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Automated fact-checking (AFC) systems exist to combat disinformation, however their complexity usually
makes them opaque to the end user, making it difficult to foster trust in the system. In this paper, we introduce
the E-BART model with the hope of making progress on this front. E-BART is able to provide a veracity
prediction for a claim, and jointly generate a human-readable explanation for this decision. We show that
E-BART is competitive with the state-of-the-art on the e-FEVER and e-SNLI tasks. In addition, we validate
the joint-prediction architecture by showing 1) that generating explanations does not significantly impede
the model from performing well in its main task of veracity prediction, and 2) that predicted veracity and
explanations are more internally coherent when generated jointly than separately. We also calibrate the
E-BART model, allowing the output of the final model be correctly interpreted as the confidence of correctness.
Finally, we also conduct and extensive human evaluation on the impact of generated explanations and observe
that: explanations increase human ability to spot misinformation and make people more skeptical about
claims, and explanations generated by E-BART are competitive with ground truth explanations.
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1 INTRODUCTION
Automated fact-checking (AFC) makes use of natural language processing (NLP) techniques to
determine the veracity of a claim. The problem is defined in the following way: given a statement
(claim) and some evidence, determine whether the statement is true with respect to the evidence
[32]. This is a challenging task for a human, let alone an autonomous system [9]. However, AFC
systems are able to approximate this process of evidence retrieval and synthesis with some degree
of success [32, 37]. The benefits and applications of an AFC system are numerous. The problem
of disinformation is not new, however the rate of which it propagates has continued to increase,
largely aided by the increasing popularity of social media platforms [21]. AFC systems are starting
to become a critical tool in combating the sheer quantity of claims that need to be verified.
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While accurate [24, 32], AFC systems have been unable to supplement traditional fact-checkers
due to a limitation in their design. A user may not accept to believe in a statement without first
understanding the concepts and facts underpinning that statement. Such justifications are expected
when reading journalistic fact-checking outcomes such as on Politifact; the fact-check outcome is
accompanied by an explanation informing the reader of how the decision was reached. Without
providing users with an explanation, the decision provided by an automated system is far less likely
to be trusted [35], especially as it is not generated by humans.

Automated systems have recently been developed to this effect, and have demonstrated promising
initial results [9]. While these initial results are unquestionably impressive, critical evaluation of
the work reveals that many of these systems use separate models for veracity prediction and
explanation generation. We argue that systems such as these are not actually describing their
own actions and decision processes, and that the veracity prediction model is not made any more
transparent.
In this paper, we propose and experimentally evaluate a system that jointly makes a veracity

prediction and provides an explanation within the same model. This is novel as compared to classic
post-hoc explainability methods that are built on top of existing machine learning models. As
such, the generated explanations more closely reflect the decisions made by the veracity prediction
model. In addition to this, we show that large transformer models are flexible enough to multitask,
and are thus able to explain their actions without detriment to the original task. This allows human
end users to better interface with transformer models, fostering a more trustworthy relationship
between humans and deep learning models.

We specifically address the following research questions:
• RQ1: How can we design a deep learning model to classify information truthfulness and, at
the same time, generate a natural language explanation supporting its classification decision?

• RQ2: Can such model result in both accurate classification decisions and high quality natural
language explanations?

• RQ3: Are machine-generated explanations useful for humans to better assess information
truthfulness?

• RQ4: Can we calibrate the deep learning model in a way that outputs reliable confidence
scores for the truthfulness predictions?

By creating an automated system that is capable of both evaluating the truthfulness of a statement
and simultaneously generating a human-interpretable explanation for this decision, it is hoped
that automated fact-checking systems will become more widely adopted.

2 RELATEDWORK
2.1 Existing Explainable-AFC Models
A number of techniques for generating explanations to accompany AFC decisions have been
proposed. Saliency-based methods, such as those proposed by Shu et al. [30] and Wu et al. [38],
use attention mechanisms to highlight the input that is most useful in determining the veracity
prediction and present this information to the end user as a form of explanation. Logic-based
approaches make use of graphs [7], rule mining, and probabilistic answer set programming [1] to
output a series of logical rules that result in a veracity prediction. This set of rules constitutes an
explanation. While these methods are highly transparent and logical, the resulting explanation is
not always human-readable [1].

Summarisation techniques provide an explanation by summarising the retrieved evidence. The
system proposed by Atanasova et al. [2] utilises DistilBERT [28] to pass contextual representations
of the claim and evidence to two task-specific feed-forward networks which produce a classification
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and an extractive summary. Kotonya and Toni [13] take a similar approach but tailor their model
to the public health domain. The pipeline utilises Sentence-BERT [26] to filter the evidence, a
BERT-based veracity predictor, and a separate BERT-based summarisation model. The work by
Kotonya and Toni [13] differs from Atanasova et al. [2] as it produces abstractive explanations,
which are generally more coherent and similar to the way a human would generate a summary,
rather than extractive explanations which take sentences verbatim from the evidence.
The framework proposed by Stammbach and Ash [32] also produces abstractive explanations,

but places higher emphasis on the evidence retrieval process. The framework consists of two
components: 1) an evidence retrieval and veracity prediction module, and 2) an explanation gen-
eration module. The first component is an enhanced version of the DOMLIN system [33], which
uses separate BERT-based models for evidence retrieval and veracity prediction. For explanation
generation, GPT-3 [5], a large pertained multi-purpose NLP model based on the Transformer, is
used in ‘few-shots’ mode to generate a summary of the evidence with respect to the claim.
The system we present in this paper differs to the existing literature as rather than using two

separate models for the veracity prediction and explanation generation, a single model is used to
output both a veracity prediction and an abstractive summarisation.

