
Algorithmica
https://doi.org/10.1007/s00453-022-00989-x

Solving String Problems on Graphs Using the Labeled
Direct Product

Nicola Rizzo1 · Alexandru I. Tomescu1 · Alberto Policriti2

Received: 6 September 2021 / Accepted: 1 June 2022
© The Author(s) 2022

Abstract
Suffix trees are an important data structure at the core of optimal solutions tomany fun-
damental string problems, such as exact pattern matching, longest common substring,
matching statistics, and longest repeated substring. Recent lines of research focused
on extending some of these problems to vertex-labeled graphs, either by using efficient
ad-hoc approaches which do not generalize to all input graphs, or by indexing difficult
graphs and having worst-case exponential complexities. In the absence of an ubiqui-
tous and polynomial tool like the suffix tree for labeled graphs,we introduce the labeled
direct product of two graphs as a general tool for obtaining optimal algorithms in the
worst case: we obtain conceptually simpler algorithms for the quadratic problems of
string matching (SMLG) and longest common substring (LCSP) in labeled graphs. Our
algorithms run in time linear in the size of the labeled product graph, which may be
smaller than quadratic for some inputs, and their run-time is predictable, because the
size of the labeled direct product graph can be precomputed efficiently. We also solve
LCSP on graphs containing cycles, which was left as an open problem by Shimohira
et al. in 2011. To show the power of the labeled product graph, we also apply it to
solve the matching statistics (MSP) and the longest repeated string (LRSP) problems in
labeled graphs. Moreover, we show that our (worst-case quadratic) algorithms are also
optimal, conditioned on the Orthogonal Vectors Hypothesis. Finally, we complete the
complexity picture around LRSP by studying it on undirected graphs.

Keywords Longest repeated substring · Longest common substring · String
algorithm · Graph algorithm · Motif discovery · Fine-grained complexity

B Nicola Rizzo
nicola.rizzo@helsinki.fi

B Alexandru I. Tomescu
alexandru.tomescu@helsinki.fi

B Alberto Policriti
alberto.policriti@uniud.it

1 Department of Computer Science, University of Helsinki, Helsinki, Finland

2 Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00989-x&domain=pdf
http://orcid.org/0000-0002-2035-6309
http://orcid.org/0000-0002-5747-8350

Algorithmica

1 Introduction

Motivated by various application domains appearing during the last decades, a signifi-
cant branch of string algorithm research has focused on extending string problems from
texts to more complex objects, such as labeled rooted trees (e.g. modeling XML docu-
ments [1]) and labeled graphs (e.g. modeling pan-genome graphs [2, 3]). For example,
the string matching in labeled graphs (SMLG) problem asks to find an occurrence of
a given string S inside a labeled graph G, that is, a walk of G whose concatenation of
vertex labels (spelling) is S. On rooted trees, SMLG can be solved in linear time [4], but
on general graphs it admits both quadratic-time conditional lower bounds [5–8] and
optimal algorithms of matching time complexity [9–11]. Specific graph classes like
de Bruijn graphs andWheeler graphs admit linear-time algorithms for SMLG [12, 13],
and Burrows-Wheeler Transform (BWT) approaches have been recently generalized
to generic graphs [14, 15].

Despite this active interest in the SMLG problem, the graph extensions of three
other fundamental string problems have received none or little attention so far: longest
common substring,matching statistics, longest repeated substring (Fig. 1). On strings,
the former two problems can also be seen as relaxations of the exact string matching
problem (for e.g. handling approximate matching) [16, 17], and all problems can be
seen as basic instances of pattern/motif discovery in strings [18]. In this paper we
consider their natural generalizations to �-labeled graphs, namely to tuples G =
(V , E, L), with V and E the sets of vertices and edges, respectively, and L : V → �

assigning to each vertex a label from � (the original string problems can be obtained
by taking all graphs to be labeled paths).

Problem 1 (Stringmatching problem (SMLG)) Given a�-labeled graphG and a string
S, find an occurrence of S in G.

Problem 2 (Longest common string problem (LCSP)) GivenG1,G2 �-labeled graphs,
find a longest string S occurring in G1 and in G2.

Problem 3 (Matching statistics problem (MSP))GivenG1,G2 �-labeled graphs, com-
pute for every vertex v of G1 the length MS(v) of a longest string S such that S occurs
in G1 starting at v and S occurs anywhere in G2.

Problem 4 (Longest repeated string problem (LRSP)) Given a�-labeled graphG, find
a longest string S having at least two distinct occurrences in G.

When defined on strings, all problems can be solved in linear time and space as basic
textbook applications of the suffix tree [16, 19], or of the suffix array and the longest
common prefix (LCP) array [20, 21], under the standard assumption to be working
with an integer alphabet, i.e. containing integers from a range that is linear-sized
with respect to the input. On labeled graphs, LCSP has been considered by Shimohira
et al. [22]. They solved it in time O(|E1| · |E2|), where E1 and E2 are the edge sets
of G1 and G2, respectively, and only if one of the graphs is acyclic, and they left
the general case of two cyclic graphs as an open problem [22]. Moreover, there are
no known analogous algorithms for MSP and LRSP, and no characterization of the

123

Algorithmica

Fig. 1 An example of an {a,b,c}-labeled graph made up of two components: the longest common string
between the two components is ab, and the longest repeated string of the whole graph is ab as well, since
all longer strings spelled by some walk have exactly one occurrence. Taking the right component as G1 and
the left component as G2, we have that MS(6) = 1, MS(7) = 2, and MS(8) = 1

possible solutions for LRSP. Regarding hardness, note that the O(|E1| · |E2|)-time
algorithm of [22] for LCSP is optimal under the same conditional lower bounds as for
SMLG [5–8], since the decision version of SMLG (i.e. whether there is an occurrence
of the string) is linear-time reducible to LCSP. In fact, the same holds also for MSP.
Nevertheless, there exists no analogous lower bound for LRSP. Note that the four
problems defined by specifying occurrences as directed paths, i.e. visiting each vertex
at most once, are NP-complete (Observation 1). In this paper we mostly concentrate
on walk occurrences (Fig. 1).

Problem 5 (Strict string problems on graphs) We define strict-SMLG, strict-LCSP,
strict-MSP, and strict-LRSP as the modifications of SMLG, LCSP, MSP, and LRSP,
respectively, such that any occurrence of a string S in a graph is based on paths, that
is, the walks spelling any string S cannot visit any vertex more than once.

SMLG, LCSP and LRSP have connections also to Automata Theory, since the
spellings of all walks of a finite labeled graph form a regular language. Indeed, one can
transform a labeled graph into an NFA by making every vertex a final state, adding a
new initial state connected to all vertices, and moving the label of each vertex on each
incoming edge: a string occurs in a labeled graph if it is accepted by its corresponding
NFA; strings common to two labeled graphs correspond to strings accepted by the
intersection of their corresponding NFAs; repeated strings of a labeled graph corre-
spond to ambiguous words of the resulting NFA, namely words having at least two
accepting computations. Ambiguity of automata (or its lack thereof) has been studied
in the context of Descriptional Complexity Theory [23–26], not to be confused with
Descriptive Complexity Theory. For example, the degree of ambiguity of anNFA is the
maximum number of accepting computations of any word by the automaton. While
there are works about studying upper bounds of such metric [27, 28], to the best of
our knowledge there is no research on the longest ambiguous words of an NFA.

As a first result on labeled graphs, we observe that on labeled directed trees
(i.e. rooted trees with all edges oriented away from the root) LRSP and LCSP can
also be solved in linear time and space as an easy application of the tree counterparts
of the suffix tree and the suffix array: the suffix tree of a tree [29] and the XBW trans-
form of a tree (XBWT) [1]. The former, introduced by Kosaraju in 1989, generalizes
the suffix tree to represent all suffixes of the strings spelled by the upwards paths of
a given tree and admits linear-time construction algorithms [30, 31]. The latter, intro-
duced by Ferragina et al. in 2005, is an invertible transform, also computable in linear

123

Algorithmica

time, encoding a tree as an ordered list of elements each corresponding to a vertex: the
order of these elements first follows the lexicographical ordering of the unique path
from the parent of the corresponding vertex to the root of the tree, then the pre-order
visit of the tree. LRSP of a tree can be solved directly by either structure in the same
way as LRSP of a string, while LCSP of two trees can be solvedwith a simple adaptation
of either structure.

In this paper we introduce the labeled direct product of two labeled graphs G1
and G2, denoted G1 ⊗ G2, inspired from e.g. the Cartesian product construction for
the intersection language accepted by two finite state automata (Sect. 2). While not a
completely novel idea, this product cleanly encodes each and every pair of walks of
the input graphs spelling the same string and it appears as the right conceptual tool to
optimally solve string problems on graphs. Our results are as follows.

