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Sleep-dependent synaptic plasticity is crucial for optimal

cognition. However, establishing the direction of synaptic

plasticity during sleep has been particularly challenging since

data in support of both synaptic potentiation and

depotentiation have been reported. This review focuses on

structural synaptic plasticity across sleep and wake and

summarizes recent developments in the use of 3-dimensional

electron microscopy as applied to this field.

Address

School of Physiology, Pharmacology and Neuroscience, University of

Bristol, Biomedical Sciences Building, University Walk, BS8 1TD

Bristol, UK

Corresponding author: de Vivo, Luisa (luisa.devivo@bristol.ac.uk)

Current Opinion in Physiology 2020, 15:74–81

This review comes from a themed issue on Physiology of sleep

Edited by Vladyslav Vyazovskiy and Jenny Morton

For a complete overview see the Issue and the Editorial

Available online 23rd December 2019

https://doi.org/10.1016/j.cophys.2019.12.007

2468-8673/ã 2020 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
Why animals sleep is one of the most interesting questions

in biology, and despite the significant progresses made in

identifying the brain circuits that regulate sleep in different

species, the ultimate answer to why sleep has evolved

remains elusive. Sleep is particularly important for the

brain where it ensures optimal biological functioning by

serving restorative and detoxification purposes [1,2] and,

enhances cognitive and complex motor tasks [3–7]. Sleep’s

beneficial role for cognition is likely to be carried out by

synaptic plasticity, although other processes promoted by

sleep (e.g. waste clearance, restoration of energy or cellular

components) may also play a role. Synaptic potentiation

and/or depotentiation (i.e. synaptic plasticity) are the

primary mechanisms of skill learning and improving

behavioural performance. However, the direction of

synaptic plasticity during sleep is a controversial topic

since evidence supporting both synaptic potentiation

and depotentiation have been gathered by different

groups, at the molecular and electrophysiological levels

(reviewed in Refs. [8–10]).

Structural synaptic plasticity across sleep and wake was

initially studied in fruit flies by measuring protein levels,
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density and size of synaptic structures using confocal

microscopy [11–13]. These studies showed that sleep

was associated with decreased density or volume of fluo-

rescent pre-synaptic and post-synaptic markers (e.g. Bruch-

pilot, disk-large, synaptobrevin) and with lower dendrite

length and branching relative to waking and sleep depriva-

tion [13]. Subsequently, other studies used in vivo two-

photon imaging to follow the dynamics of pre-synaptic and

post-synaptic structures across sleep and wake in zebrafish

larvae and in mice, confirming thepresence of circadian and

sleep/wake-dependent structural plasticity in vertebrates

too [14–16]. It was found that, in the somatosensory cortex

of adolescent mice, fluorescently labelled dendritic spines

undergo a constant turnover and that wake is associated

with a small (�2%) but significant net increase of dendritic

spine number, whereas sleep leads to a net spine loss.

However, spine density was found to remain constant in

the cortex of adult mice [15].

Since then, the study of sleep-dependent structural

plasticity has gained much attention and multiple

research groups measured spine density and turnover

across sleep, wake and sleep deprivation in the hippo-

campus [17–19], dentate gyrus [20,21], prefrontal cortex

[18,22], somatosensory and motor cortex [23,24,25��]
finding sometimes completely opposite results. On