2.2 BART Transformer Architecture
BART [16] is a transformer [36] model that aims to generalise the capabilities of both BERT [8]
and GPT-style models. It consists of a bi-directional encoder, similar to BERT, as well as an auto-
regressive decoder, similar to GPT. BART is pre-trained on a de-noising task whereby input text is
corrupted and the model aims to reconstruct the original document, minimising the reconstruction
loss. In contrast to existing de-noising models, BART is more flexible in that it is not trained to
rectify a specific type of input corruption, but rather any arbitrarily corrupted document.

The pre-trained BART model can be fine-tuned to a number of downstream tasks. The authors
noted that the model performs comparably to other models, such as RoBERTa [18], on natural
language inference tasks. They also note that BART outperforms current state-of-the-art models
on natural language generation tasks, such as summarisation [16, 29]. Its ability to perform well on
these two contrasting tasks made it an attractive choice as the base model for a system that can
jointly predict the veracity of a claim, an inference task, and provide an explanation, a generative
task.

3 A MODEL FOR JOINTLY PREDICTING AND EXPLAINING TRUTHFULNESS
Many of the systems in the reviewed literature use separate Transformer models for veracity
prediction and explanation generation. Outlined here is our proposed architecture, E-BART, that
jointly outputs a veracity prediction, as well as a human-readable, abstractive explanation addressing
RQ1.
To adapt the BART-large encoder-decoder model to this downstream task, a ‘joint prediction’

head was developed, shown in Figure 1. This model is novel, and it has been developed specifically
for the purpose of dual modeling detailed in this work, making it possible to perform both a
discriminative and generative task at the same time. This head sits atop the BART model, and
manipulates the transformer hidden states into the form of the desired output. Both the BART base
model and the joint prediction head can be fine-tuned as a single unit to customise pre-trained
BART weights to the joint prediction task. The joint prediction head is also shown using the
green color in Figure 3. The head takes as input the final decoder hidden state embeddings. It
then passes all embeddings to a single feed-forward layer to produce a series of logits which form
the basis of the predicted explanation. To facilitate classification, the hidden state embeddings
corresponding to the final sequence separator token (</s> in BART) are extracted and passed to

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:4 Brand et al.

Fig. 1. Joint prediction head.

a small feed-forward network to shape the output to the desired number of classes. The logits
obtained from this are then passed to a final soft-max layer to produce probabilities for each class.
Unlike in BERT which uses embeddings corresponding to the [cls] token which is pre-pended to
the input to perform classification, in BART the final sequence separator token is used instead as
the decoder can only attend to the left of the current token. This conditions the classification on
the entire input sequence. The summarisation component of the joint prediction head consists of a
single feed-forward layer with input dimension equal to the decoder embedding dimension of 768,
while the output dimension is equal to the vocabulary size of the model. The argmax of the raw
logits are used by the head during the greedy generation process. It is instructive to consider the
training and inference processes separately, as they differ slightly due to the auto-regressive nature
of the BART decoder.
Figure 2 shows the inference process. Running inference on the model begins by running the

encoder with the tokenised input to generate the encoder hidden states, as before. In contrast to
the training process, the decoder is presented with the start sequence token (<s> in BART), and
generates logits auto-regressively, guided by a beam search. The final phase of inference runs
the decoder with the entire generated sequence presented at its input. At this point, the joint
prediction head extracts the embeddings corresponding to the token immediately before the final
sequence separator token from the generated sequence. This is done to mirror the training process
(discussed in the following). These embeddings are passed to the classification component of the
joint prediction head, and then to a soft-max layer to produce the final classification.

The training process is as follows. During the training phase, the encoder generates hidden states
from the tokenised input that are then injected into the decoder. The tokenised gold summary
is presented to both the input and summarization output of the decoder, with the input shifted
right by one token. This conditions the decoder to predict the next token given the current token.
Concurrently, the classification labels are presented to the classification output of the joint prediction
head. Note that the model weights for each of the two main ‘pathways’ in the joint prediction head
(i.e., generation and classification path) are not shared but up until the head (like in the base BART
model), the weights are shared for both classification and generation. The loss is calculated as the
weighted sum (with parameters 𝛼 and (1 − 𝛼)) of the Cross Entropy Loss computed between the
summarisation logits and the gold summary, and the Cross Entropy Loss between the classification
logits and the ground truth classification. Thus, the first objective function is to corrupt the text of
the summary with a noising function and training the model to learn to reconstruct the original
summary text, while the second objective function is to adjust the weights of the network such
that the logits from the last layer are as close as possible to the class representation of the model
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Fig. 2. E-BART Inference process.