1.1 Conceptually Simpler andMore Efficient Algorithms

The current state-of-the-art algorithm for SMLGwas introduced in 1997 by Amir et al.
[9] in the context of hypertexts (i.e. directed graphs such that each vertex is labeledwith
a string). Given a �-labeled graph G = (V , E, L) and a string S = S[1] · · · S[m] ∈
�∗, the algorithm works by constructing a directed acyclic graph (DAG) G ′ having
vertex vi for each vertex v ∈ V and for each position i ∈ {1, . . . ,m}, such that there is
an edge between two vertices vi , wi+1 if L(v) = S[i] and (v,w) ∈ E : SMLG is then
solved by finding and reporting a path of length |S| − 1 in G ′. Instead, by treating the
pattern S as a labeled path GS , we can solve SMLG by simply finding a path of length
|S| − 1 in G ⊗ GS (Sect. 2). Since GS is a path, then G ⊗ GS is a DAG, and thus
such a path can be found in time linear in the size of G ⊗ GS . Our labeled product is
a subgraph of the DAG G ′ by Amir et al.: G ′ considers mismatching vertices vi such
that L(v) �= S[i] and it avoids computing the edges from mismatching vertices but
not the (remaining) edges tomismatching vertices. Thus, their algorithm always takes
time �(|V | · |S|), even when G ⊗GS has smaller size, and takes time �(|E | · |S|) for
some families of inputs where G ⊗ GS has smaller size.

Moreover, LCSP on DAGsG1 = (V1, E1, L1) andG2 = (V2, E2, L2) is equivalent
to finding a path of maximum length of the DAG G1 ⊗ G2, which is also solvable
in time and space linear in the size of G1 ⊗ G2 (Sect. 2). Thus, our LCSP algorithm
using G1 ⊗ G2 is not only a conceptually simpler version of the O(|E1| · |E2|)-time
and �(|V1| · |V2|)-space dynamic programming algorithm of Shimohira et al. [22] for
LCSP, but can also be faster and use less space, ifG1⊗G2 has size O(|V1| · |V2|) or the
alphabet � has constant size (Remark 3). Otherwise, our algorithm implies a greater
space usage, since it stores G1 ⊗G2: choosing not to store the edges of G1 ⊗G2 and
instead computing them when needed results in a time and space complexity closer to
that of the existing algorithm for LCSP (Remark 5).

1.2 Simple Solution to an Open Problem

In addition to providing simple algorithms on DAGs, the labeled product graph also
allows for conceptually simple and efficient solutions on arbitrary graphs. For example,

123

Algorithmica

Table 1 Summary, for some variants of LCSP on two graphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2),
of the time complexities. The linear-time algorithms assume an integer alphabet and the quadratic-time
algorithms are optimal under OVH (Theorem 5)

G1\G2 path tree DAG graph

path O(|V1| + |V2|)
w/ suffix tree [16,32]

O(|V1| + |V2|)
w/ suffix tree [4],or

w/ XBWT [1]
O(|E1| · |E2|)

w/ dynamic
programming

algorithm [22],or
w/ labeled direct

product graph, Sect. 2

tree – O(|V1| + |V2|)
w/ suffix tree

of a tree [30,31], or
w/ XBWT [1]

DAG – –

graph – – – O(|E1| · |E2|)
w/ labeled direct
product graph

Sect. 3

LCSP on two graphs containing cycles was left open by Shimohira et al. [22], and in
Sect. 4 we show that it is solvable by just checking whether G1 ⊗G2 has a cycle, and
if not, still finding a path of maximum length in G1 ⊗ G2 (see Table 1 for a summary
of the complexity results for LCSP).

1.3 Solutions to New Problems

The labeled direct product also allows for solutions to related problems. For MSP on
DAGs we analogously find paths of maximum length from some vertices of G1 ⊗G2
(Theorem 1). We generalize this algorithm on arbitrary graphs by computing the
strongly connected components (SCCs) of G1 ⊗ G2 and by checking a condition
analogous to that of LCSP for every vertex v of G1 (Theorem 2). These algorithms use
time and space linear in the size of G1 ⊗ G2.

LRSP on aDAGG is equivalent to finding paths ofmaximum length passing through
specific vertices ofG⊗G (Theorem 1). On arbitrary graphs, we use further interesting
connections between purely graph-theoretic concepts of the labeled product graph
(SCCs) and string-theoretic ones (non-deterministic vertices). The difference of LRSP
with respect to LCSP and MSP is that the problem may admit repeated strings of
infinite length or repeated strings of unbounded lengths—these two scenarios may not
coincide. Even if the difference between these two concepts may seem artificial, their
study is necessary for the natural characterization of LRSP solutions. Indeed, in Sect.
3 we show that such cases can be efficiently identified (infinite repeated strings can be
identified in G ⊗ G by checking reachability from a certain set of vertices to a non-
trivial SCC, while repeated strings of unbounded length can be identified by checking
reachability from a non-trivial SCC to some non-deterministic vertex). If none of
these cases happen, we show that the problem is solvable with the DAG algorithm for
LRSP on an acyclic subgraph of G ⊗ G (Theorem 3). The entire procedures take time

123

Algorithmica

and space linear in the size of G ⊗ G. In addition, we can also output a linear-size
representation of a longest repeated string, infinite or not.

1.4 Optimality under Conditional Lower Bounds

In Sect. 4 we show that the above algorithms of worst-case quadratic-time complexity
are also conditionally optimal. First, we note how the quadratic lower bounds of [6,
8] imply the same quadratic lower bounds for LCSP and MSP. Second, in Theorem
4 of Sect. 4, we show that on DAGs that are deterministic (i.e. the labels of the out-
neighbors of every vertex are all distinct) the SMLG problemhas a linear-time reduction
to LRSP, which thus implies the same lower bounds for LRSP as in [6, 8] (holding also
for deterministic DAGs). To the best of our knowledge such a reduction does not exist
when the problems are defined on strings. Third, in Theorem 5 we show that, under
the Orthogonal Vectors Hypothesis (OVH) [33], there can be no truly sub-quadratic
algorithm solving LRSP, even when the graph is a DAG, with vertex labels from a
binary alphabet, maximum in-degree and out-degree of any vertex at most 2, and is
deterministic. Our reduction for LRSP is simpler than that of [6], but with an interesting
difficulty arising from the fact that we must encode the orthogonal vectors input in the
same graph, and must ensure that the occurrences of the longest repeated string are
distinct.

Moreover, in the same way as the labeled direct product graph is a general tool for
obtaining algorithms, the construction behind our reduction could also be a general
approach to obtain conditional lower bounds for string problems on graphs. For exam-
ple, our OVH construction (simpler than [6]) also provides a conditional lower bound
for LCSP, and in Corollary 3 we show our reduction also proves the same conditional
lower bound for a variant of MSP.

1.5 The Full Complexity Picture of LRSP

Finally, since on directed graphs LRSP turned out the most complex problem to solve,
in Sect. 5 we complete its complexity picture by studying it also on undirected graphs,
by similarly considering undirected paths, trees and graphs, and the path and walk
variants of the problem (see Table 2). While these results are simpler than for directed
graphs, they exhibit some interesting complexity dichotomies on analogous classes
of graphs. For example, for walk occurrences the problem is linear-time solvable on
general undirected graphs, as opposed to having a conditional quadratic-time lower
bound on general directed graphs). Note that the SMLG problem has the same com-
plexity on both directed and undirected graphs [6], making this dichotomy for LRSP
more interesting. Moreover, when defined on paths, we obtain only a quadratic-time
algorithm on undirected trees, even though LRSP is linear on directed trees. As such,
we put forward as an interesting open problem either improving this complexity, or
proving a lower bound.

123

Algorithmica

Table 2 Summary, for all the variants of LRSP on a graph (V , E, L), of the time complexities. The linear-
time algorithms assume an integer alphabet and the quadratic-time algorithms for directed graphs are optimal
under OVH (Theorem 5). We leave as an open problem improving our solution to strict-LRSP on undirected
trees, or proving it is conditionally tight

Graph Class Graph Type
directed undirected

paths O(|V |)
w/ suffix tree [16,32]

O(|V |)
w/ repeated strings
of length 2 check

Sect. 5

O(|V |)
w/ suffix tree

Sect. 5

trees O(|V |)
w/ suffix tree of a tree [30,31],or
w/ XBW transform of a tree [1]

O
(|V |2)

w/ reduction to LRSP
on directed trees

Sect. 5

DAGs O
(|E |2)

w/ labeled direct
self-product graph

Sect. 2.2

– –

graphs O
(|E |2)

w/ labeled
direct

self-product
graph
Sect. 3

NP-complete
Observation 1

O(|E |)
w/ repeated strings
of length 2 check

Sect. 5

NP-complete
Sect. 5

LRSP strict-LRSP LRSP strict-LRSP

Occurrence definition

1.6 RelatedWork on SMLG

Due to the success of string data structures based on the Burrows-Wheeler Transform
(BWT) [34], research efforts have been spent for extending the BWT to index and
compress labeled graphs—or specific classes of graphs like de Bruijn graphs [12]—
while supporting navigation and matching queries [12–15, 35, 36]. Most notably:

• Wheeler graphs [36] and languages [35] are a specific class of labeled graph
admitting a total (lexicographic) order of its nodes that enables string matching in
time linear in the pattern’s size; however, recognizing if a given labeled graph is
Wheeler is (in general) NP-complete [37];

• recentlyCotumaccio and Prezza in [14] generalized this approach to indexNFAs—
and, thus, labeled graphs—by showing that a co-lexicographic partial order of the
states always exists, and it allows the matching of a string S in time O(|S| · p2 ·
log(p · |�|)), where p is the partial order’s width, that is, the size of its largest
antichain (p = 1 for Wheeler graphs); p explains well the compressibility and
non-determinism of the NFA, since the authors proved that the classic powerset
NFA-to-DFA determinization algorithm generates a deterministic automaton with
at most 2p(n − p + 1) − 1 states;

• also recently, Nellore et al. proposed the nength of a labeled graph [15] as an
invertible transform based on the same NFA-to-DFA determinization algorithm;
the result allows for the matching of a pattern in linear time, even though the size
of the nength can be exponential in the number of nodes of the graph.

