consisting of 219 patients, was

tested with an algorithm that achieved 0.66 precision (i.e.,

positive predictive value = true positives over true and false

positives), 0.62 recall, and 0.63 mean average precision with an

IoU > 0.5. In addition, the model ran with an average

computation time per video frame of 0.026 s.
Segmentation

Automated segmentation of anatomical structures in

medical image analysis is a prerequisite for autonomous
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diagnosis and represents one of the most complex tasks in the

field of computer vision. In this case, the algorithm does not

only need to detect lesions but also need to automatically

delineate their margins. Recent CNN-based methods have

demonstrated remarkable results and are well-suited for such

a complex task.

During transoral laser microsurgery, a seven-class (void,

vocal folds, other tissue, glottic space, pathology, surgical

tools, and tracheal tube) dataset was trained by Laves et al.

(21) using a CNN-based algorithm. Different CNN

architectures were investigated, and a weighted average

ensemble network of UNet and ErfNet (two of the most

commonly used CNNs) turned out to be the best suited for

laryngeal segmentation, with a mean IoU of 84.7%. Advances

in ML and computer vision have led to the development of

methods for accurate and efficient real-time segmentation.

Paderno et al. (22) explored the use of fully CNNs for

real-time segmentation of squamous cell cancer in

videoendoscopies of the OC and OP. In this work, the

authors compared different architectures and detailed their

diagnostic performance and inference time, demonstrating

their significant potential and the possibility of achieving real-

time segmentation. However, for the first time, they suggested

that highly heterogeneous subsites such as those encountered

in the OC may have inferior results when compared with

more structurally homogeneous areas such as the OP. This is

in line with what was previously observed when applying

bioendoscopic tools alone in a non-AI environment by Piazza

et al. (14) and is possibly related to the larger epithelial

differentiation within the OC vs. the OP and to specific limits

related to oral examination (the presence of light artifacts and

confounders such as tongue blade, teeth, or dentures).

When dealing with laryngeal lesions, Fehling et al. (23)

explored the possibility of achieving a fully automated

segmentation of the glottic area and vocal fold tissue using a

CNN in high-speed laryngeal videos. The algorithm obtained

a Dice similarity coefficient (i.e., the measure that evaluates

the intersection of the two regions as a ratio to the total area

of them both) of 0.85 for the glottis, 0.91 for the right, and

0.90 for the left vocal fold. Furthermore, the results revealed

that, in both pathologic and healthy subjects, the automatic

segmentation accuracy obtained was comparable or even

superior to manual segmentation.

Generally, laryngo-pharyngeal lesions are those more

frequently examined when measuring the role of automatic

analysis by ML. In fact, only limited studies on nasopharyngeal

disease differentiation have been performed on the basis of

endoscopic images. For example, Li et al. (24) proposed a method

to segment nasopharyngeal malignancies in endoscopic images

based on DL. The final model reached an accuracy of 88.0%.

Finally, DL proved to be a promising addition to the field of

endoscopic laryngeal high-speed videos. In clinical practice, the

previous lack of dedicated software to analyze the data obtained
Frontiers in Surgery 06
resulted in a purely subjective assessment of the symmetry of

vocal fold movement and oscillation. The development of

easy-to-use DL-based systems that are capable of automatic

glottal detection and midline segmentation allowed obtaining

objective functional data without the need for manual or

semiautomatic annotation as previously described, among

others, by Piazza et al. (25), thus significantly simplifying the

process. These results were obtained through an organized

and stepwise approach headed by the Erlangen research group

that achieved high-fidelity automatic segmentation of the

glottis (23) and glottal midline (26) as well as extraction of

relevant functional parameters (27). Thanks to these

preliminary data, a DL-enhanced software tool for laryngeal

dynamics analysis was developed (28). This software provides

79 unique quantitative analysis parameters for video- and

audio-based signals, and most of these have already been

shown to reflect voice disorders, highlighting its clinical

importance.
In-depth characterization

All the previously described tasks aim to provide an accurate

definition of a given lesion, classifying it according to its nature,

defining its location in the frame, and delineating its margins

(with possible future roles in real-time definition of resection

margins during a surgical procedure). However, all these

objectives reproduce only what is generally achieved by an

expert clinician and do not try to overcome the limits of

human perception, even though their future implementation

within a telemedicine environment would represent a large step

toward more homogeneous diagnostic opportunities.

