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Abstract. We here present a new version of the publicly available general relativistic

magnetohydrodynamic (GRMHD) code Spritz, which now includes an approximate

neutrino leakage scheme able to handle neutrino cooling and heating. The leakage

scheme is based on the publicly available ZelmaniLeak code, with a few modifications

in order to properly work with Spritz. We discuss the involved equations, physical

assumptions, and implemented numerical methods, along with a large battery of

general relativistic tests performed with and without magnetic fields. Our tests

demonstrate the correct implementation of the neutrino leakage scheme, paving the

way for further improvements of our neutrino treatment and the first application to

magnetized binary neutron star mergers. We also discuss the implementation in the

Spritz code of high-order methods for a more accurate evolution of hydrodynamical

quantities.
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1. Introduction

Binary neutron star (BNS) mergers are among the most powerful sources of gravitational

waves (GWs) that can be detected by current ground-based GW detectors. The

detection of GW170817 [1] also confirmed that these systems may emit bright

electromagnetic (EM) signals and, in particular, short gamma-ray bursts (GRBs) and

kilonovae (e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]). In order to properly

model the merger and post-merger evolution of these systems and thus establish a

reliable connection with their multimessenger observations, one needs to account not

only for general relativistic effects, but also for other key physical ingredients such as

magnetic fields, a temperature and composition dependent equation of state describing

the behaviour of matter, and neutrino emission and re-absorption. For instance, neutrino

effects and magnetic fields are both crucial (i) to accurately model the BNS merger ejecta

and their composition, which are in turn responsible for the kilonova emission and the

associated heavy element nucleosynthesis (e.g., [16, 17, 18, 19] and refs. therein), and

(ii) in the context of short GRB jet formation, where magnetic fields are most likely the

main driver (e.g., [20, 21, 22, 23]) while neutrino radiation may play an important role in

altering the baryon pollution along the spin axis of the remnant, which in turn may affect

the successful propagation of the corresponding outflow (e.g., [24]). Including all of the

above effects in one code is however rather challenging and only very few magnetized

BNS merger simulations with neutrino treatment (via an approximate leakage scheme)

have been presented so far [25, 26].

Here, we present a new publicly available version of our general relativistic

magnetohydrodynamic (GRMHD) code named Spritz [27, 28], based on the

EinsteinToolkit infrastructure [29, 30, 31]. This new version of Spritz can

handle finite temperature tabulated equations of state (EOSs) as well as neutrino

cooling/heating along with magnetic fields. In particular, the neutrino treatment is built

around the ZelmaniLeak code [32], implementing a ray-by-ray neutrino leakage scheme.

ZelmaniLeak has already been employed in the context of BNS mergers and in particular

in GRMHD simulations starting from a non-magnetized post-merger system to which a

magnetic field is added by hand [24]. We note that while more advanced schemes have

been discussed in the literature (e.g., [33]), only simple leakage schemes have been so

far employed to study merging BNSs with both magnetic fields and neutrinos [25, 26]

(and the corresponding implementations are not publicly available). Therefore, neutrino

leakage represents a natural starting point for the inclusion of this key physical ingredient

in Spritz.

During the writing of this paper we also finished implementing in the code new

high-order methods that are described in Appendix A, where we show that the code

can now reach, in some scenarios, fifth-order convergence. High-order methods have
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been shown in the literature to be very important in order to obtain accurate GW

signals and a better description of the matter dynamics (e.g., see [34, 35]). At the

time of writing, only few other GRMHD codes for BNS simulations employ high-order

methods [26, 24, 36]. The new version of the Spritz code can be found on Zenodo as

version 1.1.0 [28].

The paper is organized as follows. In Section 2, we present the equations

and assumptions behind the adopted neutrino leakage scheme. Section 3 provides

an overview of the new numerical methods included in the Spritz code, from

tabulated EOS handling and conservative-to-primitive recovery to the neutrino leakage

implementation. Section 4 is devoted to a large set of tests, through which we validate

the novel features of Spritz. Finally, we summarize our results in Section 5.

We use geometric units such that G = c = M� = 1 unless specified otherwise.