123

Algorithmica

The above results do not violate the quadratic lower bounds of Equi et al. [6,
7] and they clearly should be preferred to the labeled direct product in the specific
cases where they guarantee total subquadratic string matching. However, if the graph
and the patterns are known, the sizes of the corresponding labeled direct products
can be computed in linear time (Remark 5): the space and run time of our solution
for SMLG is predictable, so the labeled direct product can be the initial step of a
general framework that assesses the need—or the maximum time allowed—for more
sophisticated methods.

1.7 Notation and Preliminaries

Given a non-empty and finite alphabet �, we denote with �∗ and �ω the set of
all finite and infinite strings over �, respectively. For convenience, we also define
�+ := �∗ \ {ε}, with ε the empty string. We say that � is an integer alphabet if
it contains integers from a range that is linear-sized with respect to the input of the
problem at hand, allowing linear-time lexicographical sorting. Given the �-labeled
graph G = (V , E, L), a walk in G is any finite or infinite sequence of vertices
p = (p0, p1, p2, . . .), such that there is an edge from any pi to its successor in p. If
all vertices of p are pairwise distinct, then p is called a path. The length of a finite walk
p is its number of edges. Just as strings can be concatenated to form longer strings,
walks can be concatenated to form longer walks under the condition that the result
is still a walk in G. Two walks p = (p0, p1, p2, . . .), q = (q0, q1, q2, . . .) in G are
distinct, in symbols p �= q, if they have different length or there is an index i such
that pi �= qi . A finite (resp. infinite) string occurring in G (or simply, a string of G)
is any string S ∈ �∗ (resp. S ∈ �ω) such that there is a finite (resp. infinite) walk
p = (p0, p1, p2, . . .) in G with S = L(p) := L(p0)L(p1)L(p2) We say that p
is an occurrence of S in G, that p spells S in G or that S has a match in G. A string S
occurring in G is repeated if there are at least two distinct occurrences of S in G, in
symbols ∃p, q walks inG such that p �= q ∧ L(p) = L(q) = S.

Throughout the paper, we will assume that every vertex has at least one in-neighbor
or out-neighbor, so it holds that |V | ≤ 2|E |, |V | ∈ O(|E |) and we can simplify a
complexity bound such as O(|V | + |E |) into O(|E |).
Remark 1 In solving LCSP, MSP, LRSP, and their strict counterparts, we can assume
that for any input labeled graph G = (V , E, L) it holds that |V |∈ O(|E |), because:
• the problems become trivial when considering only walks of length 0, in the sense
that there is a common or repeated string of length one if and only if there are
different vertices labeled with the same character in the respective graphs; if in G
there are vertices without both incoming and outgoing edges, they can be treated
separately since the strings they generate have all length 1, thus we will assume
throughout the rest of the paper that every vertex v ∈ V has at least one incoming
or outgoing edge, meaning that |E | ≥ |V |/2.

• the answer to LCSP and LRSP is the empty string ε if and only if the sets of
labels used in G1 and G2 do not intersect, or if each vertex of G is labeled with
a different character (implying |�| ≥ |V |); this can be easily checked assuming
we are working with an integer alphabet, if not it is still O(|V | log|V |), so we

123

Algorithmica

will assume that there is a common or repeated string of length 1, unless stated
otherwise.

2 The Labeled Direct Product

Recall that the direct product of twographs is the graphwhose vertex set is theCartesian
product of the vertex sets of the initial graphs where we have an edge between two
vertices if there are corresponding edges in the initial graphs between vertices on
the first component and between vertices on the second component. This product has
been studied in the literature in both the undirected and directed setting, under the
names conjunction, tensor product, Kronecker product, and others (see [38, p. 21] and
[39]). We will use instead the labeled direct product of G1 and G2, obtained as the
subgraph of the direct product of G1 and G2 induced by the vertices for which their
two components have the same label. Although this notion is similar to the automaton
recognizing the intersection of two automata (see [40]), the key difference is that
the labeled direct product graph does not contain any pair of edges/transitions with
mismatching labels.

2.1 Definition and Basic Properties

Consider the following definition, and see also Figs. 2 and 3.

Definition 1 (Labeled direct product graph) Given two �-labeled graphs G1 =
(V1, E1, L1) and G2 = (V2, E2, L2), we define the labeled direct product graph
G1 ⊗ G2 = (V ′, E ′, L ′), where:

V ′ = {
(u, v) ∈ V1 × V2 : L1(u) = L2(v)

}
,

E ′ =
{(

(u, v), (u′, v′)
) ∈ V ′ × V ′ : (u, u′) ∈ E1 ∧ (v, v′) ∈ E2

}
,

and L ′ is defined so that L ′(u, v) = L1(u) = L2(v) for each (u, v) ∈ V ′.

Fig. 2 An example of two {a,b,c}-labeled graphs G1, G2 and their labeled direct product graph G1 ⊗G2
on the right. Since G2 is a DAG, G1 ⊗ G2 is a DAG as well

123

Algorithmica

Fig. 3 A {a,b,c}-labeled directed graph G (left) and its labeled direct self-product G ⊗ G (right). Since
G is cyclic, G ⊗ G is cyclic as well

Given a vertex q = (u, v) ∈ V ′, let π1(q) := u and π2(q) := v. Given a walk
q = (

(p0, p′
0), (p1, p

′
1), . . .

)
in G1 ⊗G2, we denote with π1(q) and π2(q) the walks

(p0, p1, . . .) and (p′
0, p

′
1, . . .) in G1 and G2, respectively. We state the following

basic fact about the correspondence between the pairs of walks in G1 and G2 and
the walks in G1 ⊗ G2. In particular, this implies that the projections of any cycle in
G1 ⊗ G2 are two cycles in G1 and G2 reading the same string and vice versa.

Remark 2 Given G1, G2 �-labeled graphs, for each pair (p0, p1, . . .), (p′
0, p

′
1, . . .)

of finite (resp. infinite) walks inG1 andG2, respectively, reading the same finite (resp.
infinite) string S ∈ �∗ (resp. S ∈ �ω), p ⊗ p′ := (

(p0, p′
0), (p1, p

′
1), . . .

)
is a finite

(resp. infinite) walk in G1 ⊗ G2 reading S and vice versa.

Since all the algorithmswedevelop consist in analyzing the labeled direct product of
the input graphs,wemust take great care in the time and space spent on its construction.
Moreover, in Remark 5 we show that its size can be computed efficiently, making the
run time of our algorithms predictable.

Remark 3 The construction ofG1⊗G2 = (V ′, E ′, L ′) takes O(|V1|·|V2|+|E1|·|E2|)
time and space, because each pair of vertices and each pair of edges need to be
considered at most once. Assuming � to be an integer or a constant-size alphabet we
can do better than the naive construction algorithm with respect to time or space:

• if � is an integer alphabet, by first sorting lexicographically the lists of edges of
G1 and G2, the product G1 ⊗ G2 can then be built in linear-time with respect to
its size, by simply pairing all edges of G1 and G2 with matching labels;

• if � has constant size, there is no need to store the edges of G1 ⊗ G2, since for
all a ∈ � we can report in time linear in the solution all a-labeled out-neighbors
of any vertex (u, v) by pairing all a-labeled out-neighbors of u and v in G1 and
G2, respectively;

• if� is an integer alphabet, preprocessingG1,G2 in order to report the (number of)
out-neighbors of any vertex (u, v) of G1 ⊗G2 is equivalent to the SetIntersection
problem, for which Goldstein et al. proved conditional lower bounds on the trade-
off between the space and time used in its solution [41]; if we choose not to store

123

Algorithmica

at all the edges of G1 ⊗ G2, the algorithms exploiting G1 ⊗ G2 will then take
�(|V ′|) space and O(|V ′| + |E1| · |E2|) time.1

Remark 4 Since vertices and edges in G1 ⊗ G2 correspond to vertices and edges
in G1 and G2 with matching labels, the size of G1 ⊗ G2 could be much less than
|V1| · |V2|+|E1| · |E2| in practice, or for some families of labeled graphs. In particular,
if each a ∈ � is the label of at most O(1) pairs of vertices in V1 × V2 then G1 ⊗ G2
has size O(|V1|+ |V2|+ |E1|+ |E2|): this is not in contradiction with the conditional
lower bounds of Sect. 4 because the graph obtained in the reduction of Theorem 5
uses only two labels, �(|V |) times each.

Remark 5 If � is an integer alphabet, the size of G1 ⊗ G2 can be computed in time
linear in the size of the input graphs G1 and G2. Indeed, let V a

1 , V
a
2 be the sets of a-

labeled vertices ofG1,G2, respectively, and let E
a,b
i be the set edges ofGi connecting

an a-labeled vertex to a b-labeled vertex, with i = 1, 2. Then it is easy to see that

|V ′| =
∑

a∈�

|V a
1 | · |V a

2 | and |E ′| =
∑

a,b∈�

|Ea,b
1 | · |Ea,b

2 |

and that |V ′| + |E ′| can be easily computed after sorting the vertex and edge sets of
G1 and G2. Note that if � has constant size, the size of G1 ⊗ G2 can be found in
constant time after the independent sorting of G1 and G2.