(i.e., a classical classification task). This way, the the loss is optimized for both the generation task
and the classification task jointly.

We rely on the code, training method, and regularization parameters used in the original paper
(i.e., [16]) and repository1 detailing the BART model, for further details see [16, Section 5]. More in
detail, we start with the BART pre-trained weights, and then perform further training on the BART
and the developed joint prediction head jointly.
While the detailed architecture is heavily based on BART, it must be noted that it has some

important differences. Differently from BART, our model does not simply apply a classification layer
n the top of the original BART model, but rather uses the “Joint Prediction Head” (see Figures 2
and 3) that makes it possible to perform a joint modeling and thus be able to both classify the
truthfulness of a statement and the generate an explanation for that at the same time.

4 EXPERIMENTAL EVALUATION
4.1 Datasets
To evaluate the proposed models we make use of different datasets. The FEVER dataset consists
of 185,445 claims, associated evidence, and veracity labels. The claims were generated by manip-
ulating sentences taken from Wikipedia, and are labelled with either “Supports”, “Refutes”, or
“Not_enough_info” based on whether the evidence entails the claim [34].

The e-FEVER dataset by Stammbach and Ash [32] augments the original FEVER dataset [34]
with explanations generated by their framework. It consists of 50,000 examples from the FEVER

1https://github.com/pytorch/fairseq/blob/main/examples/bart/README.md.
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Fig. 3. E-BART Training configuration.

train set, and 17,687 from the development set. This provides a resource with claims, retrieved
evidence, veracity labels, and explanations.
The e-SNLI dataset [6] extends the SNLI dataset [4] with human-generated explanations for

each of the 570k examples. The SNLI task is to take two sentences and predict whether one entails,
contradicts, or is neutral with respect to the other. e-SNLI adds complexity by also requiring a
generated explanation for the label.
Summarizing, the statistics for the three datasets are as follows: FEVER dataset: 185,445 total

examples, 165,447 for the training and 19,998 for the development set, eFEVER dataset: 67,687 total
examples, 50,000 for the training and 17,687 for the development set, and eSNLI dataset: 570,152
total examples, 550,152 for the training and for the 20,000 development set.

4.2 Training Methodology
To investigate RQ2 and evaluate the performance of the proposed model on the FEVER and extended
e-FEVER tasks, two different versions of the model were trained. Due to retrieval evidence policies,
the e-FEVER dataset contains some ’null’ explanations [32]. Our first model, E-BARTSmall, was
trained on the subset of the e-FEVER training set that did not include null explanations. This
resulted in 40,702 examples. To process the data, the “+” character used to separate page titles
from evidence was removed. The model inputs were tokenised and formatted as: “<s> claim </s>
evidence </s>”. The veracity labels were made numerical and explanations were tokenised in a
similar manner. The processed dataset was used to fine-tune the BART-large model with joint
prediction head for 3 epochs. Our second model, E-BARTFull, was trained in exactly the same
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Table 1. Ground truth label is “Not_enough_info” and predicted label is “Refutes”.

Claim Evidence Generated Expla-
nation

Marnie was directed
by someone who was
“The Master of Noth-
ing”.

Alfred Hitchcock Sir Alfred Joseph Hitch-
cock (13 August 1899-29 April 1980) was an
English film director and producer, at times
referred to as “The Master of Suspense”.
Marnie (film) Marnie is a 1964 American
psychological thriller film directed by Al-
fred Hitchcock.

Marnie was directed
by Alfred Hitchcock,
who was “The Master
of Suspense”.

way as the first, however it was trained using the entire e-FEVER training set, including examples
with null explanations.

The models were trained on two platforms: Google Colab with a NVIDIA T4 GPU with 16GB of
memory and Microsoft Azure with a 12GB NVIDIA Tesla K80 GPU. The BART-based models have
roughly 375m parameters and took approximately 5 hours to train (i.e., fine-tune BART and the
Joint Prediction Head for 3 epochs) on the NVIDIA T4 GPU using the eFEVER dataset.

4.3 Evaluation Methodology
The development split of the e-FEVER dataset was prepared identically to the training split, pro-
ducing e-FEVER_Full and e-FEVER_Small which do, and do not, include examples with null
explanations, respectively.
When evaluating the veracity prediction accuracy of the models, it was noted that including

the “Not_enough_info” class could under-represent the actual classification performance. Take the
example in Table 1, which has a ground truth label of “Not_enough_info”. Manual inspection shows
that the explanation and evidence indicate that the claim is indeed refuted, which was correctly
predicted by our model. Hence we report two sets of results, one with, and one without examples
that have a e-FEVER label of “Not_enough_info”.
In the following sections we perform a set of experiments to evaluate the proposed approach.

First, we test the effectiveness of the E-BART model on FEVER (Section 4.4), e-FEVER (Section 4.5),
and e-SNLI (Section 4.6) datasets. Then, we validate the usage of the joint models (Sections 4.7
and 4.8). Finally, we test the impact of generated explanations (Section 4.9), and we calibrate the
network to derive meaningful confidence scores (Section 4.10).