Greek indices go from 0 to 3, Latin indices from 1 to 3, and summation over repeated

indices is assumed. As usual, we employ a (− + + +) metric signature. We use a

3 + 1 decomposition of the space-time, where the 4-metric is indicated with gµν and

ds2 = gµνdx
µdxν = − (α2 − βiβi) dt2 + 2βidx

idt+ γijdx
idxj. α is the lapse function, βi

is the shift vector, and γij is the 3-metric. Moreover g and γ represent the determinant

of gµν and γij respectively.

2. Basic Equations and Assumptions

In the present Section we discuss the equations that are solved by the new version of

our GRMHD code which now include also the contribution of neutrino emission and

absorption. We will mainly focus on the new additions to the code and refer the reader

to our previous paper for more details on the equations and methods used to solve the

GRMHD equations [27]. We remind the reader that the (Eulerian) magnetic field Bi is

evolved via a staggered-vector-potential formulation. The equations for the evolution of

the rest-mass density ρ, three-velocity vi, and specific internal energy ε are set according

to the following conservative formulation:

1√
−g
[
∂t
(√

γF 0
)

+ ∂i
(√
−gF i

)]
= Si , (1)

being F 0 ≡ [D,Sj, τ̃ ]§ the vector of conserved variables, defined in terms of the primitive

ones as

D ≡ ρW,

Sj ≡
(
ρh+ b2

)
W 2vj − αb0bj,

τ̃ ≡
(
ρh+ b2

)
W 2 − (P + Pmag)− α2

(
b0
)2 −D ,

(2)

where W = 1/
√

1− v2 is the Lorentz factor, P is the gas pressure, h = 1 + ε + P/ρ is

the relativistic specific enthalpy, Pmag = b2/2 is the magnetic pressure, b0 = (WBivi)/α,

§ We use the symbol τ̃ instead of the commonly used τ to avoid confusion with the optical depth τ

used later in the paper.
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bi = (Bi + αb0ui)/W , b2 ≡ bµbµ =
[
B2 + α2 (b0)

2
]
/W 2, B2 = BiBi, and uµ is the fluid

four-velocity. F i is instead the vector of fluxes defined as

F i ≡

 Dṽi/α

Sj ṽ
i/α + (P + Pmag) δij − bjBi/W

τ̃ ṽi/α + (P + Pmag) vi − αb0Bi/W

 , (3)

where ṽi ≡ αvi − βi and βi is the shift, while Si the vector of sources that reads

Si ≡

 0

T µν
(
∂µgνj − Γδνµgδj

)
α
(
T µ0∂µ lnα− T µνΓ0

νµ

)
 , (4)

where T µν is the energy-momentum tensor, given by T µν = (ρh+ b2)uµuν +

(P + Pmag) gµν − bµbν , and Γσνµ are the Christoffel symbols defined from the 4-metric

gµν .

We note that the above equations do not include the contribution of neutrino

emission and reabsorption. Following an operator-split approach, the GRMHD evolution

step is first performed without such contribution and then the neutrino problem is solved

via the leakage scheme. Finally, the variables Ye and ε are updated accordingly, thus

including the effects of neutrino radiation on the GRMHD evolution itself (see Sections

2.3 and 3.4).

2.1. Electron Fraction

In order to properly include neutrino emission and absorption, we need to add one

evolution equation for the electron fraction, which we define as

Ye =
ne

np + nn
, (5)

being ne, np, and nn the electron, proton, and neutron number densities.

From the local conservation of the total baryon number, neglecting the mass

difference between neutrons and protons, we obtain the following equation for the

electron fraction, valid in absence of neutrino emission/absorption:

∇µ (Yeρu
µ) = 0 , (6)

expressing the fact that Ye is advected along the fluid lines. This equation is commonly

referred to as the electron fraction advection and can be expressed in a hyperbolic

conservative form as

∂t (
√
γDYe) + ∂i

[
α
√
γDYe

(
vi − βi

α

)]
= 0 . (7)

In presence of reactions involving neutrinos, the local electron fraction obtained

from the above equation is then modified according to Equation 19 (see Section 2.3).
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2.2. Equation of State

The Spritz code can handle tabulated finite-temperature and composition dependent

EOS via the EOS Omni thorn included in the Einstein Toolkit. This is crucial since a

proper description of the matter composition depending on temperature is necessary

in order to estimate the emission and absorption rates associated with the different

processes involving neutrinos (see the next Section). Moreover, as a consequence of

such processes, Ye necessarily undergoes changes that must be estimated accurately

when dealing with dynamical scenarios.