2.2 Optimal Algorithms for DAGs

We first consider the case when the direct product graph is a DAG. Note that G ⊗ G
is DAG if and only if G itself is, G1 ⊗ G2 is a DAG if at least one between G1 and
G2 is a DAG, but G1 ⊗ G2 might be a DAG even if both G1 and G2 contain cycles.

Thanks to Remark 2, SMLG, LCSP,MSP and LRSP can be solved by finding paths of
maximum length in the corresponding direct product graph: an occurrence of pattern
S in graph G corresponds to a path of length |S|−1 in G⊗GS , where GS is a labeled
path of |S| vertices spelling S; a longest common string of G1 and G2 is spelled by
a path of maximum length in G1 ⊗ G2; the matching statistics MS(v) of G1 and G2,
with v ∈ V1, is equal to one plus the length of a path of maximum length in G1 ⊗ G2
starting from any vertex in {v} × V2; a longest repeated string of a DAG G is spelled
by a path of maximum length of G ⊗ G visiting at least one vertex (u, v) such that
u �= v.

Indeed, for every vertex (u, v) of the product graph (V ′, E ′, L ′) we can compute
by dynamic programming the length �+(u, v) of the longest path starting at (u, v):

• SMLG is solved by finding a path of length |S| starting from a vertex (u, v) such
that �+(u, v) = |S|;

1 We speculate that a careful implementation of our algorithms using bitvectors might take �(|V ′|) space
and O

(|V ′| + |E ′| + |V ′| · |�|/ log(|�|)) time. The conditional lower bounds by Goldstein et al. ignore
logarithmic factors, so this would not be a contradiction.

123

Algorithmica

• LCSP is solved by finding a vertex (u, v) of G1 ⊗ G2 such that �+(u, v) has
maximum value and by retrieving the string corresponding to a path of length
�+(u, v) starting at (u, v);

• MSP is solved by finding for each v ∈ V1 the maximum value of �+(v,w) + 1,
with (v,w) a vertex of G1 ⊗ G2, and this can be done by iterating once over all
vertices in V ′.

We can analogously compute for each (u, v) ∈ V ′ the length �−(u, v) of the longest
path in (V ′, E ′, L ′) ending at (u, v):

• LRSP is solved by iterating over all vertices (u, v) of G ⊗ G such that u �= v, and
obtaining the length of the longest repeated string in G whose occurrences pass
through the distinct vertices u and v, as �+(u, v)+�−(u, v)+1 (a longest repeated
string of this length can then be retrieved).

Theorem 1 Given G1 = (V1, E1, L1), G2 = (V2, E2, L2)�-labeled directed graphs,
LCSP and MSP on G1, G2 are solvable in O(|E1| · |E2|) time and taking O(|V1| · |V2|)
words in space. Analogously, LRSP on a�-labeled graph G = (V , E, L) is solvable in
O(|E |2) time and taking O(|V |2)words in space. For all three problems plus SMLG, if
the product graph is given, then the solution takes linear time in the size of the product
graph.

3 Optimal Algorithms for General Graphs

Since strict-LCSP, strict-MSP, and strict-LRSP are NP-complete (see Problem 5 and
Sect. 4), in this section we focus on LCSP, MSP, and LRSP. If we deal with graphs
containing cycles, then the length of the walks and strings to consider is not bounded
anymore so wemodify the three problems to require the detection of the relative cases.
In fact, we will show that in all cases we can also report a linear-size representation of
the corresponding common or repeated strings. As we stated in the introduction, the
three problems admit worst-case quadratic-time solutions based on the labeled direct
product graph, that is, G1 ⊗ G2 for LCSP and MSP and G ⊗ G for LRSP.

Definition 2 Given a labeled direct product graph G1 ⊗ G2 or G ⊗ G, we define:

• V ′
cyc as the set of all vertices of the product graph involved in a cycle, namely

those belonging to a strongly connected component (SCC) consisting of at least
two vertices;

also, for G ⊗ G = (V ′, E ′, L ′) we define:
• V ′

diff as the set of vertices (u, v) ∈ V ′ with u �= v;
• V ′

ndet as the set of all vertices (v, v) ∈ V ′ with v a non-deterministic vertex of G,
that is, v has two out-neighbors labeled with the same character.

3.1 LCSP andMSP

Since the graphs can contain cycles, the common strings in LCSP and MSP can now
have infinite length. The algorithm solving LCSP on any two�-labeled graphs G1, G2
consists of the following simple checks in G1 ⊗ G2:

123

Algorithmica

Infinite length common strings Check if G1 ⊗ G2 contains a cycle; if so, return
(i) the string spelled by any cycle and (i i) the symbol ω; otherwise
Finite length common strings Proceed as in the algorithm for the DAG case from
Sect. 2.2 on G1 ⊗ G2.

The correctness of this algorithm follows from the fact that there is a common string
of infinite length if and only if there is a common string of infinite length of the form
Sω (see also Lemma 1 below).

MSP can be solved as well by studying the SCCs of G1 ⊗ G2 = (V ′, E ′, L ′):
Infinite length matching statistics For all (u, v) ∈ V ′

cyc set MS(u) = ∞.
Finite length matching statistics Proceed for the remaining vertices of V1, i.e. the
vertices u ∈ V1 such that no (u, v) ∈ V ′ is also in V ′

cyc, as in the algorithm for
the DAG case from Sect. 2.2. Note that in this second step we consider an acyclic
subgraph of G1 ⊗ G2.

Theorem 2 The above algorithms correctly solve LCSP andMSP. Moreover, if G1⊗G2
is given, they can be implemented to run in time linear in the size of G1 ⊗ G2. If not,
they run in time O(|E1| · |E2|), where E1 and E2 are the edge sets of G1 and G2,
respectively.

3.2 LRSP

In LRSP on general graphs we have one of the following three cases, as seen in Fig. 4:

1. The graph has an infinite repeated string.
2. The graph does not have any infinite repeated string, but the length of the repeated

strings is unbounded.
3. The length of the longest repeated string is bounded and there are repeated strings

of a finite maximum length (as is the case for texts, trees and DAGs).

An undesirable feature of infinite strings is that they can be aperiodic. However,
analogously to some results of Büchi automata theory stating that the “important”
strings are ultimately periodic [42, p. 137], that is they are of the form RSω with
R ∈ �∗ and S ∈ �+, in Lemma 1 we show that the presence of infinite repeated

Fig. 4 An example (left) of a non-deterministic graph G with two distinct cycles (1, 2, 3, 4, 5) and
(1′, 2, 3, 4, 5); their infinite repetition generates the same infinite string; and a non-deterministic graph
(right) with no infinite repeated strings but with finite repeated strings of unbounded length, precisely of
the form (ba)kc, (ab)kac and ckc, for every k ≥ 0

123

Algorithmica

strings can be detected by looking for ultimately periodic strings. Its easy proof,
which we omit, finds a cycle in G ⊗G used by two distinct occurrences of an infinite
repeated string w (since G is finite): we can build RSω by identifying R as the prefix
of w spelled by the path reaching the cycle and S as the string spelled by the cycle.

Lemma 1 Given a�-labeled graph G = (V , E, L), there is an infinite repeated string
occurring in G if and only if there is a string RSω ∈ �ω in G spelled by two distinct
walks rsω and r ′s′ω in G, with R = L(r) = L(r ′) ∈ �∗ and S = L(s) = L(s′) ∈ �+.

The two distinct walks spelling RSω provided by Lemma 1 imply the existence of
a walk in G ⊗ G passing trough a vertex q in V ′

diff and reaching a vertex q ′ in V ′
cyc.

Note that q = q ′ can hold, in which case the infinite repeated string is of the form Sω.
Thus, we obtain:

Corollary 1 (Infinite repeated strings) G has an infinite repeated string if and only if
any q ∈ V ′

diff reaches any q
′ ∈ V ′

cyc, and if R is the spelling of a path from q to q ′ and
S is the spelling of a cycle starting and ending in q ′, then RSω is an infinite repeated
string in G.

If the graph has no infinite repeated string, the remaining difficulty is that of
repeated strings of unbounded length. Formally, we say that G has repeated strings
of unbounded length if for each n ∈ N there is a repeated string S ∈ �∗ occurring in
G such that |S| > n. It is easy to see that in the graph of Fig. 4 (right) there are no
infinite repeated strings and the unbounded repeated strings are of the form R+S, with
R, S ∈ �+. Indeed, these unbounded strings are of this form and their occurrences
have a common prefix after which they diverge. This divergence happens by visiting
a non-deterministic vertex, as shown by the next two results.

Lemma 2 Given a �-labeled graph G = (V , E, L) without infinite repeated strings,
G has repeated strings of unbounded length if and only if there are R, S ∈ �+ such
that RmS is repeated in G for each m ≥ 1.

