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Abstract

The demand for high level of safety and superior quality in agricultural products is of prime

concern. The introduction of new technologies for supporting crop management allows the

efficiency and quality of production to be improved and, at the same time, reduces the envi-

ronmental impact. Common strategies to disease control are mainly oriented on spraying

pesticides uniformly over cropping areas at different times during the growth cycle. Even

though these methodologies can be effective, they present a negative impact in ecological

and economic terms, introducing new pests and elevating resistance of the pathogens.

Therefore, consideration for new automatic and accurate along with inexpensive and efficient

techniques for the detection and severity estimation of pathogenic diseases before proper

control measures can be suggested is of great realistic significance and may reduce the likeli-

hood of an infection spreading. In this work, we present a novel system-theoretic approach

for leaf image-based automatic quantitative assessment of pathogenic disease severity

regardless of disease type. The proposed method is based on a highly efficient and noise-

rejecting positive non-linear dynamical system that recursively transforms the leaf image until

only the symptomatic disease patterns are left. The proposed system does not require any

training to automatically discover the discriminative features. The experimental setup allowed

to assess the system ability to generalise symptoms detection beyond any previously seen

conditions achieving excellent results. The main advantage of the approach relies in the

robustness when dealing with low-resolution and noisy images. Indeed, an essential issue

related to digital image processing is to effectively reduce noise from an image whilst keeping

its features intact. The impact of noise is effectively reduced and does not affect the final

result allowing the proposed system to ensure a high accuracy and reliability.

Introduction

The occurrence of plant diseases cause severe threats to global food security and significant

economic losses in yeld and quality as well as affecting agricultural industry all around the

world [1].

A plant is said to be healthy when it is able to carry out its physiological functions to the

best of its genetic potential. When this ability of the plant is continuously disturbed by either a
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pathogenic organism or an adverse environmental factor results in an abnormal physiological

process that inhibits the normal activities of the plant. This interference with an essential phys-

iological or biochemical system of the plant induces characteristic symptoms or pathological

conditions. Initially, the infection is specifically confined to a few plant cells and is not visible.

Soon, however, the reaction becomes widespread and affected parts of the plant develop visible

or otherwise measurable adverse changes (symptoms), which reflect the amount of disease in

the plant [2]. Hence, severity estimation of plant disease is an important procedure to measure

the degree of disease and thus can be used to recommend treatment and predict yield, helping

to reduce crop losses [3]. Plant diseases can be broadly classified according to the nature of

their primary causal agent, either biotic (infectious) or abiotic (non-infectious). The range of

phytopathogenic (infectious or parasitic) organisms that attack plants is diverse and includes

viruses, mycoplasma, bacteria, fungi, nematodes, protozoa, and parasites, each of which has a

unique mode of pathogenicity, whilst non-infectious (non-parasitic) organisms include unfa-

vorable environmental conditions, nutrient deficiencies, disadvantageous relationships

between moisture and oxygen, and the presence of toxic chemicals in air or soil [4]. In this

study, we consider the case of a specific disease-causing agent due to biotic factors (i.e., those

caused by living components such as pathogens).

Traditionally, detection and severity estimation of plant diseases have been mostly per-

formed by human, indeed visual inspection is still the main approach to determine if plants

have already been infected presenting various symptoms, which can often be divided in: (i)

underdevelopment of tissues or organs (e.g., lack of chlorophyll, leaf malformation), (ii) over-

development of tissues or organs, (iii) necrosis of plant parts (leaf spots, leaf blights, wilts), (iv)

alternations like mosaic patterns and altered colouration in leaves. The most common way to

determine if disease symptoms are present is to seek their presence on leaves, stems, or other

plant parts. However, this method relies on experienced professionals performing continuous

monitoring of plants, which might be time-consuming, prohibitively expensive as well as

prone to considerable risk of error. Plant pathogen detection conventionally relies on molecu-

lar assays, including nucleic acid-based and immunological technologies. Various approaches

such as fluorescence imaging [5], immunofluorescence techniques [6], thermography [7],

chain reactions [8], DNA- or RNA-based affinity biosensor [9], have been often used for qual-

ity evaluation of leaves. However, the problems with these techniques lie in the fact that are

complicated, time-consuming, and constrained to centralised laboratories [1].

Recent technological developments have allowed useful tools to automatically detect the

visually observable patterns (symptoms) that appear on specific parts of a plant, thus helping

in the cultivation of healthy plants and improving their quality [10]. Pathologists usually focus

on pathogenic diseases appearing particularly on leaves, since on this part of the plant a large

amount of information is available allowing an effective diagnosis [11, 12]. Thus, the first step

consists of the plant leaf image acquisition which is typically done using consumer-level cam-

eras in a controlled laboratory environment and the format used for the images is RGB quan-

tised with 8 bits. Once the plant leaf images are captured, both image processing and soft

computing techniques are applied following a pattern recognition system scheme. However,

most estimation methods involve a segmentation step to isolate the symptoms, from which it

is possible to extract the features to be properly processed in order to provide a disease severity

estimation. Interactive and semiautomatic tools are also available, two of which are considered

the most commonly used programs known as Assess [13] and Leaf Doctor App [14] in which

the user is asked to interact with the software to achieve the best results to estimate the disease

severity. Many of these image-based assessment methods for plant diseases such as those

reported in Table 1 rely on the same basic procedure [15, 16]. A comprehensive survey on
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such a methods for detecting, quantifying, and classifying plant diseases from digital images in

the visible spectrum is available in [11].