The exact matter composition at the typical densities reached in the core of an

NS is still unknown and so is the correct EOS. A large number of proposed tabulated

EOS inspired by nuclear physics calculations can be found in the literature (see, e.g., the

database in [32] and [37] for several examples). These EOS are usually three-dimensional

tables where every hydrodynamical variable, such as the gas pressure P or the specific

internal energy ε, can be related to the rest-mass density ρ, the temperature T , and the

electron fraction Ye.

When building initial data, however, a one-dimensional (i.e., barotropic) EOS is

typically needed, where P is just a function of ρ. In this case, reducing the three-

dimensional table P = P (ρ, T, Ye) to a simpler one-dimensional relation P = P (ρ)

becomes necessary, implying that two conditions on the NS matter should be imposed.

The first and most common one is to assume the NS to be initially in β-equilibrium,

which is a reasonable assumption for old NSs, such as those encountered in BNS or

NSBH binary systems prior to merger. As a second assumption, one may decide to

fix either a constant value for the entropy (S–slicing condition) or for the temperature

(T–slicing condition). The latter is the one typically used in BNS or NSBH merger

simulations since it is reasonable to expect NSs to be cold prior to merger. In this

paper, along with the standard T–slicing condition, we have also used the S–slicing

condition to test the ability of our code in dealing with “hot” NSs.

All the computations presented in this paper are performed adopting the LS220

EOS [38], that has been already used in a number of papers dealing with the evolution

of BNS systems (e.g., [16, 39, 40]).

2.3. Neutrino Emission and Absorption

During the merger of BNS or NSBH systems, temperatures as high as T ∼ 10 MeV ∼
1011 K can be produced and also the electron fraction Ye may change considerably. In this

scenario, neutrinos play a key role in both the transport of energy and in determining the

evolution of Ye and temperature, which are in turn crucial parameters for the r-process

nucleosynthesis taking place in the ejected matter and the subsequent production of

heavy elements. A proper estimate of the rates of the different reactions involving

neutrinos is thus necessary in order to compute the nucleosythesis yields and to model

the radiactively-powered kilonova signals accompanying such mergers (as the one already

observed after GW170817; e.g., [14, 15]).
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The typical timescale for weak processes producing neutrinos can be estimated from

the changing electron fraction as

tWP ∼
∣∣∣∣YeẎe
∣∣∣∣� tdyn , (8)

being tdyn the dynamical timescale of the simulated astrophysical event [41]. By carrying

away energy, neutrinos can significantly cool down the (meta)stable NS remnant of a

BNS merger or the accretion disk around the spinning BH resulting from either a BNS

or an NSBH merger (e.g., [16]). Moreover, a fraction of the emitted neutrinos may be

reabsorbed by the outer material, inducing heating and leptonization of the material

itself. The surface where the neutrino optical depth is τ = 2/3 conventionally defines

the “neutrinosphere” (e.g., [42]), which separates the diffusive regime of the high-density

interiors (& 1012 g cm−3; e.g., [43]) and the nearly free streaming regime of the exterior.

The intermediate region between τ � 1 and τ � 1 (i.e. where neutrinos are neither

free to escape nor fully trapped) is the challenging one for neutrino transport. In its

energy averaged version, the optical depth along each path ξ followed by neutrinos can

be defined as [44]

τξ =

∫
ξ

ρ(x)k(x)
√
γijdxidxj , (9)

being k(x) the energy averaged opacity at position x. The path giving the minimum

optical depth is the favoured one for neutrino escape and allows us to define a single

optical depth for each given location

τ(x) = min
ξ∈Ξ

τξ = min
ξ∈Ξ

∫
ξ

ρ(x)k(x)
√
γijdxidxj, (10)

where Ξ is the set of all possible paths including position x.

The complexity and extremely high computational cost of the full neutrino

transport problem solved via the Boltzmann radiation transport equations forced

the introduction of approximate schemes and simplifying assumptions (e.g., [33] and

refs. therein). We consider here a so-called neutrino leakage scheme, already employed

successfully in BNS and NSBH simulations (e.g., [41, 45, 46, 25, 47]). In particular,

we adopt the leakage method presented in [44, 48], which has been implemented in the

publicly available ZelmaniLeak code [32]. In what follows, we introduce the leakage

scheme and the basic physical assumptions. The numerical implementation is instead

discussed in the next Section (and in particular in 3.4).