Proof (⇐) This side is trivial. (⇒) Let G ⊗ G = (V ′, E ′, L ′). If G has repeated
strings of unbounded length, then there must be some k ∈ N such that there is
a repeated string T ∈ �∗ of length k > |V ′|, with p = (p0, p1, . . . , pk−1)

and p′ = (p′
0, p

′
1, . . . , p

′
k−1) two distinct occurrences of T in G. Then q :=

(q0, q1, . . . , qk−1) := p⊗ p′ is a walk inG⊗G visiting more than |V ′| vertices, so by
the pigeonhole principle there must be a vertex visited more than once: let j, j ′ ∈ N

be two indices such that 0 ≤ j < j ′ ≤ k − 1 and q j = q j ′ . Since p and p′ are distinct
walks in G, there must be also an index i ∈ N such that 0 ≤ i ≤ k − 1 and pi �= p′

i .
Index i can be in three different positions relative to j and j ′:

1. if i < j < j ′, then (qi , . . . , q j−1)(q j , . . . , q j ′−1)
ω is an infinite and ultimately

periodicwalk inG⊗G and its projections are occurrences of an ultimately periodic,
infinite and repeated string in G, since π1(qi) = pi �= p′

i = π2(qi), contradicting
our hypothesis;

2. if j ≤ i ≤ j ′, then (q j , . . . , q j ′−1)
ω is a periodic walk in G⊗G and its projections

are occurrences of a periodic, infinite and repeated string in G, a contradiction;

123

Algorithmica

3. if j < j ′ < i , then (q j , . . . , q j ′−1)(q j ′ , . . . , qi) is a walk in G ⊗ G with a cyclic
prefix that can be pumped, so (q j , . . . , q j ′−1)

m(q j ′ , . . . , qi) is a walk in G ⊗ G
for each m ≥ 1; the projections in G of these strings are occurrences of repeated
strings of the form RmS, with R = L ′((q j , . . . , q j ′−1)

)
and S = L ′((q j ′, . . . , qi)

)
,

since π1(qi) = pi �= p′
i = π2(qi). ��

Point 3. of the above proof shows that the index where the projections of the distinct
walks differ must occur after every cycle of the walk considered in G ⊗ G, proving
that any of these walks has a proper prefix of vertices of the form (u, u) containing
a cycle and this prefix ends in a vertex (v, v) ∈ V ′

ndet. Note that (u, u) = (v, v) can
hold. We obtain the following result.

Corollary 2 (Unbounded repeated strings) If G has no infinite repeated string, then
G has repeated strings of unbounded length if and only if any (u, u) ∈ V ′

cyc reaches
any (v, v) ∈ V ′

ndet with a path. In this case, if R is the spelling of a cycle starting and
ending in (u, u), S is the spelling of a path starting from (u, u) and ending in (v, v),
and c is the label of at least two out-neighbors of (v, v), then RmSc is a repeated
string for each m ≥ 1.

We solve LRSP on the general graph G by combining Corollaries 1 and 2 and
Theorem 1:

Infinite length repeats Check if any q ∈ V ′
diff reaches any q ′ ∈ V ′

cyc even with
an empty path. If so, return (i) the string spelled by the path from q to q ′, (i i) the
string spelled by any cycle starting from q ′ and (i i i) the symbol ω.
Unbounded length repeats Check if any (u, u) ∈ V ′

cyc reaches any (v, v) ∈ V ′
ndet

even with an empty path. If so, return (i) the string spelled by any cycle starting
(and ending) at (u, u), (i i) the symbol + and (i i i) the string spelled by the path
from (u, u) to an out-neighbor of (v, v)with a sibling having the same label (since
(v, v) ∈ V ′

ndet).
Finite length repeats Remove from G ⊗G all vertices in V ′

cyc (obtaining a DAG),
and proceed as in the algorithm for the DAG case from Sect. 2.2 on this graph.

Theorem 3 The above algorithm correctly solves LRSP. Moreover, if G ⊗ G is given,
it can be implemented to run in time linear in the size of G ⊗ G. If not, it runs in time
O(|E |2), where E is the edge set of G.

Proof If G has infinite repeated strings, then Corollary 1 guarantees the correctness of
the first check. Otherwise, Corollary 2 guarantees the correctness of the second check.

Suppose now that both of these checks return false. First, since the first check
failed, V ′

diff ∩V ′
cyc = ∅, because any vertex in V ′

diff ∩V ′
cyc reaches itself with an empty

path. Second, from any q ∈ V ′
cyc no vertex q ′ ∈ V ′

diff is reachable (with a non-empty
path, since V ′

diff ∩ V ′
cyc = ∅). Indeed, suppose for a contradiction that q ′ ∈ V ′

diff is
a vertex reached from q with a shortest (non-empty) path P , and let q∗ ∈ V ′ be
the vertex on this path right before q ′. Since P is shortest, then q∗ /∈ V ′

diff, and thus
q∗ ∈ V ′

ndet. However, this contradicts the assumption that the second check of the
algorithm returned false.

123

Algorithmica

Finally, since the two occurrences of a repeated string must pass through a vertex in
V ′
diff, and no vertex in V

′
diff is reached, or reaches a vertex in V

′
cyc, then we can remove

all vertices in V ′
cyc from G ⊗ G, obtaining a DAG. In this DAG, as in Sect. 2.2, we

look for the longest path passing through a vertex in V ′
diff.

The SCCs of G ⊗ G and the sets V ′
cyc, V

′
diff, V

′
ndet can be computed in linear

time in the size G ⊗ G. Reachability between two sets of vertices of G ⊗ G (and a
corresponding path) can also be implemented in linear time in the size of G ⊗G. The
algorithm for the final DAG case runs in linear time in the size of G ⊗G, by Theorem
1. ��

4 Hardness

The NP-hardness of strict-SMLG (the SMLG problem defined on path occurrences, see
Problem 5 and Sect. 1.7), implying the NP-hardness of strict-LCSP and of strict-MSP
was already observed in previous works such as [6]. We similarly observe that the
same holds also for strict-LRSP.

Observation 1 strict-LRSP is NP-hard, even if we restrict alphabet � to contain just
a single character. This follows by reducing from the Hamiltonian Path problem on
directed graphs. Given a graph G, create a graph G ′ made up of two copies of G and
label all vertices with the same character. It easily holds that G has a Hamiltonian
path if and only if the length of the longest repeated string in G ′ equals the number of
vertices of G.

As noted in the introduction, the quadratic lower bounds of [6, 8] for SMLG imply
the same quadratic lower bounds for LCSP and MSP, namely that the two problems
cannot be solved in truly sub-quadratic time under the Orthogonal Vectors Hypothesis
(that we discuss below in this section) and that the shaving from the quadratic-time
complexity of arbitrarily high or high enough logarithmic factors would contradict
other hardness conjectures. We now show a linear-time reduction from SMLG to LRSP
on deterministic DAGs, which thus implies the same lower bounds for LRSP as in [6,
8] (since they hold also for deterministic DAGs).

Theorem 4 Given a string P ⊆ �∗ and a �-labeled deterministic DAG G =
(V , E, L), there exists a �′-labeled DAG G ′, with �′ = � ∪ V , having O(|V | +
|E | + |P|) vertices and edges, computable in linear time in the size of P and G, and
such that P has an occurrence in G if and only if the longest repeated string of G ′ has
length |V | + |P| + 1.

Proof Given a deterministic graph G = (V , E, L) and a pattern P = P[1] · · · P[m]
labeled on alphabet �, with V = {v1, . . . , vn} andm, n > 0, the reduction consists of
transforming pattern P into a labeled graph GP , that is a path of m vertices spelling
P , and building a�′-labeled graph G ′ with�′ = �∪V , assuming V ∩� = ∅. Graph
G ′, as seen in Fig. 5, contains G, GP , and two copies H1, H2 of a simple gadget H
appropriately connected to them. Gadget H is made of a path of n vertices spelling
an , with a ∈ � chosen arbitrarily, ending in a level of n vertices each labeled with a

123

Algorithmica

Fig. 5 Scheme for the reduction of SMLG to LRSP: H1 and H2 are two copies of the same gadget made of
n + 1 levels and the edges of G are not shown. Note that the reduction holds only if G is a deterministic
DAG

different vertex of V . In H1 each of these final vertices is connected to the respective
vertex of G and in H2 they are all connected to the source of GP . The resulting graph
G ′ is a deterministic DAG made of two connected components each having exactly
one source, and it is easy to see that the longest repeated string of G ′ has length at
most |V | + |P| + 1. Each repeated string of this maximum length has one occurrence
per component, starting at the respective source. If P has an occurrence (u1, . . . , um)

in G, then anu1P is a repeated string in G ′ of maximum length. Conversely, every
repeated string in G ′ of maximum length |V | + |P| + 1 is of the form anui P , with
ui ∈ V , and its occurrence in the first component has as its suffix an occurrence of P
in G.

GraphG ′ has O(|V |+|E |+|P|) vertices and edges and its construction is straight-
forward, so the reduction takes linear time in the size of the starting SMLG instance.

��
Two interesting aspects of Theorem 4 are as follows:

• the reduction does not hold if G contains cycles or if G is a DAG with some non-
deterministic vertices, because there could be infinite repeated strings in G or the
repeated strings of G could be extended by gadget H1;

• to the best of our knowledge, such a reduction does not exist when the problems
are defined on strings.

Nevertheless, this reduction creates an instance of LRSP with vertices of arbitrarily
high in-degree and out-degree, and also increases the alphabet size by the number of
edges of the graph. Therefore, in the rest of this section we give a direct reduction from
the Orthogonal Vectors Problem (OVP) to LRSP, which will allow for both constant
in- and out-degree, and binary alphabet.