one hand, studies that used Golgi impregnation to stain

dorsal hippocampal neurons reported that 5 hours of

acute sleep deprivation by gentle handling could lead

to reduced spine density and size in CA1 and in the

inferior blade of the dentate gyrus relative to sleep

[18,19,26]. On the other hand, using fluorescent mole-

cules to label CA1 hippocampal neurons resulted in

more numerous and bigger spines after sleep deprivation

relative to sleep [17,27]. Since a similar regimen of sleep

deprivation was applied, the opposite findings might be

explained by the fact that the Golgi method stains

unpredictably only some neurons and not others, apply-

ing an unknown bias in the population of spines sam-

pled. Hence, it is possible for the decrease in spine

density after sleep deprivation to be specific for the

population of neurons labelled by the Golgi staining,

and therefore to be lost when other methods to visualize

dendritic spines are applied. However, another study

reported that 24-hour sleep deprivation led to increased

spine density in the prefrontal cortex of 22-month old

rats but not in 3-month old rats, and to reduced spine

density in the CA1 of 3-month old rats, but not of

22-month old rats [18]. Thus, sleep-dependent synaptic

plasticity can be differentially modulated by the animal’s

age, the brain region considered, and the kind of sleep

deprivation applied.
www.sciencedirect.com

mailto:luisa.devivo@bristol.ac.uk
http://www.sciencedirect.com/science/journal/24688673/15
http://dx.doi.org/10.1016/j.cophys.2020.05.005
https://doi.org/10.1016/j.cophys.2019.12.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/24688673


Synapse ultrastructure across sleep and wake Bellesi and de Vivo 75
Time-lapse two-photon microscopy of fluorescent den-

dritic segments and spines have also been used to study

the effect of acute sleep deprivation on spine turnover

and stabilization in the mouse motor cortex during devel-

opment (at postnatal day 21) and after motor skill learning

[23,24]. These studies, even if they did not provide

measures of total spine density across sleep and wake,

suggested that sleep after training can at the same time

promote pruning of some spines and be permissive of the

formation or potentiation of other spines. Indeed, another

study that used in vivo electroporation to transfect layer V

pyramidal neurons of primary motor cortex with dsRed2,

a structural marker, and SuperEcliptic pHluorin-tagged

GluA1 (SEP-GluA1), which specifically visualizes surface

inserted GluA1 AMPA receptor subunits, found that

some dendritic spines became bigger and expressed more

GluA1 after sleep relative to wake. However, the spines

that became bigger and acquired more GluA1 subunits

were only a minority since, in general, sleep was associ-

ated with an overall decrease of spine size (reduced

dsRed intensity) and with synaptic depotentiation

(reduced SEP-GluA1 intensity) [25��].

Morphological markers of synaptic plasticity:
beyond spine density
Dendritic spines are commonly considered to be surro-

gate of excitatory synapses because most of them carry a

single excitatory synapse [28]. Because of a poor spatial

resolution especially on the z axis, quantification of spine

density by using light microscopy can underestimate the

presence of small spines with very thin (40�200 nm) and
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long (>1 mm) necks or of those that lie orthogonal to the

plane of imaging. Further bias in the measure of synaptic

plasticity are given by the fact that electrode implanta-

tion, skull craniotomies and thinning performed to allow

EEG recordings or longitudinal in vivo two-photon imag-

ing are major surgeries that can trigger inflammatory

responses and glia activation and lead to subtle changes

in spine turnover and fluorescent signal to noise ratio over

time [29]. Moreover, relying on dendritic spines as a

measure of synapse number, does not account for the

existence of spines carrying multiple synapses [30–34] nor

for spines without synaptic specializations or a functional

pre-synaptic partner (e.g. spines contacting a vesicle-free

pre-synaptic element) [35–38], whose function and abun-

dance in different brain regions, ages and after specific

wake-dependent experiences are not known (Figure 1).

Moreover, combined electrophysiological and morpho-

logical studies demonstrated that circuit rewiring and

synaptic plasticity are not necessarily associated with

formation or elimination of dendritic spines. For instance,

while in young rat hippocampus, long-term potentiation

(LTP) produces new dendritic spines [39], in the adult,

new spine outgrowth is stalled in favour of synapse

enlargement [35,40]. Synaptic strength (i.e. the magni-

tude of the post-synaptic response) is determined by the

neurotransmitter release probability and by the conduc-

tance and number of excitatory post-synaptic receptors.