In the neutrino leakage scheme adopted in this work, we consider three neutrino

species, electron neutrino νe, electron antineutrino ν̄e, and heavy-lepton neutrinos νx
(including νµ, ν̄µ, ντ , ν̄τ ), and for each one we compute the local number and energy

emission rates according to the following steps.

The neutrino optical depths, which are crucial to determine the emission rates (see

below), are computed under the assumption that neutrinos escape along radial paths

from the center (ray-by-ray approach). For each species, we compute the local spectral
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averaged opacity as the sum of the opacities due to the scattering off nucleons, neutrino-

nucleus scattering, and neutrino absorption by free nucleons (see [49] for details). Then,

we use these mean opacities to compute the optical depths along each radial path (Eq. 9).

In the diffusive regime, the number and energy rates (i.e. number and energy per

unit volume, per unit time) can be written as [49]

Rdiff
νi

=
4πcgνi
(hc)3

ζνi
3χ2

νi

TF0(ηνi) , (11)

Qdiff
νi

=
4πcgνi
(hc)3

ζνi
3χ2

νi

T 2F1(ηνi) , (12)

where i = 1, 2, 3 and ν1 = νe, ν2 = ν̄e, ν3 = νx, while gν1 = gν2 = 1 and gν3 = 4.

Moreover, ζ = (E2λ)−1, χ = τ/E2, with E the average neutrino energy (computed

assuming a Fermi-Dirac distribution at the local temperature T ) and λ the mean

free path, and F0(η), F1(η) are the Fermi integrals defined in [50] as function of the

neutrino chemical potential η. Energy and number rates are also computed for the

free neutrino emission regime (Qfree
νi

and Rfree
νi

), taking into account capture processes,

electron-positron pair annihilation, plasmon decay, and nucleon-nucleon bremsstrahlung

(see [48, 49]). Finally, the actual emission rates are found by combining the free emission

and diffusive ones as follows

Reff
νi

= Rfree
νi

(
1 +

Rfree
νi

Rdiff
νi

)
, (13)

Qeff
νi

= Qfree
νi

(
1 +

Qfree
νi

Qdiff
νi

)
. (14)

For a given radial direction (θ, φ), the isotropic-equivalent neutrino luminosity

incoming from below at a distance r can be computed (in the coordinate frame) as

Liso
νi

(r, θ, φ) = 4π

∫ r

0

[
α(r′, θ, φ)

α(r, θ, φ)

]
Qeff
νi

(r′, θ, φ)α(r′, θ, φ)W (r′, θ, φ)

× [1 + vr(r′, θ, φ)]
√
grr(r′, θ, φ)r′

2
dr′ ,

(15)

being vr the radial velocity.‖ We can also define a fluid rest frame (FRF) luminosity as

Liso,FRF
νi

(r) =
Liso
νi

(r)

α(r)W (r) [1 + vr(r)]
. (16)

The heating and leptonization due to the reabsorption of a fraction of neutrinos by

the material along their path (i.e. νe and ν̄e reabsorption on neutrons and protons,

respectively) is taken into account via the local heating rate [48]

Qheat
(νe,ν̄e) = fheat

Liso,FRF
(νe,ν̄e)

4πr2
σheat

(νe,ν̄e)

ρ

m(n,p)

X(n,p)

(
4.275τ(νe,ν̄e) + 1.15

)
e−2τ(νe,ν̄e) , (17)

‖ Note that this expression neglects the time-of-flight of neutrinos, i.e. it just collects together neutrinos

emitted at a given time and at different radial locations. However, this is only used in the region where

neutrino reabsorption is relevant and in the post-merger phase of a BNS or NSBH coalescence the

extension of such a region is characterized by a light travel time much shorter than the timescale for a

significant change in neutrino luminosities.
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where fheat is a scaling factor of order one (we set fheat = 1), σheat
(νe,ν̄e)

is the reabsorption

cross-section (see below), m(n,p) and X(n,p) are the neutron or proton masses and mass

fractions, and the factor e−2τ(νe,ν̄e) is added to suppress heating at very large optical

depths. For the reabsorption cross-section, we adopt the following expression [44]

σheat
(νe,ν̄e) =

1 + 3α2
EC

4
σ0

〈E2〉NS(νe,ν̄e)

(mec2)2
〈1− f(e−,e+)〉, (18)

where αEC = −1.25, σ0 = 1.76×10−44 cm2, 〈E2〉NS is the mean squared neutrino energy

at the neutrinosphere, and 〈1− f(e−,e+)〉 are the blocking factors defined in [51].