In OVPwe are given two sets of binary vectors A, B ⊆ {0, 1}d , with |A| = |B| = n
and d = ω(log n), and we need to determine whether there exist a ∈ A, b ∈ B so
that a · b = 0, where a · b = ∑d

i=1 a[i] · b[i]. The Orthogonal Vectors Hypothesis
(OVH) states that no (randomized) algorithm can solve OVP on instances of size n in

123

Algorithmica

Fig. 6 Gadget Ga (left), with a = (a[1], . . . , a[d]) ∈ A, and Gb (right), with b = (0, 1, 1, 0) ∈ B. Note
that since b[2] = b[3] = 1, the second and third levels of Gb only have one 0-labeled vertex

O(n2−ε poly(d)) time for constant ε > 0 [33]. Given an instance A, B for OVP, we
will construct a DAG G such that A and B contain a pair of orthogonal vectors if
and only if the length of the longest repeated string in G is of a certain value, to be
introduced at the end of the reduction.

To start with, we use the alphabet � = {0, 1,c}, where c is used to simplify the
proofs. At the end, we will observe that all c-labeled vertices can be relabeled with 0.
We start by building two types of gadgets:

• for each a = (a[1], . . . , a[d]) ∈ A, graph Ga is a path consisting of a starting
c-labeled vertex followed by d vertices, where the i-th vertex is labeled with a[i]
(Fig. 6, left);

• for each b = (b[1], . . . , b[d]) ∈ B, graph Gb is a DAG with d + 1 levels such
that: (i) the zeroth level consists of a single c-labeled source vertex; (ii) the i-th
level has both a 0-labeled vertex and a 1-labeled vertex if b[i] = 0, otherwise (if
b[i] = 1) it just has a 0-labeled vertex. All vertices in each level have edges going
to all vertices in the next level, and there are no edges between vertices of the same
level (Fig. 6, right). This is the same type of gadget used also in [6].

To build up the intuition, take a ∈ A and b ∈ B and observe, similarly as in [6], that
the string spelled by Ga has an occurrence in Gb if and only if a and b are orthogonal.
Thus, the graph made up of a copy of Ga and a copy of Gb has a longest repeated
string of length d + 1 if and only if a and b are orthogonal. However, we cannot put
together all gadgets Ga and Gb as separate components of the same graph, because
such a simple construction cannot restrict the location of occurrences of the longest
repeated string. Intuitively, we need the longest repeated string to have one occurrence
in the part of the graph corresponding to the Ga gadgets, and one occurrence in the
part of the graph corresponding to the Gb gadgets. We achieve this by (i) building
a tree structure on top of the Gb gadgets that assigns to each gadget its own unique
prefix; and by (ii) building a “universal” structure on top of gadgets Ga to make them
reachable by reading any possible prefix added to gadgets Gb. More specifically, we
introduce the following two gadgets with �log2 n� + 1 = k + 1 levels:

• gadget T , seen in Fig. 7 (left), is a complete binary tree of height k + 1 and with
2k ≥ n leaves, in which the root is c-labeled, all left children are 0-labeled and
all right children are 1-labeled; trivially, any root-to-leaf path in such a tree has a
different label;

• a “universal” DAG U with a c-labeled source followed by k levels of vertices
where each level has two vertices, labeled with 0 and 1, and each vertex in a level
is connected to the vertices of the next level, as can be seen in Fig. 7 (right).

123

Algorithmica

Fig. 7 Gadget T (left), a complete binary tree with k+1 levels, and gadgetU (right), reading every possible
string of length k + 1 that can be read in T

Our gadgets can be arranged in a non-deterministic DAG as seen in Fig. 8 (left):
the two sinks of gadget U are connected to each source of gadgets Ga , with a ∈ A,
and each leaf of the tree gadget T is connected to the source of a different gadget Gb,
with b ∈ B; if n is not a power of two, some leaves of gadget T can be left without
any out-neighbors. To have a deterministicDAG, we can further merge all gadgets Ga

in a keyword tree (trie) KGa1 ,...,Gan
(see Fig. 8, right), so the set of strings spelled by

the entire graph is unchanged (and the leaves of the keyword tree remain all distinct
since all vectors in A are distinct). Note that the longest path in this graph has length
k + d + 1, with k = �log2 n�.
Lemma 3 For an instance A and B for OVP, the deterministic DAG G built as in Fig. 8
has a repeated string of length k + d + 2, with k = �log2 n�, if and only if there exist
a ∈ A, b ∈ B orthogonal.

Proof By construction, the longest paths in G have length k + d + 1 and thus they
spell strings of length k + d + 2. Moreover, all these longest strings are of the form
cS1cS2, with S1 ∈ {0, 1}k and S2 ∈ {0, 1}d .

(⇒) If there is a repeated string cS1cS2 of length k + d + 2 then there must be
exactly two occurrences of it, one inGA and one inGB , since the graph is deterministic
and has only two sources from which the longest strings can be read. This implies
the existence of a′ ∈ A, b′ ∈ B such that L(a′) = S2 and a′ · b′ = 0, due to trie
KGa1 ,...,Gan

and due to the properties of the longest strings of gadgets Ga′ and Gb′ .

(⇐) Given a′ ∈ A, b′ ∈ B such that a′ · b′ = 0, let cS1, with S1 ∈ {0, 1}k , be the
string corresponding to the unique path from the c-labeled source of GB to gadget
Gb′ . Then string cS1cS2, with S2 ∈ {0, 1}d the linearization of vector a′, has two
occurrences in G, one in GA, passing through gadgets U and KGa1 ,...,Gan

, and one in

GB , passing through T and Gb′ . ��
To make the alphabet binary, it is easy to see that it suffices to relabel all c-labeled
vertices with 0. This proves that, under OVH, there can be no truly sub-quadratic time
algorithm.

123

Algorithmica

Fig. 8 First scheme (left) for the OV reduction, made of two subgraphs GA (left) and GB (right): GA is
non-deterministic; second scheme (right) for the OV reduction: KGa1 ,...,Gan

is the keyword tree (trie) of
gadgets Ga , a ∈ A

Theorem 5 If OVH holds, then for no ε > 0 there is a O
(|V |2−ε

)
-time or O

(|E |2−ε
)
-

time algorithm for LRSP, even when restricted to deterministic DAGs, labeled with a
binary alphabet, in which both the maximum in-degree and out-degree of any vertex
are at most 2.

Proof It is easy to check that the maximum in-degree, and out-degree of any vertex of
the graph in the reduction of Fig. 8 is at most 2. Lemma 3 guarantees the correctness
of the reduction, so it remains to analyze its complexity. The resulting graph G has
O(nd) vertices and O(nd) edges and can be constructed in O(nd) time, since the
keyword tree can be constructed in time linear in the size of its inputs. Thus, if LRSP
has an O

(|V |2−ε
)
-time or an O

(|E |2−ε
)
-time algorithm for some ε > 0, OVP has an

O
(
(nd)2−ε

)
-time algorithm, contradicting OVH. ��

Our OVH reduction for LRSP immediately proves an OVH reduction also for LCSP
(by taking the two components of G as input graphs G1 and G2 for LCSP).

It also provides a quadratic lower bound for an apparently simpler version of MSP,
which on two paths (i.e. strings) can be solved in a trivial manner. LetMSP∗ be defined
asMSP, with the difference that we are given a single vertex v1 ofG1, a single vertex v2
ofG2, and we need to compute the length of the longest string having an occurrence in
G1 starting at v1 and an occurrence in G2 starting at v2. To obtain the OVH reduction,
it can be easily checked that it suffices to take as G1 the subgraph of G built from B
(Fig. 8, middle) with v1 being its source vertex, and as G2 the graph build from A
(Fig. 8, right) with v2 being its source vertex.

123

Algorithmica

Corollary 3 If OVH holds, then for no ε > 0 there is a O
(
(|V1| · |V2|)1−ε

)
-time

or O
(
(|E1| · |E2|)1−ε

)
-time algorithm for MSP∗, even when both input graphs are

deterministic DAGs, labeled with a binary alphabet, in which the maximum in-degree
and out-degree of any vertex is at most 2.

Even though the above result about MSP∗ holds also for deterministic DAGs, its
hardness stems from the fact that we do not know which path in G1 to match with a
path in G2 in order to maximise their length. However, if G2 is just a path, then the
problem is solvable in linear time.

5 LRSP on Undirected Graphs

In this section we study LRSP and strict-LRSP on undirected graphs, namely when
the occurrences of a repeated string are allowed to use an undirected edge in any of
its two directions. Even if these results are easier than the results on directed graphs,
they complete the complexity picture of LRSP. We will study the variants of LRSP
and strict-LRSP and consider the same classes of undirected graphs: paths, trees2 and
general graphs.3

Theorem 6 strict-LRSP on undirected graphs can be solved as follows:

1. On an undirected graph G that is a path, strict-LRSP can be solved in linear time.
2. On an undirected graph G that is a tree, strict-LRSP can be solved in quadratic

time.
3. On general undirected graphs, strict-LRSP is NP-complete, since the same reduction

as in Observation 1 works also for undirected graphs.