Studies using visible features imaged with conventional RGB cameras have shown the abil-

ity for automated systems to recognise the presence of known plant disease using machine

learning or deep learning models [25]. In this regard, a large number of studies have been

reported in the literature that employed machine learning-based techniques for plant disease

detection [26]. This approach can aid typical steps of image analysis including background

removal and segmentation of the lesion tissue of the infected plants and discriminative feature

extraction, which are fundamentals to determine the applicability of a machine learning model

whose detection and severity estimation are generally based on [27]. However, these plant dis-

ease severity estimation methods are not fully automatic because they depend heavily on series

of image-processing techniques, such as the threshold-based segmentation of the lesion area

and hand-engineered features extraction [18]. Deep learning algorithms, such as models based

on convolutional neural network (CNN), allow to automatically extract the features directly

from the input images by-passing the background removal, segmentation, and discriminative

feature extraction steps as well as providing more accurate results compared with traditional

methods [28]. These approaches are remarkably powerful for solving classification problems

but some other problems can not be represented in this form (i.e., fine-grained disease severity

estimation). The major drawback is the need for a large set of data to train the models: an accu-

rate generalised prediction (classification among different diseases) requires a large number of

diseased and healthy plant images verified by expert plant pathologists. Furthermore, deep

learning models rely on large neural networks that typically require an expensive training due

to complex data models (possibly aggravated by data augmentation techniques) and the

Table 1. Overview of plant disease severity quantification methods.

Reference Year Methodology Culture

Sibiya and Sumbwanyambe

[17]

2019 Disease severity estimation system based on the use of colour threshold image segmentation and

fuzzy logic inference rules aimed at updating the current algorithm used in the “Leaf Doctor”

application [14].

Maize

Wang et al. [18] 2017 Image-based plant disease severity estimation system that makes use of a deep learning model

fine-tuned by transfer learning to classify the severity into three classes, i.e. early, middle, and

final stages, achieving 90.4% accuracy.

Apple

Atoum et al. [19] 2016 Computer vision system that extracts multi-scale superpixels, where in each scale a Histogram of

Importances feature is used to represent the local characteristics for cercospora leaf spot disease

which are fused for learning a regressor that estimates the rating for each plant image.

Sugar beet

Qin et al. [20] 2016 Lesion segmentation takes place integrating K-median clustering algorithm and linear

discriminant analysis, after that a disease recognition model was built using a support vector

machine (SVM) with the most important 45 feature selected from a total of 129 features and

achieving 94.74% accuracy.

Alfalfa

Barbedo [15] 2014 Image segmentation based on morphological mathematical operations and L�a�b� colour space

representation.

Coffee, passion fruit,

tomato, peanut, corn

Sekulska-Nalewajko and

Goclawski [21]

2011 Disease evaluation using a threshold-based segmentation and a transformation from RGB to HSV

colour space on which a Fuzzy c-means algorithm is applied to group the points into healthy and

diseased clusters.

Pumpkin, cucumber

Sannakki et al. [22] 2011 Disease quantification based on Fuzzy logic. First the images are converted to the L�a�b� colour

space, then pixels are grouped into a number of classes through K-means clustering. Finally, a

Fuzzy Inference System is used for severity estimation, however, no details are provided [11].

Pomegranate

Bock et al. [23] 2009 Semiautomatic approach that first converts the image to the HSI format and then separates the

diseased parts from the rest of the scene by manually selecting the threshold to estimate the

severity making use of the Assess software [13].

Citrus

Weizheng et al. [24] 2008 Lesion detection using a threshold-based segmentation followed by a transformation from RGB

to HSI colour space. Then, the lesion edges are identified using the Sobel operator and a second

threshold is applied on the resulting image.

Soybean

https://doi.org/10.1371/journal.pone.0272002.t001
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strategies learnt by deep learning may be more superficial than they appear [29]. Indeed, the

fine-grained disease severity estimation is much more challenging, as there exist large intra-

class similarity and small interclass variance [30].

The proposed model relies on a highly efficient and noise-rejecting positive non-linear

dynamical system that makes use of an iterative colour discrepancy analysis technique to esti-

mate the severity of pathogenic diseases and the proportion of symptomatic leaf area regardless

of disease type. The main advantages of such an approach are:

1. the proposed system does not require any training to automatically discover the discrimina-

tive features for fine-grained disease severity estimation;

2. the model is robust even when only low-resolution and noisy images are available: the

impact of noise (e.g., signal independent and uncorrelated noise) is effectively reduced and

does not affect the final result;

3. the algorithm is able to detect symptoms belonging to previously unseen conditions, there-

fore it can potentially be applied to automated surveying systems.

The rest of this paper is organised as follows. In the Materials and methods section, we pro-

vide a detailed description of the mathematical model along with its properties, with particular

attention to the transient behaviour and the convergence/divergence of the system. Then, the

experimental results are reported and discussed in the Results section, with particular regard

to the dataset used in the experiments and the experimental setup, parameter tuning, perfor-

mance assessment, noise-rejection property, and computational efficiency of the algorithm.

Finally, conclusions are drawn in the last section.

Materials and methods

The idea behind the algorithm is to apply an iterative refinement technique based on the analy-

sis of colour discrepancy between the points within the leaf area and a target colour that repre-

sents the symptomic areas, if any. Hence, the proposed dynamical system must behave as

illustrated in Fig 1.

1. In the first example, a leaf image with disease symptoms upon pathogen infection has been

provided as input. The output consists of a matrix with some sets of active pixels (by con-

vention an active point has been represented in black, whilst a non-active point has been

represented in white) representing the diseased regions of the leaf. Actually, almost all of

the active points in the output matrix Y ¼ ~X should be superimposable to the visible symp-

toms presented in X .

2. The second example follows the same behaviour presented in the previous example with

the only exception of the input image, which has been corrupted by adding a random

impulse noise with probability p = 10%. The resulting output matrix Y ¼ ~X should be simi-

lar to that of the previous example (i.e., the noise does not affect the accuracy of the disease

severity estimation).

3. In the third example, a leaf affected by impulse noise in healty condition has been provided

as input. In this case, the output matrix Y ¼ ~X should be almost empty.