Synaptic strength tightly correlates with synaptic mor-

phological features, which can then be used to predict the

amplitude of the post-synaptic response (Figure 2). Spine
(d)
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head volume and post-synaptic density (PSD) area are

considered the best morphological markers of synaptic

strength because they are positively and linearly corre-

lated with each other [41] and with the amplitude of the

post-synaptic currents AMPA-receptor mediated [42].
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Spine head volume and PSD enlarge after synaptic

long-term potentiation and shrink after depotentiation

[43]. Spine head volume and PSD area are also positively

correlated with the area of contact between the axon

and the spine (axon-spine interface or ASI) [44], the
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Ultrastructural synaptic plasticity across sleep and wake. (a) Reconstruction of four spiny dendritic segments sampled in primary somatosensory

cortex from a volume of tissue imaged with serial block-face electron microscopy (SBF-SEM). (b) Top, ASI size in P30 mouse primary motor and

somatosensory cortex declines in sleep by 18% according to a scaling relationship. Bottom, in P14 pups, ASI size in motor cortex scales down in

sleep by 30%. (c) Three consecutive electron micrographs showing an example of a spine head (yellow) with a spinula (arrowhead) protruding into the
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number of pre-synaptic vesicles [41], docked vesicles

[45], and post-synaptic glutamate receptors [46] (Figure 2).

Computational models showed that the spine surface to

volumeratio hasan important effectonspatial andtemporal

calcium dynamics within the spine and hence on synaptic

function[35,47].Spinesurface tovolume ratio isdependent

on both spine size and shape, as well as on the presence and

size of organelles within the spine such as the spine

apparatus and the smooth-endoplasmic reticulum (SER).

Therefore, in addition to spine density, actual synapse

density and strength must be considered to determine

the nature of sleep-dependent synaptic plasticity.

Recent ultrastructural data on sleep-
dependent synaptic downscaling
The development of 3-dimensional electron microscopy

techniques has allowed the reconstruction in 3 dimensions

of cortical and hippocampal excitatory synapses across

sleep and wake. In a first study, 30-day old (P30) mice

were sacrificed after spending most of the previous 6�8

hours asleep, spontaneously awake or forcedly awake and

about 8400 dendritic spines were reconstructed from

random dendrites in layer II of the primary motor and

somatosensory cortices [48��]. On average, 13% of all

spines (range from 5% to up to 24%) were classified as

‘non-synaptic spines’ because they either lacked a clear

post-synaptic density, a synaptic cleft or pre-synaptic

vesicles in the structures surrounding the spine. Among

the spines with a synapse, the ASIs shrank by 18% in the

group of mice that spent most of the last 6�8 hours asleep

compared to the mice that were awake, independently

of time of day, suggesting that sleep promotes overall

synaptic depotentiation (Figure 3a,b). Neither the

abundance of ‘non-synaptic spines’ nor that one of

those carrying a synapse changed significantly across

the sleep-wake cycle. The sleep-dependent reduction

in ASI area was not homogeneous: only small and

medium size ASIs, that constituted about 80% of the

population, downscaled after sleep, that is, shrank in a

multiplicative manner. The population of biggest ASIs

instead did not show downscaling. Moreover, ASIs that

lacked non-SER recycling vesicles, tubules and multi-

vesicular bodies in the spine head or neck (about

30–40% of all spines) were less likely to show sleep-

dependent downscaling. Surprisingly, neither the pres-

ence of a spine apparatus (in about 30% of the spines)

nor a pre-synaptic mitochondrion (found in about 32%

of the terminals or boutons making synapse on the

spines) influenced the likelihood of undergoing

sleep-dependent downscaling.
(Figure 3 Legend Continued) pre-synaptic terminal (t), sampled from hippoca

the spine and spinula (arrowhead) showed in (c). (e) Hippocampal synapse de

group, shown for nonperforated, perforated, and all synapses. Each dot is one

on a log scale, shown for hippocampal nonperforated and perforated synapse

enforced wake group; ASI, axon spine interface. (a) and (b) modified from Ref
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Similarly, in the hippocampus, CA1 stratum radiatum,

more than 7300 ASI were analysed after sleep, wake and

enforced wake [49��] (Figure 3c–f). Consistently with

previous reports, in CA1 two populations of synapses were

found: perforated and non-perforated [50,51]. ASI were

classified as perforated (22% of spine sample) according to

the presence of a perforated PSD, a spinula (i.e. a protrusion

of the post-synaptic element into the pre-synapse), and/or a

spine apparatus in the spine. Whilst non-perforated ASI did

not change across sleep and spontaneous wake, their den-

sity and size increased after enforced wake (Figure 3e,f).