Proof For 1., note that the occurrences of a repeated string are obtained by either
moving only forward or only backward (because strict-LRSP is defined on path occur-
rences, and thus occurrences cannot repeat vertices). Thus, if T is the spelling of
G from one end to another, we can reduce strict-LRSP on G to finding the longest
repeated substring of the text T $T−1, where $ is a new separator character, and T−1

is T reversed. Thus, we can solve strict-LRSP on G in linear time.
For 2., we show that strict-LRSP on an undirected tree with n vertices, defined with

path occurrences, can be reduced to LRSP on a directed tree with O(n2) vertices (where
there is no distinction between path and walk occurrences). Indeed, let v1, . . . , vn be
the vertices of a �-labeled undirected tree T . For each i ∈ {1, . . . , n}, construct the
directed tree Tvi by setting vi as root and orienting all edges away from vi . Also,
let (u1, . . . , un) be a directed path of n new vertices. Construct the directed tree T ′,
rooted at u1, by combining the path (u1, . . . , un) with trees Tv1, . . . , Tvn , adding the
directed edges (un, vi), for all i ∈ {1, . . . , n}. The vertices of each Tvi are labeled as
in T , and u1, . . . , un are labeled with a new character $ /∈ �. Clearly, the number of

2 By undirected tree we mean an unrooted tree, where an occurrence can use an undirected edge in either
direction.
3 For simplicity, we assume that self-loops in undirected graphs are not present, even if they do not change
the results.

123

Algorithmica

vertices of T ′ is n2 + n. We claim that T has a longest repeated string of length � if
and only if T ′ has a longest repeated string of length n + �, spelled by a path starting
with (u1, . . . , un). This is proved by combining the following remarks:

• All occurrences of any repeated string of T ′ longer than n must start in the same
vertex ui , with i ∈ {1, . . . , n}, since $ /∈ �. Moreover, if a repeated string of
maximum length in T ′ has length greater than n then its occurrences start at u1.

• Consider two distinct occurrences of a longest repeated string in T ′ of length n+�,
with � ≥ 1, both starting from u1. By construction of T ′, their suffixes of length �

correspond to two distinct occurrences of a string of length � in T . Vice versa, given
two distinct occurrences of a repeated string w in T , there are two corresponding
distinct occurrences of $nw in T ′ of length n + �, both starting from u1.

Thus, the longest repeated strings in T correspond to the longest repeated strings in
T ′ and vice versa (if there are no repeated strings in T then the repeated strings of
T ′ have length lesser than n), so we can apply the linear-time solutions based on the
suffix tree of a tree or the XBWT to obtain a globally quadratic-time algorithm.

For 3., observe that the same reduction as inObservation 1works also for undirected
graphs (since the Hamiltonian path problem is NP-hard also on undirected graphs).

��
For LRSP, which is defined on walk occurrences, observe first that we can replace

each undirected edge with a pair of edges oriented in opposite directions. Thus, we
can solve the problem in quadratic time, using the algorithm from Sect. 3 for directed
graphs.However, we show that LRSP can be solved in linear time on general undirected
graphs, using the following lemma, greatly simplifying the problem.

Lemma 4 Given a �-labeled undirected graph G = (V , E, L), G has a repeated
string of length at least 2 if and only if G has an infinite repeated string.

Proof Let p = (p0, p1, . . . , pk−1) and p′ = (p′
0, p

′
1, . . . , p

′
k−1) be distinct occur-

rences of a string, such that pi �= p′
i for some 0 ≤ i ≤ k − 1. We can build an infinite

repeated string with just two pair of adjacent vertices visited by p and p′:
• if i = 0 then (p0, p1)ω, (p′

0, p
′
1)

ω are distinct occurrences of infinite string
(L(p0)L(p1))ω;

• if i > 0 then (pi−1, pi)ω, (p′
i−1, p

′
i)

ω are distinct occurrences of infinite string
(L(pi−1)L(pi))ω. ��
Lemma 4 implies we can just check if there is a repeated string of length 2 (in which

case there is an infinite repeated string) and, if not, of length 1. These two checks can
be done in linear time, provided that the vertex set and the edge set of G are already
ordered lexicographically: there is a repeated string of length 2 if and only if there are
two distinct edges with matching labels, and there is a repeated string of length 1 if
and only if there are two distinct vertices with the same label.

6 Conclusions and FutureWork

In this paper we introduced the labeled direct product graph as a straightforward algo-
rithmic tool, since it naturally encodes all pairs of walks in the original graphs having

123

Algorithmica

matching labels. Through simple applications, we developed optimal and predictable
algorithms for existing problems on labeled graphs—stringmatching in labeled graphs
(SMLG) and longest common substring (LCSP)—and for extensions of string problems
that we introduced—matching statistics (MSP) and longest repeated string (LRSP). For
SMLG and LCSP this resulted in simpler and in some cases more efficient algorithms
than the existing quadratic-time solutions, since the product graph excludes all pairs of
mismatching vertices and edges. In the SMLG and graph-indexing setting, the labeled
product graph can serve as a valuable comparison to the more sophisticated tools
offering the string matching of arbitrary queries in sub-quadratic time.

Regarding complexity, we extended the existing conditional quadratic-time lower
bounds for SMLG of [6, 8] to LRSP with a linear-time reduction, if the input graph
of SMLG is a deterministic DAG. Since the SMLG lower bounds trivially hold for
LCSP and MSP, this means that our algorithms (and the existing one for LCSP) are
conditionally optimal. Moreover, we designed a single, more efficient reduction from
the Orthogonal Vectors Problem (OVP) to LCSP,MSP and LRSP proving that the three
problems cannot be solved in truly sub-quadratic time under the Orthogonal Vectors
Hypothesis (OVH), even if the graphs in input are acyclic, deterministic (i.e. every
vertex has at most one a-labeled out-neighbor, for every a ∈ �), labeled from a
binary alphabet, and such that the maximum in-degree and out-degree of any vertex
are at most 2. An interesting aspect of these results is that there is no known reduction
of SMLG to LRSPwhen the problems are defined on strings and that the OVP reduction
holds also for the modification of MSP trying to match the walks starting from just
two vertices, even when the graphs have the same restrictions as before.

Our algorithms are based on linear-time analyses of the labeled direct product graph
corresponding to each problem, so we spent some effort in studying its construction.
Indeed, if the sets of vertices and edges of the graphs are sorted following the lexico-
graphical order, then the construction of the product graph takes time and space linear
in its size, thus under the standard assumption to work with an integer alphabet our
algorithms globally reach this time and space complexity. This also means that the
size of the labeled direct product graph is a finer complexity upper bound for SMLG,
LCSP, MSP and LRSP. Plus, the size of the product graph can be precomputed in time
linear in the size of the input graphs, making it possible to report the run time of
our algorithms before their computation. If the alphabet has constant size, there is no
need to store the edges of the product graph, whereas if the alphabet is an integer one
then the choice not to store the edges of the graph is a version of the SetIntersection
problem, leading to a space and time trade-off.

Finally, we presented a complete complexity picture of LCSP and LRSP on different
classes of directed graphs and we did the same for LRSP and strict-LRSP on undirected
graphs. The only open case is strict-LRSP in undirected trees, for which we obtained
only a quadratic-time algorithm in Sect. 5, with no matching lower bound. Since the
number of different paths of an undirected tree is only quadratic, we believe this
problem cannot encode an OVP instance. Thus, we pose the open problem of finding
a linear-time algorithm for this variant.

Recall that in the introduction we encoded a labeled graph as an NFA and we
argued that SMLG, LCSP and LRSP (where we focus on finite strings) are special
cases of similarly defined problems for finite-state automata (over finite words). The

123

Algorithmica

quadratic-time conditional lower bounds automatically carry over to these problems,
and as the classical quadratic-size construction of an NFA recognizing each and every
word accepted by two input NFAs solves LCSP, we deem that there is a quadratic-size
NFA encoding all ambiguous words of any input NFA thus solving LRSP, and we leave
this for future work.

We also leave as future work to find more problems on labeled graphs solved by
the labeled direct product graph, or that can be tackled with the same general strategy
of precomputing a data structure to globally obtain time savings during the actual
computation.

Acknowledgements We are very grateful to Roberto Grossi, for initial discussions on the longest repeated
string problem that spurred this line of research, and to Veli Mäkinen and Massimo Equi for their helpful
comments and many discussions on the results of this paper.

Funding Open Access funding provided by University of Helsinki including Helsinki University Central
Hospital. This work was partially supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 851093, SAFEBIO) and
by the Academy of Finland (grants No. 322595, 328877).

Availability of data andmaterial Not applicable.

Code availability Not applicable.