4.4 Evaluation Results on Original FEVER
To comparewith existingmodels, we report the classification performance of E-BART on the original
FEVER development set. The DOMLIN system [33] was used for evidence retrieval (discarding its
veracity predictions) to provide evidence for 17k out of the 20k examples in the development set.
We use our E-BART models to generate veracity predictions for the 17k examples, and then label
the remaining with ‘Not_enough_info,’ as specified in the DOMLIN paper. Results are reported
for the development set rather than the test set, as ground-truth labels were not published for the
latter.
On the FEVER dataset, E-BARTSmall and E-BARTFull achieved label accuracies of 75.0 and

75.1, respectively, outperforming state-of-the-art methods. For comparison, other published model
accuracies on this dataset include: BERT-BASED 74.6 [31], DOMLIN 72.1 [33], UCL MR 69.7 [39],
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Table 2. Effectiveness of the models on the e-FEVER dataset.

Model Dataset Accuracy Accuracy ROUGE ROUGE ROUGE ROUGE
no N.E.I full 1 2 L Sum

E-BARTSmall eFEVER_Small 87.2 78.2 73.581 64.365 71.434 71.585
E-BARTSmall eFEVER_Full 85.4 77.1 59.447 50.177 57.697 57.782
E-BARTFull eFEVER_Small 87.1 78.1 64.530 55.283 62.691 62.820
E-BARTFull eFEVER_Full 85.2 77.2 65.511 57.598 64.071 64.144

UNC 69.6 [20], and UKP-Athene 68.5 [11]. E-BART compares favourably to the existing literature
despite the e-FEVER training set having 95k less examples compared to FEVER, which the other
models were trained on. It is hypothesised that the performance improvements are derived from
using BART as a base model, and from requiring the model to further attend to the most relevant
evidence in forming an explanation. The most noteworthy comparison is between E-BART and
DOMLIN, which use identical evidence retrieval mechanisms, thus isolating the contribution of
E-BART over standard veracity predictors.

4.5 Evaluation Results on e-FEVER
Table 2 shows the results obtained on the development e-FEVER dataset. To the best of our
knowledge, there have been no other results reported on this recent dataset, hence we present a
comprehensive snapshot of E-BART’s performance.

Perhaps unsurprisingly, both our models performed better on e-FEVER_Small, which contained
less inconclusive examples. More surprising is the consistency of E-BART’s performance regardless
of whether it was trained on e-FEVER_Small or e-FEVER_Full. This indicates that E-BART is
robust to situations where evidence is sparse. Table 3, qualitatively shows that the model can even
express the fact that it was not able to find relevant evidence. In the generated explanation, the
phrase ‘however it does not say whether...’ indicates in a human-readable way that the evidence
retrieval mechanismwas not able to provide sufficient evidence for the model to produce a confident
prediction.

The ROUGE metrics evaluate the consistency between the generated and e-FEVER dataset expla-
nations, but are not necessarily representative of explanation quality. For instance, the explanation
generated by GPT-3 may include some additional information compared to E-BART. Whether this
additional information results in a better explanation compared to something more succinct is
largely subjective and dependent on the system’s use case. In Tables 1, 3 and 4, we present examples
from the development set. Looking at the example shown in Table 4, it is clear that the model has
identified a contradiction between the claim that Janet Leigh was incapable of writing, and the
evidence which suggested that she had written four books. The model has generated a coherent
explanation that details this finding, extracting relevant facts from the evidence to support the
justification. Finally, it has generated the correct label for the claim, which, importantly, is also
consistent with the generated explanation.

4.6 Evaluation Results on e-SNLI
The e-SNLI task presents a similar challenge to e-FEVER, whereby the entailment between two
sentences is predicted (similar to predicting veracity of a claim with respect to evidence), and an
explanation is generated.

A different version of the E-BART model was trained specifically on this dataset. The data was
prepared by enumerating the labels, removing noisy data, and tokenising the summaries. The

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2018.



A Neural Model to Jointly Predict and Explain Truthfulness of Statements 1:9

Table 3. Ground truth label is “Supports” and predicted label is “Supports”.

Claim Evidence Generated Expla-
nation

CBS is the network
that aired The Millers

The Millers The multi-camera series aired
from October 3, 2013 to July 18, 2015
and ran 34 episodes over two seasons on
CBS. CBS announced the cancellation of
The Millers on November 14, 2014, four
episodes into the show’s second season.

The Millers aired on
CBS, however it does
not say whether it
was the network that
aired it.

Table 4. Ground truth label is “Refutes” and predicted label is “Refutes” (E-BART_Small Model).

Claim Evidence Gold Expla-
nation

Generated Expla-
nation

Janet Leigh
was incapable
of writing.

Janet Leigh Janet Leigh (born
Jeanette Helen Morrison; July 6,
1927-October 3, 2004) was an Amer-
ican actress, singer, dancer and au-
thor. Janet Leigh She also wrote four
books between 1984 and 2002, in-
cluding two novels.

Janet Leigh
was capable
of writing.