The full neutrino emission and reabsorption problem at a given time is solved

along each radial direction by moving outwards from the center and, at each radius,

subtracting the heating rate from the emission rate, i.e. Qeff
νi
→ Qeff

νi
− Qheat

νi
and

Reff
νi
→ Reff

νi
−Qheat

νi
/〈E〉NSνi , with 〈E〉NSνi the average neutrino energy at the neutrinosphere

and Qheat
νx = 0.¶

In order to couple the result to the GRMHD evolution, the Ye and ε are then

modified as follows:

Ye → Ye + ∆t
∂Ye
∂t

, (19)

being ∆t the local time step, and where

∂Ye
∂t

=
Reff
ν̄e −R

eff
νe

ρ
mn , (20)

being mn the rest-mass of the neutron, and

ε→ ε+ ∆t
∂ε

∂t
, (21)

where

∂ε

∂t
= −

ΣiQ
eff
νi

ρ
. (22)

3. Numerical Methods

The Spritz code makes use of the EinsteinToolkit framework. Details of the

numerical methods used to solve the GRMHD equations are provided in [27] and here

we focus on the new parts of the code that handle the use of tabulated EOS and neutrino

emission and absorption. All the simulations reported in this paper use the MacLachlan

thorn to evolve the spacetime in the BSSNOK formalism and the Carpet driver for

adaptive mesh refinement (AMR).

¶ As pointed out in [44], the present gray heating scheme does not provide a perfect balance between

emission and absorption, which would require a self-consistent radiation transport treatment.
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3.1. Equation of State Driver

As already stated in Section 2.2, the Spritz code adopts the EOS Omni thorn of the

EinsteinToolkit software infrastructure. This thorn is able to handle a large variety

of EOS, including ideal fluid, polytropic, and tabulated ones.

During our first tests with the EOS Omni thorn and tabulated EOS, we noticed

that the EOS Omni thorn presented some limitations in dealing with such EOS type. In

particular, to compute the temperature T from the specific internal energy ε, the thorn

adopts a Newton-Raphson routine with a fall-back to a bisection routine in case of too

many iterations, after verifying that the root is bracketed. We found this algorithm to

be not robust enough in cases when T weakly depends on ε, which may lead T to go

out of the bounds present in the chosen table (see [52]). This problem was present in

particular when dealing with NS initial data using the lowest T available in the EOS

table. Such initial data undergo a sharp temperature increase in the core of the NS

due to numerical readjustment of the initial data given by the solution of the TOV

equations. We proposed a modification of the EOS Omni thorn to the EinsteinToolkit

developers that consisted in preferring the fall-back to the more robust bisection method

in such cases. In this way, we verified the temperature T to be always contained in the

range available in the table. This modification was accepted and it is now included in

the publicly available EinsteinToolkit since May 2020 [53].

We performed all the simulations discussed in Section 4 using this new version of

the EOS Omni thorn. We therefore caution the reader that the Spritz code should be

used with the May 2020 release of the EinsteinToolkit (or later versions) when using

tabulated EOS.

3.2. Initial Data

In order to compute the initial data, one needs to reduce the 3D EOS table to a 1D EOS,

in which the pressure P is only a function of the rest-mass density ρ. To do this, we

assume β-equilibrium and then apply the S–slicing or T–slicing condition mentioned in

Section 2.2. We coded a python script for this purpose (available with the public version

of Spritz) that produces a 1D tabulated EOS starting from a 3D tabulated EOS in

.h5 format, such as the ones provided in [32]. The 1D EOS is saved in the CompOSE

format [37] that can be easily used with LORENE [54]. The initial data used in this paper,

reproducing a single non-rotating NS (TOV), were in particular produced with the code

Nrotstar that can compute equilibrium solutions for non-rotating or uniformly rotating

NSs. These solutions are non-magnetized, but a magnetic field can be easily added to

the initial data as long as the field strength is . 1017 G, such that no significant effects

on the NS structure nor significant violations of the constraint equations are introduced.