Mathematical model

Positive dynamical systems are an important class of systems that arise naturally in many fields

of science where the state-variables represent quantities that can only be positive (or at least
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Fig 1. Desired output in different situations: The first column represents the initial (artificially created) image, whilst the second one

represents the desired output matrix (active pixels in black). A, B: examples of correct detection when the input is a leaf image with

disease symptoms upon pathogen infection (the second example considers a noisy input image). C: example of no detection when the input

is a leaf image affected by impulse noise in healthy condition.

https://doi.org/10.1371/journal.pone.0272002.g001

PLOS ONE A system-theoretic approach for plant disease severity estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0272002 July 26, 2022 5 / 24

https://doi.org/10.1371/journal.pone.0272002.g001
https://doi.org/10.1371/journal.pone.0272002


non-negative) in value at all times. The explicit definition of a positive system is that its state

and output are always non-negative for any non-negative initial state and any non-negative

input. This non-negative restriction on system variables provides some remarkable outcomes

that are available only for positive dynamical systems [31]. This section aimed at highlighting

the main idea of the proposed system-theoretic approach for automatic disease severity estima-

tion, which relies on a recursive algorithm based on a positive non-linear dynamical system

whose evolution depends on the input tensor representing the leaf image to be analysed. Given

an input RGB image X 2 Rn�n�3

þ
, it may be convenient adopting an operator of the form

~X ¼ FðXÞ; ð1Þ

which yields a Boolean matrix ~X 2 f0; 1gn�n representing the affected area of the leaf image.

Hence, the operator F must be chosen to assess the presence of a specific disease in the initial

template image. To simply explain the idea, consider a simple (i.e., non dynamic) thresholding

function. A simple option to seek the presence of visible signs and symptoms of the infectious

disease is to consider a thresholding-based segmentation method in order to approximate the

area of the diseased leaf on the basis of the different intensities or colours in the image:

~X ¼
1 if k tL k�k Xi;j;: k�k tH k; t 2 R3

þ

0 otherwise

8
<

:
ð2Þ

where the threshold value is calculated according to a specific function. However, the approach

based on this choice for the operator in Eq (1) is clearly not noise-rejecting, since noise inhibits

the localisation of the threshold value. Indeed, to avoid a misleading diagnosis, noisy pixels

that are present on the leaf region of the image should not provide a positive contribution to

the severity estimation. Thus, it has been pursued an approach that rejects noise under the fol-

lowing assumption: the disease severity due to “isolated spots” is not as significant as that of

cluster of points, whether they are wide “stripes” or “island”, even if the number of isolated

spots is very high.

We assume that the leaf image provided as input, has already undergone a preliminary pro-

cessing and that therefore contains the extracted region of interest. Thus, the behaviour illus-

trated in Fig 1 can be achieved by means of the proposed method which, in view of its iterative

nature, it only requires to emphasise the presence of cluster points in diseased regions that dif-

fer in colour from those present in healthy regions. Hence, let Ni,j be the square neighbour-

hood of the generic point (i, j) within a “radius” δ of integer amplitude grater than zero

Ni;j ¼ fh; l :k h � i k� d; k l � j k� d; h; l 2 Zg ð3Þ

then, given a varying (i.e., tunable) tolerance x 2 Rþþ such that ξ< 1, the criterion used to

determine whether a point x 2 R3

þ
is subject to the pathological condition is defined as follows

n ¼
�x
k �x k

�
�xd
k �xd k

�
�
�
�

�
�
�
� � x ð4Þ

where �x represents the average of the RGB component vectors in the neighbourhood Ni,j of

the observed point (i, j) at time instant k

�x ¼
1

nðNÞ

X

h;l2Ni;j
Xh;l;:ðkÞ ð5Þ

whilst �xd 2 R
3

þ
identifies the average colour components of the pathological condition.
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Once this condition is met, the image is processed according to the updating equation

Xi;j;:ðkþ 1Þ ¼ Xi;j;:ðkÞ þ tri;jð�xd � Xi;j;:ðkÞÞ ð6Þ

where Xi;j;:ðkÞ 2 R
3

þ
8k 2 f0; 1; . . . ;K � 1g represents the RGB vector of the observed point

at the specific time instant k, the sampling time is defined by τ, and ρ governs the speed of con-

vergence. Precisely, the function ρ represents a measure of how quickly the system can reach

the steady-state condition and depends on the colour discrepancy between the vectors x and

�xd (i.e., how far the observed point is from the pathological condition) which is defined through

the following expression:

n ¼
x
k x k

�
�xd
k �xd k

�
�
�
�

�
�
�
�: ð7Þ

Thus, given the measure of discrepancy ν, it is possible to calculate the speed of convergence

ρ as follows:

r ¼
1

1þ anp
ð8Þ

where ða; pÞ 2 Rþþ are two coefficients to be set appropriately in order to meet the desired

rate of convergence, as described in the Parameter tuning section.