Janet Leigh wrote
four books between
1984 and 2002,
including two novels.

first and second sentences were concatenated and tokenised in the same way as the claim and
explanation for the e-FEVER evaluation.
On the test e-SNLI dataset, E-BART achieved a label accuracy of 90.1 and a BLEU score of

32.70. The model proposed in conjunction with the e-SNLI dataset, e-INFERSENT, achieved an
accuracy of 84.0 and BLEU score of 22.4 [6]. In calculating the BLEU metric for the explainable
models, the first two gold explanations were used as references as per [6]. As a further comparison,
the following are the best performing models published in the literature2 which, however, do not
provide explanations: CA-MTL 92.1 [22], SemBERT 91.9 [43], MT-DNN 91.6 [17], SJRC 91.3 [42],
D-CRCo-AN 90.1 [12], and LMTransformer 89.9 [25].

The performance of E-BART compares favourably with the state-of-the-art for this different task,
corroborating the result from the FEVER task, and further confirming that E-BART is flexible enough
to provide explanations without compromising its performance on the main task. To compliment
the BLEU metric, we provide some examples in Tables 5 and 6 for manual verification of explanation
quality. The generated explanation in Table 5 provides insight into E-BART’s capability to focus
only on the important details in the input. Here, Sentence 1 also contains superfluous information
about an additional person in a wool hat, whereas Sentence 2 makes no mention of this. The
generated explanation reflects this aspect, as it only discusses the differences between the two
sentences in terms of the tan girl, rather than the person in the wool hat. Similarly, Table 6 provides
an example of where the model has to extract a small, difficult detail in the input sentences that
suggests the two sentences may not perfectly entail each other. The fact that Sentence 2 makes a
stronger claim about the family going to the beach means that the text in Sentence 1 is not wholly

2https://nlp.stanford.edu/projects/snli/
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Table 5. Ground truth label is “Entailment” and predicted label is “Entailment”.

Sentence 1 Sentence 2 Generated Explanation

One tan girl with a wool hat
is running and leaning over
an object, while another per-
son in a wool hat is sitting
on the ground.

A tan girl runs leans over an
object

One tan girl with a wool hat
is running and leaning over
an object is a rephrasing of
a tan girl runs leans over an
object.

Table 6. Ground truth label is “Neutral” and predicted label is “Neutral”.

Sentence 1 Sentence 2 Generated Explanation

A young family enjoys feel-
ing ocean waves lap at their
feet.

A young man and woman
take their child to the beach
for the first time.

Just because a young family
enjoys feeling ocean waves
lap at their feet does not
mean that they take their
child to the beach for the
first time.

representative of the situation. The E-BART model was able to identify this detail and thus label
the sentences as ’neutral’. The generated explanation reflects this, providing insight into the fact
that the model has identified that Sentence 2 contains important details omitted in Sentence 1.

4.7 Validating the Use of Joint Models: Experiment 1
To further investigate RQ2 and test the ability of our joint models, we compare the performance
of E-BART to a pipeline that produces a veracity prediction and generates an explanation using
two independent models. To ensure that the results between the two methods are comparable, the
architecture and training methodology was kept as consistent as possible. The separate pipeline,
which we term Separate-BART, uses a BART-based sequence classifier, and a BART-based model for
language generation. Both E-BART and Separate-BART were initialized with the same pre-trained
weights, and were trained and evaluated on e-FEVER_Small. The BART classifier is trained with
the claim and evidence as input to both the encoder and decoder, in contrast to E-BART which
uses the much shorter gold summary as input to the decoder. This meant that due to memory
constraints, the inputs were truncated to a maximum length of 256 tokens (which only truncated
4.56% of examples). In addition to this, a virtual batch size of 32 was used (batch size four, with
eight gradient accumulation steps) to overcome convergence issues. When training the sequence
generator model, a batch size of two with two gradient accumulation steps was used, also due to
memory restrictions on available hardware for this experiment. In comparison, the joint model
was trained with a batch size of four and no additional gradient accumulation. Before detailing the
results, it is worth remarking the trade-off between effectiveness and resources needed to train a
single model instead of two separate models. Training two separate models would require either
the double amount of resources if they are trained in parallel (since each model needs to be fitted
into a GPU device independently), or the double amount of time if they are trained sequentially.
On the contrary, a single model has to cope with more parameters, but it can be trained on two
tasks at the same time.
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Table 7. Effectiveness of the joint and separate models on the eFEVER_Small dataset.

Model Accuracy Accuracy Rouge Rouge Rouge Rouge
no N.E.I full 1 2 L Sum

E-BART 87.2 78.2 73.581 64.365 71.434 71.585
Separate-BART 88.1 78.9 73.070 63.634 71.005 71.136

Table 8. Internal consistency of the joint and separate models on the eFEVER_Small dataset.

Model Accuracy Accuracy
no N.E.I full

E-BART 91.8 86.8
Separate-BART 90.4 85.8

The results in Table 7 indicate that the prediction performance of both types of model is almost
identical, with Separate-BART being slightly more effective. Manual inspection of the generated
explanations revealed that both were of a similar quality in terms of expressiveness and cohesiveness.
This experimental result reinforces what was seen in the practical evaluations on e-FEVER and
e-SNLI: that E-BART is able to jointly provide an explanation without diminishing the performance
on its main task.