To read the initial data in the Spritz code we developed the ID Nrotstar thorn

which is simply a reader that makes use of the LORENE library to read initial data

produced with Nrotstar and import them in the Cartesian grid used by the code. Since

the initial data were produced assuming β-equilibrium, we also developed an additional
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thorn, Spritz SetBeta, that instead makes sure that, when computing the conservative

variables from the primitive ones at iteration 0, the code uses the same 1D EOS used

to compute the initial data. After the initial data are correctly imported and conserved

variables computed, the evolution starts and the full 3D EOS table is used.

Both ID Nrotstar and Spritz SetBeta are part of version 1.1.0 of the Spritz

code [28].

3.3. Conservative-to-Primitive Inversion

When using tabulated EOS we employ the 1D method for the conservative-to-primitive

inversion presented by Palenzuela et al. [25]. This method is a modification to the 1D

method already used in GRHD [52]. It consists of rewriting the conserved variables in

the following way

q ≡ τ̃

D
, r ≡ S2

D2
, s ≡ B2

D
, t ≡ BiS

i

D
3
2

, (23)

and searching for the independent variable x ≡ hW . One then looks for the solution of

f(x) = 0, where f(x) = x−hW . We point the reader to [25] for more details about the

algorithm. Here, it is only important to note that the Brent’s method [55] is used for

the root finding, where the independent variable x should be properly bracketed, thus

x ∈ ]xL, xR[, with f (xL) · f (xR) < 0. The left and right bounds can be defined in the

following way (see [56]):

xL =1 + q − s,
xR =2 + 2q − s.

(24)

If no consistent bound is found, then the point is set to atmosphere.

As we will show in Section 4, we are also interested in performing simulations where

the initial temperature T is forced to be constant. This may be useful in order to avoid

spurious neutrino production in particular scenarios, e.g. during BNS inspiral (for some

examples, see [57, 58, 59]) or when evolving a single cold NS (that may undergo a

sharp initial rise of temperature as already mentioned in Section 3.1). However, the

aforementioned 1D conservative-to-primitive scheme cannot be used in such cases and

we adopt a modification of the 3eqs method that was already implemented in the Spritz

code (see [27] and [60] for details), where the τ̃ variable is not used in computing the

primitive variables. In particular, we refer to Eq. (45) of [60], defining the function

f (Wguess) ≡ S2 −

[(
Ẑ +B2

)2 W 2
guess − 1

W 2
guess

− 2Ẑ +B2

Ẑ2

(
BiSi

)2

]
, (25)

where

Ẑ = W 2
guess

(
ρ̂+ ρ̂ε̂+ P̂

)
, (26)

ρ̂ =
D

Wguess

, (27)



A new GRMHD code with neutrino leakage 11

and P̂ and ε̂ can be computed via the EOS using ρ̂ and the constrained value of T . The

algorithm proceeds as follows:

(i) the initial guess for the solution is assumed to be Wguess ∈ [1.0, 1.5]+;

(ii) ρ̂, P̂ , ε̂, and Ẑ are computed using the EOS with the constrained value of T and

the conserved variables;

(iii) if, using Equation (25), f(1)·f(1.5) > 0, the point is actually set to the atmosphere;

(iv) the Brent’s method [55] is applied to the function f defined in Equation (25).

We note that we use Eq. (45) but not Eq. (46) of [60] when forcing the temperature

to be constant. Therefore, we also need to update the value of τ̃ after each conservative-

to-primitive calculation in order to guarantee consistency between primitive and

conservative variables. This is similar to what is done in other codes when using a

cold EOS during the evolution. As we will show in Section 4, the code is able to easily

switch from a constrained to a free temperature evolution without particular problems.