At the final step, to achieve a Boolean image as illustrated in Fig 1, all pixels that have been

affected by changes are set to one (i.e., all the labeled pixels) whilst pixels that have not been

modified in any way are set to zero. The saturation function is defined as follows. Let ~X be the

resulting real-valued tensor having the same size as X , then the piecewise-defined function Y :

R3 ! f0; 1g is called saturation function and is defined as

Y xð Þ ¼
1 if x has been modified;

0 otherwise:

(

ð9Þ

Thus, through the function defined above, it is possible to generate the Boolean matrix ~X of

dimensions n × n, by means of the following computation for all i, j

~Xi;j ¼ YðXi;j;:Þ: ð10Þ

To estimate the disease severity, we consider the area (relative or absolute) of the sampling

unit (leaf) showing symptoms of disease expressed as a percentage or proportion [3, 32] of

affected leaf area. The final score is performed on the number of pixels with value 1 (active),

which is compared to the total amount of points within the leaf area. Hence, denoting by S(S)

and Sð~XÞ the number of active points in the respectively matrices, the disease severity is

defined as

E Xð Þ ¼
Sð~XÞ
SðSÞ

: ð11Þ

The rationale of the core of the procedure is the following. Let X be the input RGB image

and assume that it represents a diseased leaf, hence in correspondence of a visible symptom,

the Eq (4) would be satisfied if the discrepancy between the normalised vectors x and �xd is less

than or equal to the tolerance ξ. Fig 2, illustrates the maximal closed cone containing all

accepted vectors in the normalised RGB colour space.
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Actually, this is valid not only in correspondence of a visible symptom, but also in the near-

est proximity of a visible symptom due to the mean filtering described in Eq (5), which reduces

the amount of intensity variation between neighbouring points depending on the size of the

square neighbourhood N defined through an integer radius δ> 0. Note that, even though the

average of the RGB component vectors in the neighbourhood has been considered to test the

pathological condition criterion, no point in the image has been replaced by this value, thus

preserving image details. Then, assuming that the Eq (4) is satisfied, the speed of convergence

can be computed by means of the Eqs 7 and 8. In particular, the Eq (7) measures the colour

discrepancy between the observed point x (not to be confused with �x) and �xd, which represents

the colour of the pathological condition. Hence, through the Eq (8) it is possible to calculate the

function ρ that affect the extent to which the observed three-dimensional vector x converges to

that representing the pathological condition �xd. Note that, in view of the two aforementioned

equations, the greater the difference between the RGB vectors of the observed point and the

healthy condition, the faster the convergence of the observed point to the pathological condi-
tion. Indeed, this behaviour is ensured by the dynamic Eq (6), which enables the vector x to

Fig 2. Maximal closed cone containing all accepted vectors in the normalised RGB colour space. The example shows a closed cone defined by the

vector �xd and a tolerance ξ = 0.1.

https://doi.org/10.1371/journal.pone.0272002.g002
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asymptotically converge towards �xd, usually in few iterations. Once the system has reached the

steady-state condition (i.e., the condition in which the state variable is constant in spite of

ongoing procedures that strive to change it) it is possible to estimate the disease severity

through the Eqs (10) and (11).

To exemplify the algorithm behaviour, suppose that the input image X is that shown in Fig

3(A). Then, the result of the dynamic algorithm after the transformation to Boolean by means

of the operator defined in Eq (1), which leads to the matrix ~X, is shown in Fig 3(C). In this

example, the system has estimated a disease severity equal to EðXÞ ¼ Sð~XÞ=SðSÞ ¼ 0:0768.

The reader is invited to take a look at the video included in the additional material S1 Video to

see the time evolution of the dynamic algorithm.

Algorithm Disease severity estimation
Input: leaf image X in RGB colour space.
Parameters: Number of steps K, positive real constants ξ < 1, τ, α,

and p, vector �xd, integer neighbourhood amplitude δ > 0
(which implies the size of the set N).

Fig 3. Dynamic algorithm behaviour. (A) Input image representing a grape leaf affected by Black Rot disease. (B) The

resulting image from the application of the dynamic algorithm (representation of the pixels modified by the iterative

procedure during the transient state until the steady-state condition has been reached). (C) Final result after

binarisation.

https://doi.org/10.1371/journal.pone.0272002.g003
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Outputs: Disease severity estimation EðXÞ.
1. Set the initial condition Xð0Þ≔X
2. for k = 0, k < K, k = k + 1
for each point (i, j) belonging to the leaf area do
compute the average of the RGB component vectors in the neighbour-
hood N i;j according to Eq (5)

�x ¼
1

nðN Þ

X

h;l2N i;j

Xh;l;:ðkÞ

if the Criterion 4 k
�x
k �x k

�
�xd
k �xd k

k� x is satisfied then

compute the rate of convergence (speed) according to Eqs 7 and 8

n ¼
x
k x k

�
�xd
k �xd k

� ��
�
�
�

�
�
�
�

r ¼
1

1þ anp

compute the updated value according to Eq (6)

Xi;j;:ðkþ 1Þ ¼ Xi;j;:ðkÞ þ t ri;jð�xd � Xi;j;:ðkÞÞ

end if
end for

end for
3. Convert the real-valued matrix to Boolean through the operator Θ as

defined in Eq (9):
for each point (i, j) do

~Xi;j ¼ YðXi;j;:Þ

end for
4. Compute the disease severity as in Eq (11) EðXÞ ¼ Sð~XÞ=SðSÞ, where S

represents the Boolean matrix that identifies the leaf area of the
initial RGB image X through pixels with value 1 (active).

Properties of the system. In this section we analyse the algorithm based on the recursive

Eq (6), to better understand its behaviour. First of all, the positive parameters α and p in the

procedure need to be tuned to define appropriately how the function ρ should behave. Let

v1; v2 2 R
3

þ
be two vectors to be compared, then it is possible to determine a metric defined on

the normalised RGB colour space in order to find out the maximum differences along any

coordinate dimension between two vectors (i.e., the maximum distance). Since the normalised

RGB colour space is described by treating the component values as ordinary Cartesian coordi-

nates in a Euclidean space that represents a cube of non-negative values such that

xi 2 Rþ : xi � 1 for i ¼ f1; 2; 3g, it is convenient to consider a L2 norm. Hence, the real-val-

ued function ν described in Eq (7) is positive and bounded above
ffiffiffi
3
p

.