Declarations

Conflicts of interest/Competing interests The authors have no competing interests to declare that are
relevant to the content of this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees for optimal suc-
cinctness, and beyond. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pp. 184–196. IEEE Computer Society,
(2005). https://doi.org/10.1109/SFCS.2005.69

2. Garrison, E., Sirén, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T., Jones, W., Garg, S.,
Markello, C., Lin, M.F., Paten, B., Durbin, R.: Variation graph toolkit improves read mapping by
representing genetic variation in the reference. Nat. Biotechnol. 36, 875 (2018). https://doi.org/10.
1038/nbt.422710.1038/nbt.4227

3. Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S., Kohlbacher, O., Weigel, D.:
Simultaneous alignment of short reads against multiple genomes. Genome Biol. 10, 98 (2009)

4. Akutsu, T.: A linear time pattern matching algorithm between a string and a tree. In: 4th Symposium
on Combinatorial Pattern Matching, Padova, Italy, pp. 1–10 (1993)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1038/nbt.422710.1038/nbt.4227
https://doi.org/10.1038/nbt.422710.1038/nbt.4227

Algorithmica

5. Backurs, A., Indyk, P.: Which regular expression patterns are hard to match? In: IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pp. 457–466 (2016)

6. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string matching for graphs.
In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. LIPIcs, vol.
132, pp. 55–15515. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2019). https://doi.org/10.
4230/LIPIcs.ICALP.2019.55

7. Equi, M., Mäkinen, V., Tomescu, A.I.: Graphs cannot be indexed in polynomial time for sub-quadratic
time string matching, unless SETH fails. In: Bureš, T., Dondi, R., Gamper, J., Guerrini, G., Jurdziński,
T., Pahl, C., Sikora, F., Wong, P.W.H. (eds.) SOFSEM 2021: Theory and Practice of Computer Science,
pp. 608–622. Springer, Cham (2021)

8. Gibney, D., Hoppenworth, G., Thankachan, S.V.: Simple reductions from formula-sat to patternmatch-
ing on labeled graphs and subtree isomorphism. In: Le, H.V., King, V. (eds.) 4th Symposium on
Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pp. 232–242. SIAM,
(2021). https://doi.org/10.1137/1.9781611976496.26

9. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. J. Algorithms 35(1), 82–99
(2000)

10. Rautiainen, M., Marschall, T.: Aligning sequences to general graphs in O(V + mE) time. bioRxiv,
216–127 (2017)

11. Jain, C., Zhang, H., Gao, Y., Aluru, S.: On the complexity of sequence to graph alignment. In: Cowen,
L.J. (ed.) Research in Computational Molecular Biology, pp. 85–100. Springer, Cham (2019)

12. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de bruijn graphs. In: Raphael, B.J., Tang, J.
(eds.) Algorithms in Bioinformatics - 12th International Workshop, WABI 2012, Ljubljana, Slovenia,
September 10-12, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7534, pp. 225–235.
Springer, (2012). https://doi.org/10.1007/978-3-642-33122-0_18

13. Mäkinen, V., Välimäki, N., Sirén, J.: Indexing graphs for path queries with applications in genome
research. IEEEACMTrans. Comput. Biol. Bioinform. 11(2), 375–388 (2014). https://doi.org/10.1109/
TCBB.2013.2297101

14. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata. In: Marx, D. (ed.) Proceed-
ings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021, pp. 2585–2599. SIAM, (2021). https://doi.org/10.1137/1.9781611976465.153

15. Nellore, A., Nguyen, A., Thompson, R.F.: An invertible transform for efficient string matching in
labeled digraphs. In: Gawrychowski, P., Starikovskaya, T. (eds.) 32nd Annual Symposium on Com-
binatorial Pattern Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland. LIPIcs, vol. 191, pp.
20–12014. SchlossDagstuhl - Leibniz-Zentrum für Informatik, (2021). https://doi.org/10.4230/LIPIcs.
CPM.2021.20

16. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational
Biology. Cambridge University Press (1997). https://doi.org/10.1017/cbo9780511574931

17. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale AlgorithmDesign: Biological
Sequence Analysis in the Era of High-Throughput Sequencing. Cambridge University Press, (2015).
https://doi.org/10.1017/CBO9781139940023

18. Parida, L.: Pattern Discovery in Bioinformatics: Theory &Algorithms, 1st edn. Chapman &Hall/CRC
(2007)

19. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002). https://doi.org/10.1142/
4838

20. Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylo-
genetic Reconstruction. Oldenbusch Verlag, (2013). http://www.oldenbusch-verlag.de/

21. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algorithms. ACM
Comput. Surv. 39(2), 4 (2007). https://doi.org/10.1145/1242471.1242472

22. Shimohira,K., Inenaga, S.,Bannai,H., Takeda,M.:Computing longest common substring/subsequence
of non-linear texts. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference
2011, Prague, Czech Republic, August 29-31, 2011, pp. 197–208. Prague Stringology Club, Depart-
ment ofTheoreticalComputer Science, Faculty of InformationTechnology,CzechTechnicalUniversity
in Prague, (2011). http://www.stringology.org/event/2011/p17.html

23. Han,Y., Salomaa,A., Salomaa,K.:Ambiguity, nondeterminismand state complexity of finite automata.
Acta Cybern. 23(1), 141–157 (2017). https://doi.org/10.14232/actacyb.23.1.2017.9

123

https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.4230/LIPIcs.CPM.2021.20
https://doi.org/10.4230/LIPIcs.CPM.2021.20
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1017/CBO9781139940023
https://doi.org/10.1142/4838
https://doi.org/10.1142/4838
http://www.oldenbusch-verlag.de/
https://doi.org/10.1145/1242471.1242472
http://www.stringology.org/event/2011/p17.html
https://doi.org/10.14232/actacyb.23.1.2017.9

Algorithmica

24. Colcombet, T.: Unambiguity in automata theory. In: Shallit, J.O., Okhotin, A. (eds.) Descriptional
Complexity of Formal Systems - 17th International Workshop, DCFS 2015, Waterloo, ON, Canada,
June 25-27, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9118, pp. 3–18. Springer,
(2015). https://doi.org/10.1007/978-3-319-19225-3_1

25. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional
complexity of machines with limited resources. J. Univers. Comput. Sci. 8(2), 193–234 (2002). https://
doi.org/10.3217/jucs-008-02-0193

26. Book, R.V., Even, S., Greibach, S.A., Ott, G.: Ambiguity in graphs and expressions. IEEE Trans.
Computers 20(2), 149–153 (1971). https://doi.org/10.1109/T-C.1971.223204

27. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325–349
(1991). https://doi.org/10.1016/0304-3975(91)90381-B

28. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity of finite automata
and the double-tape ambiguity of finite-state transducers. Int. J. Found. Comput. Sci. 22(4), 883–904
(2011). https://doi.org/10.1142/S0129054111008477

29. Kosaraju, S.R.: Efficient tree pattern matching (preliminary version). In: 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pp. 178–183. IEEE Computer Society, (1989). https://doi.org/10.1109/SFCS.1989.
63475

30. Breslauer, D.: The suffix tree of a tree and minimizing sequential transducers. Theor. Comput. Sci.
191(1–2), 131–144 (1998). https://doi.org/10.1016/S0304-3975(96)00319-2

31. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 86–A(5), 1061–1066 (2003)

32. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pp.
137–143. IEEE Computer Society, (1997). https://doi.org/10.1109/SFCS.1997.646102

33. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theoret.
Comput. Sci. 348(2), 357–365 (2005). https://doi.org/10.1016/j.tcs.2005.09.023

34. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm. In: Digital SRC
Research Report (1994). Citeseer

35. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages. Inf. Comput. 281, 104820
(2021). https://doi.org/10.1016/j.ic.2021.104820

36. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: A framework for bwt-based data structures. Theor.
Comput. Sci. 698, 67–78 (2017). https://doi.org/10.1016/j.tcs.2017.06.016

37. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of recognizing wheeler graphs.
In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algo-
rithms, ESA2019, September 9-11, 2019,Munich/Garching,Germany. LIPIcs, vol. 144, pp. 51–15116.
SchlossDagstuhl - Leibniz-Zentrum für Informatik, (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.
51

38. Harary, F.: Graph Theory. Addison-Wesley (1991)
39. Harary, F., Wilcox, G.W.: Boolean operations on graphs. Mathematica Scandinavica, 20(1), 41–51

(1967). https://www.jstor.org/stable/pdf/24490249.pdf
40. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125

(1959). https://doi.org/10.1147/rd.32.0114
41. Goldstein, I., Kopelowitz, T., Lewenstein,M., Porat, E.: Conditional lower bounds for space/time trade-

offs. In: Ellen, F., Kolokolova, A., Sack, J. (eds.) Algorithms and Data Structures - 15th International
Symposium, WADS 2017, St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings. Lecture
Notes in Computer Science, vol. 10389, pp. 421–436. Springer, (2017). https://doi.org/10.1007/978-
3-319-62127-2_36

42. Thomas,W.:Automata on infinite objects. In: vanLeeuwen, J. (ed.)Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, pp. 133–191. Elsevier and MIT Press, (1990).
https://doi.org/10.1016/b978-0-444-88074-1.50009-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.3217/jucs-008-02-0193
https://doi.org/10.3217/jucs-008-02-0193
https://doi.org/10.1109/T-C.1971.223204
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1142/S0129054111008477
https://doi.org/10.1109/SFCS.1989.63475
https://doi.org/10.1109/SFCS.1989.63475
https://doi.org/10.1016/S0304-3975(96)00319-2
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.ic.2021.104820
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://www.jstor.org/stable/pdf/24490249.pdf
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/978-3-319-62127-2_36
https://doi.org/10.1007/978-3-319-62127-2_36
https://doi.org/10.1016/b978-0-444-88074-1.50009-3

	Solving String Problems on Graphs Using the Labeled Direct Product
	Abstract
	1 Introduction
	1.1 Conceptually Simpler and More Efficient Algorithms
	1.2 Simple Solution to an Open Problem
	1.3 Solutions to New Problems
	1.4 Optimality under Conditional Lower Bounds
	1.5 The Full Complexity Picture of LRSP
	1.6 Related Work on SMLG
	1.7 Notation and Preliminaries

	2 The Labeled Direct Product
	2.1 Definition and Basic Properties
	2.2 Optimal Algorithms for DAGs

	3 Optimal Algorithms for General Graphs
	3.1 LCSP and MSP
	3.2 LRSP

	4 Hardness
	5 LRSP on Undirected Graphs
	6 Conclusions and Future Work
	Acknowledgements
	References