4.8 Validating the Use of Joint Models: Experiment 2
This experiment aims to investigate whether the internal consistency between the predicted veracity
and predicted explanation differs between the joint and separate models. We use the same E-BART
and Separate-BART models from Experiment 1, but train an additional ’judge’ model to predict the
veracity of a claim, given an explanation. The ground truth veracity labels and dataset explanations
from e-FEVER_Small were used to train the BART-based sequence classifier. As such, its weights
are not conditioned on those of E-BART or Separate-BART, meaning that it is independent from
both models.

We run the experiment by taking the claims from the development set and the predicted explana-
tions from E-BART. The claims and explanations are then passed to the ’judge’ model to produce a
veracity prediction. This ’judge’ veracity prediction is then compared against the veracity prediction
from E-BART, and the accuracy is computed. The process was repeated for Separate-BART, and
the results are presented in Table 8.

The results show a higher accuracy for E-BART as determined by the ’judge’ model. This provides
indication that the veracity prediction and explanation generated by E-BART are more consistent
with each other than those generated by Separate-BART. Ultimately this means that joint models
are one step closer to being truly interpretable compared to models that generate explanations
separately in a post-hoc manner. While this is not conclusive proof, it does provide some evidence
that there are consistency gains to be made when using joint prediction and explanation models.

4.9 Testing the Impact of Explanations
To address RQ3, we experimentally validated the benefit of explanations generated by our model
with human annotators, performing a set of crowdsourcing studies as detailed in the following. The
data used to perform this study can be found at https://github.com/KevinRoitero/predict-explain-
truthfulness.
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We collected the data using the Amazon MTurk crowdsourcing platform. To test the impact of
machine-generated explanations of truthfulness, we deployed four versions of the same human
annotation task. In each version of the task we provided participants with a claim from the FEVER
dataset and we asked them to provide both a truthfulness assessment using the “True”, “False”
binary scale along with a sentence justifying their assessment, as this has been shown to improve
assessment quality [15]. Each worker has been asked to assess the truthfulness of four claims,
two labelled in the ground truth as “Supports”, and two labelled as “Refutes”. Each claim has been
assessed by ten distinct human participants. To avoid bias, we performed a randomisation process
while generating the claim-participant assignments (i.e., in the MTurk HITs). For consistency, we
kept the same assignments (i.e., same HITs) for all the distinct versions of the task (apart for one case,
as explained later). Participants were only allowed to complete one version of the task. To ensure
high quality of the collected data and to avoid adversarial behaviour, we required participants to
spend at least 2 seconds on each task page.

With the settings detailed above, we implemented and deployed the following four tasks. In the
first version (Task 1), we provided participants with the claim from the FEVER dataset and we
asked them to provide a truthfulness assessment and the justification. In the second version (Task
2), we provided participants with both the claim and the explanation generated by our E-BART
system and ask for the truthfulness assessment and the justification. In the third version (Task 3),
we provided participants with both the claim and the ground truth explanation, asking for the
assessment and justification. Finally, the fourth and final version of the task (Task 4), we provided
participants with the claim and both the ground truth and E-BART explanation, asking for an
assessment and justification; we also asked them to indicate whether they preferred (i.e., found
more informative) the ground truth explanation or the E-BART one. Inspecting the dataset, we
found that for some HITs the ground truth and E-BART explanations where the same; thus, for
this task we re-sampled the statements by requiring the two explanations to be different by at least
1 character.

The experimental setup detailed above allows us to make multiple comparisons, both implicit
and explicit. By comparing Task 1 (i.e., no explanation) with Task 2 (i.e., E-BART explanation) and
with Task 3 (i.e., ground truth explanation) we can both test the effect of showing the explanation
to the worker, as well as to make an implicit comparison between the two explanations, the ground
truth and the E-BART one. In addition, Task 4 (i.e., preferred explanation) allows us to to explicitly
assess which explanation is preferred by the workers.
Figures 4 and 5 shows the external agreement between the ground truth and the crowd when

considering both the individual participant judgments and the judgments aggregated over the ten
participants assessing the same claim, using majority vote as aggregation function. By inspecting
the plots, we can compute the accuracy scores for the different versions of the task, as follows. Task
1: 0.70 for raw and 0.83 for aggregated judgments; Task 2: 0.73 for raw and 0.90 for aggregated
judgments; Task 3: 0.64 for raw and 0.65 for aggregated judgments; Task 4: 0.64 for raw and 0.71 for
aggregated judgments. To account for statistical significance, we run a non-parametric ANOVAwith
post-hoc test3. Given that normality assumptions are violated, we use a non-parametric Kruskal-
Wallis H test (one-way non-parametric ANOVA) to test the probability that samples came from
the same distribution. Given that we obtained a p-value < 0.05 we may reject the null hypothesis
that the population medians of all of the considered tasks are equal. To identify what tasks differ
in their medians we need to run post-hoc tests; we considered the Conover’s test. Results shows
that the task pairs for which we can reject the null hypothesis (i.e., those which are statistically