Property of convergence/divergence. Let us now consider just a point of a segmented

RGB image X 2 Rn�n�3

þ
representing a symptomatic leaf. Then the presence of diseased

regions in the image give rise to a monotone system, as described next. Let us group in a vector

xðkÞ 2 R3
the RGB component values Xi,j,: of the (diseased) point (i, j) in the image X .
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Then, the system evolves as follows:

xðk þ 1Þ ¼ xðkÞ þ trð�xd � xðkÞÞ ð12Þ

where

r ¼
1

1þ anp

and �xd identifies the average colour components of the pathological condition. We further

assume that the parameter τ representing the sampling time is chosen so as to guarantee that

1 � tr � 0; 8 r 2 Rþ : r � 1. Then, the vector x might be attracted towards the vector �xd,
and as such the dynamics of the system might lead to the filling of all diseased regions by acting

on all the vectors that satisfy the criterion expressed in the Eq (4).

Let us consider the previous updating Eq (12) in the following form

x1ðkþ 1Þ

x2ðkþ 1Þ

x3ðkþ 1Þ

2

6
4

3

7
5 ¼

1 � tr 0 0
0 1 � tr 0
0 0 1 � tr

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
matrix P

x1ðkÞ
x2ðkÞ
x3ðkÞ

2

4

3

5þ tr

�xd1

�xd2

�xd3

2

4

3

5: ð13Þ

Hence, it can be easily seen that the non-negative matrix P≽O appearing in the equation

above is positive semidefinite and diagonal, which implies that the matrix is also symmetric

(i.e., P = P>). Therefore, P is obviously a scalar matrix which can be viewed as a scalar multiple

of an identity matrix. Note that multiplication by the identity matrix is equivalent to (scalar)

multiplication by 1, and that multiplication by a scalar matrix (1 − τρ)I is equivalent to multi-

plication by the scalar (1 − τρ) [33].

Moreover, since the matrix P has non-negative off-diagonal entries Pi,j� 0 (8i6¼j), it is also

a Metzler matrix. If the previous assumption holds, then the matrix P is called Schur stable,

since all its eigenvalues lie inside the unit circle, or equivalently its spectral radius (i.e., the

eigenvalue with maximum modulus) is non-negative, real, and equal to 1 − τρ. Furthermore,

the term 1 − τρ serves to inhibit potential instability of the system because as x approaches �xd,
1 − τρ approaches 0, ensuring thus a unique steady state that is globally asymptotically stable

(monostability). Fig 4(A) illustrates the transient behaviour considering a point within the

maximal closed cone defined by the vector �xd (i.e., the point satisfies the pathological condition

in Eq (4)), whilst Fig 4(B) shows the distance between the two vectors represented by the norm

of their difference.

Results

Extensive experiments have been carried out to assess the performance and the effectiveness of

the proposed algorithm, which are described in this section with particular regard to the data-

set used in the experiments and the experimental setup, parameter tuning, performance assess-

ment, noise-rejection property, and computational efficiency of the algorithm.

Dataset and experimental setup

The dataset used to assess the performance of the proposed system, is based on the unmodified

colour version of grape, peach, and apple leaf images in the PlantVillage dataset [34], which is

worldwide shared for research purposes. Precisely, it consists of images of single leaves

removed from their plants with inoculated or naturally occurring disease. The dataset used for

evaluation purposes is composed of: (i) 2541 apple leaf images divided in 1645 healthy leaves

and 896 leaves affected by various pathogenic diseases, (ii) 2657 peach leaf images of which
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2297 leaves belong to the diseased class and the rest to the healthy class, (iii) 4063 grape leaf

images of which 3640 are diseased leaves exhibiting three different conditions and 423 are

healthy leaves, and (iv) 2152 potato leaf images of which 2000 samples present disease symp-

toms upon two different infectious pathogens whilst the rest are healthy samples. The condi-

tions have been classified by expert plant pathologists by means of standard phenotyping

approaches, therefore, only expertly identified leaves are present in the dataset. Leaf images

have been captured through a twenty-megapixel camera (Sony DSC—Rx100/13 20.2 Mpx)

using the automatic mode and collecting from four to seven different orientations to compen-

sate for directional lighting variation. Indeed, all the images have been taken outside under

nautral light in several different conditions (e.g., sunny, mostly/partly sunny, cloudy, and

mostly/partly cloudy). The version of the dataset used in this study has been scaled down to

256 × 256 pixels and rotations of the same leaf have been removed [35]. Table 2 summarises

Fig 4. Transient behaviour. (A) A vector x (healthy) converges in norm to �xd (diseased). (B) Distance between the two vectors represented by the norm

of their difference.

https://doi.org/10.1371/journal.pone.0272002.g004

Table 2. List of crops and their disease status used in the experiments.

Culture Diseased Healthy

Apple (3172) Pathogen: fungi

Gymnosporangium juniperi-virginianae (276)

Venturia insequalis (630)

Botryospaeria obtuse (621)

(1645)

Peach (2657) Pathogen: bacteria

Xanthomonas campestris (2291)

(360)

Grape (4063) Pathogen: fungi

Guignardia bidwellii (1180)

Phaeomoniella spp. (1384)

Pseudocercospora vitis (1076)

(423)

Potato (2152) Pathogen: fungi

Alternaria solani (1000)

Pathogen: mould

Phytophthora Infestans (1000)

(152)

https://doi.org/10.1371/journal.pone.0272002.t002
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the set of images used to test the system in disease detection configuration, whilst Fig 5 illus-

trates some sample images of lesions on grape leaf caused by various diseases used in the exper-

iments (for more examples, see S1 File).

Hence, every single sample in the dataset as defined in Table 2 has undergone the test pro-

cedure of the system which calculate the percentage of infection over the leaf surface as in the

Eq (11). Finally, the decision with respect to the estimated severity of the disease is as follows.