3.4. Neutrino Leakage Implementation

Our implementation of the neutrino leakage scheme described in Section 2.3 is based

on the thorn ZelmaniLeak available at the stellarcollapse website [32] and firstly

presented in [44]. In particular, we employ version 20161117 of such thorn. The thorn

ZelmaniLeak uses all the cross-sections and heating rate described in section 2.3 and

these cannot be modified by the user unless the code itself is modified. Nevetheless, the

user can choose whether to activate neutrino heating or not as well as to include or not

neutrino emission since the beginning of the simulation or after some time. Moreover,

the user can freely set the number of radii across which the optical depth is computed.

4. Tests

In this Section, we report the full set of tests that we performed in order to check the

implementation of the new infrastructure for the neutrino leakage scheme. Our reference

physical system is a stable non-rotating NS (TOV). In particular, we consider an NS

with mass 1.68 M� and EOS LS220 [61], which gives a radius of about 9.7 km. The

initial data are produced using the Lorene/Nrotstar code, as discussed in Section 3.2.

We consider both magnetized and non-magnetized NSs. For the latter, we initially add

a purely poloidal magnetic field using the following vector potential prescription:

Aφ ≡ Ab$
2max (P − Pcut, 0)ns , (28)

where $ is the cylindrical radius, Ab is a positive constant, Pcut = 0.04Pmax determines

the cutoff when the magnetic field goes to zero inside the NS, with Pmax corresponding

to the initial maximum gas pressure, and ns = 2 sets the degree of differentiability of

the magnetic field strength [62]. The magnetic field is confined within the NS because

+ This corresponds to assuming v ∈ [0.0, 0.75c]
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Figure 1: Left panel: initial magnetic field setup for simulations 13 and 14 (see Table 2).

Black lines represent isocontours of the φ-component of the vector potential, while the red

line corresponds to ρ ' 3 × 1012 g/cm3. Right panel: as in the left panel but at the end of

simulation 16.

of our use of the ideal MHD approximation, which is not valid in extremely low density

regions (i.e outside the NS). This is also the “standard” magnetic field configuration

used for the initial data of most BNS merger simulations (but see, e.g., [22]). The

value of Ab is chosen such that the maximum value of the initial magnetic field strength

is set to 1016 G. This corresponds to the largest order of magnitude for a magnetic

field that can be added to a TOV solution without introducing significant violations

in the constraints of Einstein’s equations. Significantly larger magnetic fields would

indeed affect the structure of the star and therefore TOV equations could not be used

anymore [63]. We also note that the average magnetic field that is reached in a post-

merger remnant is typically of order ∼ 1016 G (see for example [64]). One example of

the initial and final magnetic field distribution is given in Figure 1.

All the simulations adopt 5 refinement levels. The outer boundary of the domain

extends to ≈ 193 km in every direction, while the innermost refinement level extends up

to 13 km. The finest grid resolution is dx ≈ 177 m and the grid spacing doubles going

from a refinement level to the next. The entire NS is contained within the most refined

region and the NS radius is covered with about 60 points. Magnetized simulations

adopt the full 3D domain,∗ while non-magnetized simulations are performed in octant

symmetry, unless specified otherwise (label “3D” appearing in the test name). All

simulations adopt the so called “none” outer boundary conditions described in [27]

for the hydro variables (i.e., the values of all hydro variables are kept fixed to their

initial values), linear extrapolation for the vector and scalar potential [27], and radiative

boundary conditions for the metric variables [29]. The simulations in octant symmetry

also employ reflection symmetry conditions across the x = 0, y = 0, and z = 0 planes.

∗ This choice is due to the lack of proper reflection symmetry conditions implemented for staggered

variables (i.e. for the vector and scalar potentials evolved by our code when magnetic fields are present).
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Table 1: Initial Data used for the unmagnetised (B = 0) tests.

ID Test Name β-eq. Initial Data ν Leakage T evolution

01 Spr S NL NB 3D S-slice 1kb/bar Disabled Yes

02 GRH S NL NB S-slice 1kb/bar Disabled Yes

03 Spr S NL NB S-slice 1kb/bar Disabled Yes

04 Spr S YL NB 3D S-slice 1kb/bar Enabled Yes

05 GRH S YL NB S-slice 1kb/bar Enabled Yes

06 Spr S YL NB S-slice 1kb/bar Enabled Yes

07 GRH T NL NB T-slice 0.01 MeV Disabled Yes

08 Spr T NL NB T-slice 0.01 MeV Disabled Yes

09 Spr T1 NL NB T-slice 0.01 MeV Disabled Yes (after t = 2ms)

10 GRH T YL NB T-slice 0.01 MeV Enabled Yes

11 Spr T YL NB T-slice 0.01 MeV Enabled Yes

12 Spr T1 YL NB T-slice 0.01 MeV Enabled (at t = 3ms) Yes (after t = 2ms)

Table 2: Initial Data used for the magnetized (B ∼ 1016G) tests.