3see https://scikit-posthocs.readthedocs.io/en/latest/.
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Fig. 4. External agreement between ground truth and crowd for raw (first row) and aggregated (second row)
truthfulness assessments. Each cell represents either the count of judgments (first row), or claims (second
row). Task 1 (first column) shows just the claim, Task 2 (second column) shows the claim and the natural
language explanation generated by our E-BART model, and Task 3 (third column) shows the claim and the
ground truth natural language explanation. Correctly classified statements lay on the main diagonal.
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Fig. 5. External agreement between ground truth and crowd for raw (first column) and aggregated (second
column) truthfulness assessments for Task 4, which shows the claim, ground truth, and E-BART explanations,
asking workers for the preferred explanation. The worker preferences are shown in the third column. Each
cell represents either the count of judgments (first and third columns), or claims (second column).
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significantly different) are: Task 1 – Task 2 (𝑝 < 0.05), Task 2 – Task 3 (𝑝 < 0.01), and Task 2 – Task
4 (𝑝 < 0.01); those results hold for both raw and aggregated judgments.

Apart from the accuracy scores, it is worth inspecting and measuring the different levels of
inter-annotator agreement. To this aim, we rely on Krippendorff’s 𝛼 , a well known and popular
agreement measure used in crowdsourcing [14, 41]. Thus, we computed 𝛼 on individual judgments
and the agreement scores for the four tasks are respectively of 0.19 for Task 1, 0.24 for Task 2, 0.10
for Task 3, and 0.10 for Task 4. Those values indicate similar level of agreement between the tasks,
which all have low agreement [3, 41].

From those results we can make the following remarks. It appears that showing the E-BART
explanation (Task 2) is better than showing no explanation (Task 1), while this is not true when
considering the ground truth explanation (comparison between Task 1 and Task 3). More than that,
the implicit comparison between Task 2 and Task 3 shows that it appears that crowd workers are
more accurate when considering the E-BART explanation in place of the ground truth explanation.
Such result is also confirmed when making the explicit comparison (see last plot of Figure 5).
We can additionally observe that the display of E-BART explanation (i.e., Task 2) reduces the

number of false positives (i.e., claims that are false but are erroneously perceived as being true
by human subjects) from 122 to 93; such result is not true when considering the ground truth
explanation. Thus, it appears that the explanations automatically generated by our E-BART model
have the effect of making people more skeptical about claims (see also Table 3 for an example). This
behavior does not hold for false negatives (i.e., claims that are true but are erroneously perceived as
being false by human subjects). Note that in misinformation settings false positives are potentially
more dangerous than false negatives, and it is better to be erroneously skeptical than to not recognize
false statements.
By looking back at accuracy scores and their implications, we see that by performing a simple

aggregation of crowd labels and under conditions of Task 2, we are able achieve 90% non-expert
label accuracy, which is a promising step towards crowdsourced truthfulness annotations [27].

4.10 Network Calibration and Generation of Confidence Scores
To further enhance the transparency and interpretability of the E-BART predictions and address
RQ4, it would be ideal to produce confidence scores along with the veracity classification. These
confidence scores provide insight into how confident the model is in making its prediction. The
confidence could be impacted by a number of factors, including the quality and quantity of the
provided evidence, or the similarity of the claim to the training data. E-BART makes its predictions
via a soft-max layer over a series of logits with dimensions equal to the number of target classes.
While the output of the soft-max layer produces a ‘probability’ score for each class, it is unlikely
that this probability is well-calibrated. That is, the output from the soft-max layer is not likely to be
representative of the true probability of correctness [10]. Though this calibration error is present in
most modern deep neural networks, it is not clear if such issue is present in all transformer-based
models; thus, it is work investigating this issue for the E-BART model. A number of post-processing
techniques exist to correct the calibration error, allowing the output of the final soft-max to be
correctly interpreted as the confidence of correctness. Some techniques include histogram binning
[40], Bayesian Binning into Quantiles [19], and Platt scaling [23]. Temperature scaling [10] is a
technique that has demonstrated high efficacy on a range of neural networks including multi-class
classifiers, and is relatively easy to implement. Temperature scaling introduces a single parameter,
the temperature (𝑇 > 0), and uses it to produce a confidence prediction given a series of logits 𝑧𝑖 :

𝑞𝑖 = max
𝑘

𝜎𝑆𝑀 (𝑧𝑖/𝑇 )𝑘
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E-BART_Full E-BART_Full
No Calibration Calibrated Model

Fig. 6. Confidence as a function of accuracy for the E-BART_Full model before and after calibration.

where 𝜎𝑆𝑀 is the soft-max function. Applying temperature scaling to a model does not change
its classification prediction, and therefore does not alter the accuracy of the model [10].