Given a set of disease severity estimations x, the system has to determine if each element of the

set belongs to the healthy group or not. Formally, the classification problem consists of deter-

mining if a disease severity estimation xi belongs to the class of the null hypothesisH0 or to the

alternative hypothesis H1:

ðxi;cÞ ¼
H0 if xi > c;

H1 otherwise:

(

ð14Þ

Precisely, given a threshold ψ, all disease severity estimation xi lower (respectively, greater)

than ψ lead to the rejection (acceptance) ofH0 [36]. Therefore, whether the hypothesis is

accepted or not, the test is prone to two kinds of error: (i) false acceptance rate (FAR), that rep-

resents the probability of accepting the null hypothesis when input xi is below the threshold

Fig 5. Examples of lesions on grape leaf caused by various infectious diseases. (A) Black rot (Guignardia bidwellii),

(B) Leaf blight (Pseudocercospora vitis), (C) Esca (Phaeomoniella spp.), and (D) Downy mildew (Plasmopara viticola).

https://doi.org/10.1371/journal.pone.0272002.g005
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(type-I error), and (ii) false rejection rate (FRR), that represents the probability of rejecting the

null hypothesis when input xi is above the threshold (type-II error). The FAR and FRR are

functions of the system threshold ψ and are closely related because the increase of the one

implies the decrease of the other. Thus, it is not possible to decrease both these errors at the

same time by varying the threshold value and therefore the system threshold ψmust be

adjusted for the given application considering the trade-off between accuracy and false posi-

tives. The separation between the two classes, indicates the system ability to distinguish

between diseased and healthy leaf samples. Indeed, the separation also provides a hint on the

threshold point that maximises the variance between the two classes [31]. Once the threshold

has been set, the reliability and validity of the scheme are determined by common measures

that are used to evaluate the classification accuracy and effectiveness. In the presented experi-

mental results, each disease has been treated separately leading thus to a dichotomous binary

classification problem, where the labels are P (healthy) and N (diseased) and the predictions of

a classifier are summarised in a 2 × 2 contingency table known as confusion matrix [37]

(expanded in Table 3):

M ¼
TP FN

FP TN

" #

ð15Þ

which completely describes the outcome of the classification task. This contingency table may

be expressed using raw counts of the number of records from class times each predicted label

is associated with each actual class. As depicted in Eq (15), the matrix M reports:

• true positive (TP), the probability of correctly accepting the null hypothesis;

• true negative (TN), the probability of correctly rejecting the null hypothesis;

• false positive (FP), the probability of falsely rejecting the null hypothesis;

• false negative (FN), the probability of falsely accepting the null hypothesis.

Based on the entries in the confusion matrix, the total number of correct predictions carried

out by the model is TP þ TN, whilst the number of incorrect predictions is FP þ FN [38].

Therefore, if

M ¼
nþ 0

0 n�

" #

ð16Þ

where obviously nþ ¼ TP þ FN and n� ¼ FP þ TN, then the classification has been perfectly

Table 3. Example of confusion matrix for a dichotomous binary classification problem.

Predicted class

P N Total

Actual class P TP FN (Type-II error) TP + FN
N FP (Type-I error) TN FP + TN

Total TP + FP FN + TN

https://doi.org/10.1371/journal.pone.0272002.t003
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done. Conversely, if the confusion matrix is as follows

M ¼
0 nþ

n� 0

" #

ð17Þ

it represents the worst case (perfect misclassification).

Several measures have been defined to assess the quality of a prediction [39], aimed at con-

veying into a single figure the structure of M. The most used functions are briefly described as

follows [36]. Precision, also known as positive predictive value (PPV) counts the true positives,

how many samples are properly classified within the same cluster (closeness of the measure-

ments to each other)

PPV ¼
TP

TPþ FP
: ð18Þ

Sensitivity also known as recall or true positive rate (TPR) refers to the proportion of the

samples properly classified as true positives out of the actual number of true positives

TPR ¼
TP

TP þ FN
: ð19Þ

F-measure combines precision and recall in a single metric, indeed, it is the harmonic

mean of precision and sensitivity and as a function of M, has the following form:

F1 ¼ 2
PPV � TPR
PPV þ TPR

¼
TP

TP þ
1

2

ðFN þ FPÞ
ð20Þ

where the worst case (F1 = 0) is achieved for TP = 0, whilst the best case (F1 = 1) is reached for

FN = FP = 0.

Accuracy represents the ratio between the correctly predicted instances and all the instances

in the dataset, whose range is between 0 (worst case) and 1 (best case):

ACC ¼
TP þ TN

TP þ TN þ FPþ FN
: ð21Þ

Matthews correlation coefficient is the measure of the quality of binary (two-class) classifi-

cations:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð22Þ

it is a correlation coefficient between the actual and predicted binary classifications and it

returns a value in the range -1 (worst case) and 1 (best case).

Parameter tuning

Since the proposed approach for matching is based on a non-linear parameter-dependent sys-

tem, it is very important to set its internal parameters in order to maximise the system perfor-

mance. The parametrs to be fixed are: α, ρ, and ξ. Firstly, we recall that the parameter ρ is

calculated as in Eqs (7) and (8). We proved in the previous section that the parameter ν spans

all the real values in the closed set ½0;
ffiffiffi
3
p
�. Thus, it is possible to test the behaviour of the func-

tion r 2 Rþ : 0 � r � 1 described in Eq (8) based on different values of the parameter pair

ða; pÞ 2 Rþþ, however, it should consider that greater the colour discrepancy between the
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vectors x and �xd (i.e., the observed point is far away from the pathological condition), smaller

the value of ρ, and vice versa. Indeed, since this is a non-linear monotonic strictly positive

function [40] and bounded from above by 1, the higher values should be achieved when the

observed point is in proximity of diseased region. Conversely, when a deep mismatch between

the two vectors is observed, the function should achieve a low (strictly positive) value, whilst in

between the two cases the function should behave as an inverse S-shaped softening function

with the point of inflection to be in the middle of the domain. Hence, the desired behaviour is

ensured for α> 1. Let us consider the following function

r ¼
1

1þ anp
ð23Þ

where n : Rþþ ! ½0;
ffiffiffi
3
p
�, thus the problem is to find a parameter pair ða; pÞ 2 Rþþ such that

when n ¼
ffiffi
3
p

2
we get r ¼ 1

2
. Hence, by substitution we obtain

1

2
¼

1

1þ a

ffiffiffi
3
p

2

� �p ) log ffiffiffi
3
p

2

a� 1 ¼ p
ð24Þ

and fixing the numerical value of the constant α> 1 therefore defines the other one in the

proper way. In fact, considering the last equation, if 0< α< 1 we get negative values for p
which yields curves that rise rather than fall. The desired behaviour of the monotonic function

is illustrated in Fig 6.