Perforated ASIs instead showed downscaling after sleep

and upscaling after enforced wake relative to spontaneous

wake, but without changing their density.

Finally, a recent study mapped the effect of sleep earlier

in the development [52�]. Fourteen-day old (P14) mouse

pups were either let sleep ad libitum for 4.5–6 hours or

kept awake as much as possible with novel objects and

gentle handling for the same time interval before brain

collection. At this age, on average, spine density in

primary motor cortex was similar to that measured in

P30 mice but ASIs were smaller than at P30 (ASI in mm2,

mean � SD: P14, Sleep = 0.127 � 0.141; P14 Enforced

Wake = 0.168 � 0.177; P30 sleep = 0.256 � 0.289; P30

Enforced wake = 0.294 � 0.324) and there were more

non-synaptic spines (�27% at P14 versus �13% at P30,

no change between sleep and wake). As in P30 mice, in

P14 pups, synaptic density did not change significantly

across sleep and wake in motor cortex, and ASIs were

smaller after sleep relative to enforced wake (Figure 3b).

However, after sleep, the ASI population was homoge-

nously downscaled by �30%, independently of ASI size

and of the presence of specific organelles in the spine or in

the pre-synaptic element.

Conclusions
Detailed analysis of ultrastructural synaptic parameters is

necessary to appreciate changes in synaptic strength that

do not manifest necessarily as addition or elimination of

new spines. 3d electron microscopy has been used to

show that in the cerebral cortex of P30 mice, small and

medium synapses underwent downscaling during sleep,

whereas the largest synapses were protected. Since there

is evidence that synapse size is positively correlated to

synapse strength, by downscaling preferentially small and

medium synapses and sparing the large ones, sleep would

contribute to enhance the cortex signal to noise ratio

and consolidate the synapses most potentiated during

wake [9]. Experiments of longitudinal two-photon
mpal CA1 stratum radiatum, scale bar = 300 nm. (d) 3d reconstruction of

nsity (N of synapses per dendrite surface area) in each experimental

 dendrite. (f) Distribution and cumulative plots of ASI sizes in each group,

s. Abbreviations: W, spontaneous wake group; S, sleep group; EW,

. [48] and [52]. (e) and (f) modified from Ref. [49].
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imaging suggest that spine size also correlates with spine

stability [53�], with large spines being more stable than thin

ones and contributing the most to the stability of long-term

memories [54]. Since at P14, cortical synapses are smaller

than at P30 and are all equally downscaled during sleep, it is

likely that, at this age, synapses are highly plastic and not

yet fully committed to long-term memory. However, the

ultrastructural studies presented here were limited to small

brain regions, excitatory synapses impinging on pyramidal

neurons and were all conducted in P30 and P14 mice,

leaving unresolved the question whether the same effects

are also observed in other types of synapses and at different

ages. They also highlighted that sleep-dependent synaptic

plasticity can be heterogeneous in the brain and do not

rule out that potentiation can also occur during sleep at

specific synapses. Moreover, these studies did not establish

whether the ultrastructural synaptic changes observed after

sleep are directly linked to synaptic plasticity and learning

occurred during wake rather than to overall changes in

neuromodulator and hormonal levels across different

physiological states. Another unanswered question is to

what extent synaptic downscaling is necessary or sufficient

for the cognitive improvement promoted by sleep. To this

aims, examining synapse ultrastructure after learning of a

sleep-dependent task or blocking synapse downscaling and

assessing the effect on performance could be useful experi-

ments. Future experiments should also aim to capture

synaptic plasticity during sleep at the global and single

synapse level. In this regard, by using two photon in vivo
microscopy combined with fluorescent tagging of synaptic

components (such as SEP-GluA1) one could reveal how

single synapses behave across multiple sleep/wake cycles,

across different periods of development and in relation to

learning during waking experience. Multiplex electron

microscopy [55] could help exploring how the identity of

the pre-synaptic and post-synaptic elements as well as local

differences in neuromodulator connectivity influence syn-

aptic ultrastructure and plasticity during sleep. Moreover,

novel algorithms of automatic image segmentation will

speed up synapse tracing and will allow to extend the

morphological investigation to larger brain areas.
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