However, there is already indirect evidence that pattern

recognition capabilities of novel AI systems may allow finding

a correlation between the endoscopic appearance of a given

lesion and its finer characteristics. Among these, depth of

infiltration, so far investigable only by radiologic imaging or

histopathologic evaluation (29), plays a remarkable role in the

prognostication of OC cancer and has fueled great interest in

the possibility of speeding up its definition by AI tools

applied to videomics. Identification through videomics of

other tumor characteristics, such as histopathological risk

factors (e.g., perineural and lymphovascular invasion), viral

status (human papilloma and Epstein–Barr viruses), and

genomic markers, is definitively more ambitious but already

within the reach of similar approaches like radiomics and

pathomics. Bridges connecting all these sources of

information would be of great help in the near future to build

up sharable profiling of tumors and their microenvironment.

Recent studies in the gastrointestinal tract, for example, have

provided the proof of concept of this hypothesis and

demonstrated that CNNs can differentiate between early and

deeply infiltrating gastric cancer (30). Nakahira et al. (31)
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further confirmed the potential of this approach by showing

that CNN was able to correctly stratify the risk of gastric

tumor development by analyzing the non-neoplastic mucosa

at videoendoscopy.
Future perspectives

The introduction of computer vision in UADT endoscopy is

still in its infancy and further steps will need to be taken before

reaching widespread application. In this view, the first step

outside of purely research-driven applications will be the use

of ML algorithms for human–computer collaboration.

Dedicated algorithms can assist in every step of the

endoscopic diagnostic approach, from quality assurance,

effective storage and video classification, to risk determination,

histologic definition, margins evaluation, and in-depth lesion

profiling. As previously stated, this will be a stepwise

approach that will start from easier tasks (i.e., quality

assurance) and will progress toward more complex and more

clinically relevant objectives. The ideal outcome will be to

achieve accurate lesion characterization in terms of histologic

nature, margins, and biologic characteristics and to be able to

fully and objectively integrate these insights with data from

other types of examinations (e.g., radiology, molecular

biology, and histopathology).

Morphologic image analysis is the main field in which

videomics is evolving in the context of clinical endoscopy.

However, other more innovative aspects can be assessed by

taking advantage of current computer vision technologies. A

particularly interesting feature in otolaryngology is vocal fold

motility; in fact, an objective evaluation of this variable can be

extremely helpful in both assessment of functional deficits and

in the precise staging of neoplastic disease of the glottis. This

is especially true when considering that the AJCC/UICC

TNM classification (32) of laryngeal cancer relies on purely

subjective definitions of “normal vocal cord mobility,”

“impaired vocal cord mobility,” and “vocal cord fixation” for

the categorization of T1, T2, and T3 glottic tumors, respectively.

In this field, Adamian et al. (33) recently developed an

open-source computer vision tool for automated vocal fold

tracking from videoendoscopies that is capable of estimating

the anterior angle between vocal folds of subjects with normal

mobility and those with unilateral vocal fold paralysis. The

authors demonstrated the possibility of identifying patients

with vocal fold palsy by assessing the angle of maximal glottic
Frontiers in Surgery 07
opening (49° vs. 69°; p < 0.001). In particular, an angle of

maximum opening <58.6° was predictive of paralysis with a

sensitivity and specificity of 0.85. Notwithstanding, this

approach places significant limits on the evaluation of reduced

mobility due to neoplastic involvement since it relies on the

identification of the free margin of vocal folds, which is often

altered by glottic tumors. However, the development of

alternative strategies is providing valuable outcomes in such a

task.

Finally, novel surgical technologies such as transoral robotic

(34) and exoscopic surgery (35) rely on digital video acquisition

of a large amount of data and will potentially extend the

applications of videomics to the intraoperative setting of

quality and safety control as well as didactic proficiency. This

is especially interesting considering the urgent need for more

extensive training and collaborative datasets that will enable

better refinement of ML algorithms, coming not only from

diagnostic instrumentation but also from surgical robots and

exoscopic tools.
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