Estimation of the pathological condition vector. The vector �xd that better approximates

the desired one, which would be used to test the pathological condition of a point (i, j) in prox-

imity of �xd, should be set considering the distributions of healthy and diseased regions of sev-

eral digital leaf images and calculating common statistical parameters, e.g., mean, variance,

and median. However, this approach may be time-consuming and unfeasible due to the lack

of samples. From that, it follows that it is possible to find experimentally the most suitable

Fig 6. Example of several curves of the monotonic function ρ using several different parameters.

https://doi.org/10.1371/journal.pone.0272002.g006
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value for each spot-based disease via grey histogram analysis. Indeed, the proposed approach

relies on the identification of some diseased regions in order to compute the RGB vector we

are looking for. Firstly, to accomplish this goal, we consider the average grey level from the

grey-scale leaf image G 2 Rn�n
. Hence, let A � Z2

be the set of points belonging to the leaf

area, then

�g ¼
1

nðAÞ

X

i;j2A
Gi;j: ð25Þ

Thus, the points that their gray level deviates from �g by more than a threshold t, are

assumed to be lesion spots. This is consistent with the process of disease appeared, which rep-

resents the evolution of pathological changes of the leaf from green to other colours. Note that

this kind of approach is not suitable to find all the lesions on the leaf surface. Indeed, this

aspect is not required at all, since we are only interested in finding a suitable RGB vector that

represents well enough the pathological condition. Hence, the values of the vector components

are not critical if we consider an RGB triple far enough away from the colour representing the

healthy condition in direction of that of the pathological condition. For instance, selecting the

marked points ~p defined by their corresponding ones in the grey image G under the following

condition:

~p ¼ Xi;j;: , Gi;j � �g � t ð26Þ

has worked satisfactorily for all the tested cases.

Performance assessment

As pointed out in [15], a fair comparison between different approaches would require an inde-

pendent database that includes a wide selection of diseased crops with the related severity esti-

mation properly labelled by expert pathologists, so as to be able to draw meaningful and

comprehensive conclusions. This undertaking would be very demanding and should involve

many people from different disciplines. The lack of such a database means that a truly direct

comparison is not possible. However, meaningful conclusions can still be drawn if the analysis

is performed in a more relative, less categorical context. Therefore, in order to investigate and

to assess the performance of the proposed detection method that is agnostic to the type of dis-

ease, the dataset has been split into several different disease-healthy binary sets, each one con-

sidering only one specific disease. Fig 7 reports the confusion matrices for the proposed

disease detection method. Note that testing the proposed system with several variations of the

original dataset do not affect the results, since the proposed algorithm is invariant to rotation

and translation.

Accuracy and F-score computed on confusion matrices have been (and still are) among the

most popular adopted metrics in binary classification tasks. However, these statistical mea-

sures can show over-optimistic results, especially on imbalanced datasets as discussed in [39,

41]. Hence, among of all the parameters previously described, MCC is the only one that takes

into account true and false positives and negatives, and is generally regarded as a balanced

measure which can be used even if the classes are of very different sizes [42]. However, for the

sake of completeness, we have summarised in Table 4 all the main measures. Actually, the

results indicate that the algorithm performs incredibly well in localising symptomatic regions

for disease detection achieving an average accuracy of 98.7% and thus demonstrating the effec-

tiveness of the proposed system. Despite the inability to ground-truth boundaries due to sub-

jectivity, the proposed algorithm has been consistently robust quantifying disease lesion from

symptomatic leaf images. In Fig 8 it has been reported a statistical comparison between all the
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pathogenic diseases in terms of severity estimation, whilst the Table 4 lists the statistics of dis-

ease severity for each disease dataset.

Finally, we tested the system for healthy and diseased classification combining all diseases

for each crop affected by more than one infectious pathogen (i.e., apple, grape, and potato

crops). The experimental results are analysed in terms of receiver operating characteristic

Fig 7. Confusion matrices for the proposed disease detection method.

https://doi.org/10.1371/journal.pone.0272002.g007

Table 4. Summary of the experimental results in terms of disease detection and disease severity estimation for each disease dataset.

Performance metrics Disease severity statistics

Culture Disease Accuracy Precision Recall F1-score MCC Mean Std dev Max Min

Apple Black Rot 0.9792 0.9968 0.9567 0.9763 0.9585 0.0117 0.0142 0.1237 0.0000

Cedar Apple Rust 0.9645 1.0000 0.8758 0.9338 0.9134 0.0183 0.0144 0.0717 0.0001

Peach Bacterial Spot 0.9849 0.9852 0.9974 0.9912 0.9387 0.0156 0.0187 0.3479 0.0000

Grape Black Rot 0.9917 0.9907 1.0000 0.9953 0.9586 0.0344 0.0237 0.1309 0.0000

Esca 0.9987 1.0000 0.9986 0.9993 0.9922 0.0680 0.0371 0.2287 0.0015

Leaf Blight 0.9860 0.9851 0.9991 0.9920 0.9364 0.0305 0.0231 0.1373 0.0000

Potato Early Blight 0.9991 0.9990 1.0000 0.9995 0.9930 0.0706 0.0367 0.2410 0.0000

Late Blight 0.9944 0.9950 0.9990 0.9970 0.9589 0.0322 0.0347 0.2145 0.0000

Total average values 0.9873 0.9940 0.9783 0.9856 0.9562 0.0352 0.0253 0.1870 0.0002

https://doi.org/10.1371/journal.pone.0272002.t004
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(ROC) and equal error rate (EER), which represent respectively the trade-off between FAR

and FRR when the threshold varies and the intersection point for which rejection and accep-

tance errors are equal. In particular, the system achieved an EER equal to 0.0405, 0.0073, and

0.0068 for apple, grape, and potato cultures, respectively, whilst the ROC curves are obtained

by plotting GAR = 1 − FRR against FAR, as illustrated in Fig 9.