The temperature parameter must be tuned on the validation set rather than the original training
set [10]. As there is no test split for the eFEVER dataset, the first 9999 items from the eFEVER
development set were used for training the temperature parameter, with the remaining examples
used for validation. The temperature parameter was inserted after the final fully-connected layer
of the original model, and the original model parameters were frozen. The temperature parameter
was then trained using the LBFGS optimiser for 10, 000 iterations. It is important to note that the
E-BART model was run in “auto-regressive (inference) mode”, to produce the logits for input to the
temperature parameter. Finally, the model was tested using the held-out validation data. Testing
proceeded by running E-BART in inference mode, and applying the temperature parameter prior
to the final soft-max function.

To evaluate the calibration of the model, a reliability diagram was produced for the model before
and after calibration. In addition, the Expected Calibration Error (ECE) and Maximum Calibration
Error (MCE) were calculated using ten bins. Figure 6 shows the E-BART_Full model before and
after calibration.
The dotted 45 degree line on the reliability diagrams specifies a perfect calibration. Deviation

from this line indicates that the predicted confidence scores differ from the actual accuracy. Visual
inspection of the reliability diagrams indicates that the original E-BART model was in fact not well
calibrated, with ECE of 11.44% and MCE of 26.35%. However, following temperature scaling, the
model performs more closely to the ideal calibration, with ECE and MCE reduced to 1.61% and
6.92%, respectively. This increase in calibration means that the output of the final soft-max layer can
be more accurately interpreted as a confidence score. To demonstrate how this change impacts the
model output, the examples in Tables 9 and 10 are provided: the first example shows a situation in
which E-BART predicts the correct veracity, and indicates that it is confident in its prediction. The
second example demonstrates a situation where the model is not confident in its prediction. Here,
the ground truth veracity indicates that the claim is refuted, and even the ground truth explanation
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Table 9. Ground truth label is “Supports” and predicted label is “Supports”, confidence score is 0.851, original
confidence was 0.987 (E-BART_Full Model).

Claim Evidence Gold Expla-
nation

Generated
Explanation

Ekta Kapoor
worked on an
Indian soap
opera that
premiered in
2000.

Kyunki Saas Bhi Kabhi Bahu Thi (Because
a mother-in-law was once a daughter-in-
law , too) is an Indian soap opera that pre-
miered on 3 July 2000 on Star Plus. Ekta
Kapoor Some soap operas she had worked
on include [...]. Pavitra Rishta (Sacred Ties)
is a 2009 Indian soap opera produced by
Ekta Kapoor of Bal-aji Telefilms , that aired
on Zee TV. Kasautii Zindagii Kay (The cri-
terion of life), often abbreviated as KZK,
is an Indian soap opera created by Ekta
Kapoor ’s Balaji Tele-films for the channel
STAR Plus.

Ekta Kapoor
worked on the
Indian soap
opera Kyunki
Saas Bhi
Kabhi Bahu
Thi, which
premiered in
2000.

Ekta Kapoor
worked on
the soap
opera Kyunki
Saas Bhi
Kabhi Bahu
Thi, which
premiered in
2000.

Table 10. Ground truth label is “Refutes” and predicted label is “Supports”, confidence score is 0.432, original
confidence was 0.550 (E-BART_Full Model).

Claim Evidence Gold Expla-
nation

Generated
Explanation

Henry III
assumed the
throne when
he was 2
years old.

Henry III of France Henry III ( 19 Septem-
ber 1551 - 2 August 1589 ; born Alexandre
Édouard de France , Henryk Walezy , Hen-
rikas Valua ) was a monarch of the House
of Valois who was elected the monarch
of the Polish-Lithuanian Commonwealth
from 1573 to 1575 and ruled as King of
France from 1574 until his death.

Henry III was
elected the
monarch of
the Polish-
Lithuanian
Common-
wealth when
he was 2
years old.

Henry III was
born on 19
September
1551 and died
on 2 August
1589.

does a poor job of communicating the evidence. In this case, E-BART predicts that the claim is
supported, however it indicates that it has low confidence in this prediction. Without providing the
confidence, the only indication that perhaps the model is not accurate in this instance is the low
quality of the explanation. Now, however, there is a quantitative representation of the confidence.
This would demonstrate to the end user that in this instance, the model should not be trusted.

5 CONCLUSIONS
In this paper we explored the potential of AFC models jointly making a prediction and providing a
human-readable explanation for that prediction. To this end, we proposed the E-BART architecture
and evaluated its performance on the extended FEVER and SNLI tasks. Experimentation revealed
that E-BART could achieve results comparable to the state-of-the-art and simultaneously generate
coherent and relevant explanations. We argued that jointly predicting explanations makes AFC
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systemsmore transparent, and fosters greater trust in the system. Human evaluation of the impact of
generated explanations revealed that the explanations provided by E-BART generally make people
more accurate in detecting misinformation and more skeptical of a claim they encounter online.
Finally, we calibrated the E-BART architecture in order to make it produce reliable confidence
scores for the truthfulness predictions.
The model presented in this paper opens to a plenty of future work which is made possible

because of the unique joint modeling technique used. In future work we plan to exploit saliency
maps to investigate the effect of evidence on classification performance and vice-versa investigating
the relationships among the two models used in our network, the discriminative and the generative
one.
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