Noise robustness. To conduct experiments on noisy leaf images and demonstrate the

robustness of the dynamic algorithm with respect to noise, the system has been tested in noisy

conditions. In particular, the impulse noise is a kind of noise which can have many different

origins, often due to transmission errors, faulty memory locations, or timing errors in analog-

to-digital conversion [43].

The impulse noise model has been defined through the following probability density func-

tion:

pðzÞ ¼
Pa for z ¼ a
Pb for z ¼ b
0 otherwise:

8
><

>:
ð27Þ

If b> a, the intensity level b will appear as a bright spot in the image. Conversely, the inten-

sity level a will appear as a dead spot. If either Pa or Pb is zero, the impulse noise is called uni-

polar. If neither probability is zero, and especially if they are approximately equal, impulse

noise values will resemble salt-and-pepper grains randomly distributed over the image [44].

Therefore, in the case of the RGB colour space, such a noise is always independent, randomly

Fig 8. Disease severity statistical analysis through the boxplot of data results from each disease dataset.

https://doi.org/10.1371/journal.pone.0272002.g008
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distributed, and uncorrelated with respect to each colour component. We can distinguish two

cases, (i) the first one arises when the image affected by the noise represents a leaf in pathologi-

cal condition and (ii) the second one considers the case of an image with no diseased regions

(healthy leaf). However, the second case is more challenging with respect to the first one, since

the presence of noise in a healthy leaf image may lead to a type-I error (false positive) in the

detection of the disease, whilst this is not a problem at all in the case of a symptomatic leaf

image. Thus, the experiments to test the noise robustness of the system have been conducted

considering only the dataset containing healthy leaves, an example of which is depicted in

Fig 10. Table 5 reports the results of noise-rejection experiment and shows that the perfor-

mance of the system is not that much degraded: even in presence of noise, the system is able to

correctly detect a healthy leaf with an accuracy equal to 97.4%, 94.1%, and 91.5% for p = 5%,

p = 10%, and p = 15%, respectively. Thus, the results presented in this section demonstrate the

validity and effectiveness of the proposed system-theoretic approach for image-based infec-

tious plant disease detection and severity estimation regardless of pathogenic disease type.

Conclusion

In this paper, a novel system-theoretic approach for automatic image-based infectious plant

disease detection and severity estimation has been investigated. The system relies on a highly

efficient and noise-rejecting positive non-linear dynamical system that makes use of an itera-

tive colour discrepancy analysis technique to estimate the severity of pathogenic diseases and

the proportion of symptomatic leaf area regardless of disease type. In particular, the idea that

characterises the algorithm is to apply an iterative refinement technique based on the analysis

of colour discrepancy between the points within the leaf area and a target colour that repre-

sents the symptomic areas, if any. A noticeable advantage of such an approach is that the

model does not require any training to automatically discover the discriminative features for

fine-grained disease severity estimation. In addition, a peculiar property of the system relies in

the robustness when dealing with low-resolution and noisy images. Indeed, an essential issue

Fig 9. System performance analysis through receiver operating characteristic (ROC) curves obtained using the

proposed approach for healthy and diseased classification over the apple, grape, and potato culture datasets.

https://doi.org/10.1371/journal.pone.0272002.g009
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related to digital image processing is to effectively reduce noise from an image whilst keeping

its features intact. The impact of noise (e.g., signal independent and uncorrelated noise) is

effectively reduced and does not affect the final result allowing the proposed systems to ensure

a high accuracy and reliability. Moreover, the proposed experimental setup allowed to assess

Fig 10. Example of healthy leaf image affected by impulse noise with a probability p = 15%.

https://doi.org/10.1371/journal.pone.0272002.g010

Table 5. Summary of the noise-rejection experiment results in terms of accuracy and error rate on the healty

leaves of the whole dataset.

Noise probability Performance metrics

Accuracy TP FP Error rate

p = 5% 0.9740 412 11 0.0260

p = 10% 0.9409 398 25 0.0591

p = 15% 0.9149 387 36 0.0851

https://doi.org/10.1371/journal.pone.0272002.t005
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the system ability to generalise symptoms detection beyond any previously seen conditions

achieving excellent results, even in adverse conditions (e.g., in presence of significant noise).

This kind of flexibility is not present in automatic methods, which usually have to deal with

the problem based only on the training data and in the fine-tuning of area measurement. A

further advantage of this algorithm compared to those in the literature is that its implementa-

tion is very simple and straightforward as it is entirely based on a simple non-linear mathemat-

ical model and some ad-hoc rules. This also makes it suitable for implementation in resource-

constrained devices. Finally, even though this study is a first step towards a fully automatic

diagnosis of plant disease severity, the model has proven to be highly accurate and robust and

the experimental results are very promising also allowing the potential to provide new applica-

tions for infectious disease screening. Indeed, in addition to monitoring epidemics, an accu-

rate assessment of infectious diseases severity is also critical for studies of genetic resistance,

germplasm evaluation, and breeding.
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