ID Test Name β-eq. Initial Data ν Leakage T evolution

13 Spr S NL YB S-slice 1kb/bar Disabled Yes

14 Spr S YL YB S-slice 1kb/bar Enabled Yes

15 Spr T1 NL YB T-slice 0.01 MeV Disabled Yes (after t = 2ms)

16 Spr T1 YL YB T-slice 0.01 MeV Enabled (at t = 3ms) Yes (after t = 2ms)

For the ray-by-ray calculations of the neutrino leakage scheme, we use 9 independent

directions in θ and 16 in φ. While this holds for full 3D simulations, these numbers

should be rescaled for cases where octant symmetry is employed (i.e. 5 independent

directions in both θ and φ).

The set of tests we performed are summarized in Table 1 and 2, referring to non-

magnetized and magnetized cases, respectively. All simulations cover about 6 ms of

evolution. This timescale corresponds to ∼ 14 dynamical timescales and therefore it

allows us to study these systems for a sufficiently long time for the tests presented

here without requiring too much computational resources. We remark that the code

was stopped after ∼ 6 ms and it did not present any sign of instability or numerical

problem at that time. In the following, we first discuss the results without neutrino

leakage, testing the implementation of the tabulated EOS handling, and then those

with neutrino leakage, with and without neutrino heating.

Among the physical quantities monitored in our tests, we considered the total
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neutrino luminosity of each neutrino species, defined in cartesian coordinates as

L∞νi =

∫ ∞
0

∫ ∞
0

∫ ∞
0

Qeff
νi

(x′, y′, z′)
[
α2(x′, y′, z′)W (x′, y′, z′)

× (1 + vr(x′, y′, z′))]
√
γdx′dy′dz′,

(29)

where vr = (xvx + yvy + zvz)/
√
x2 + y2 + z2.

4.1. Testing Tabulated EOS Without Neutrino Leakage

In order to test the implementation of the tabulated EOS treatment, we here report the

results of all the simulations performed without enabling the leakage scheme, starting

from both S–slicing and T–slicing initial data.

The results for the evolution of the maximum of ρ and T for the S–slicing initial

condition are shown in Figure 2. In these models the maximum of the temperature is

located at the NS centre and it shows an increase of less than 1% by the end of the

simulation (likely due to shocks produced by the NS oscillations). In particular, the

figure shows exact match for simulations 01, 02, 03, and 13, as expected (see Table 1

and 2). Noticeably, adopting octant symmetry in pure-hydro simulations 02 and 03,

performed with the GRHydro and the Spritz codes respectively, produces the same

results as adopting full-3D in simulations 01 and 13. Moreover, the magnetic field of

simulation 13 is correctly handled during the evolution and does not significantly alter

the hydrodynamic quantities as expected (we remind that, even if large, a magnetic field

of ∼ 1016 G provides a magnetic energy which is still ∼ 2 orders of magnitude below

equipartition).
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Figure 2: Evolution of initial data produced with the S–slicing conditions and without

neutrinos. The left panel shows the evolution of the maximum rest-mass density normalized

to its initial value. The right panel is the equivalent for the maximum temperature (which is

located at the NS centre).
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The same comparison for T–slicing initial condition is shown in Figure 3 and

Figure 4. In this case the maximum of the temperature is located instead on the NS

surface. Simulation 09 is the most delicate in the pure-hydro setting, since it forces

the temperature T to be constant for the first ∼ 2 ms and then allows it to evolve

(see Section 3.3). When the temperature is free to evolve, an artificial shock is produced

at the surface of the NS (as expected), but, after this initial transient, the maximum of

ρ follows closely the results given by the simulations 07 and 08, where T is evolved since

the beginning. Also the temperature, after the initial transient, tends to a constant

value. In addition, Figure 4 shows perfect match between simulation 09, performed in

pure-hydro, and the magnetized simulation 15.
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Figure 3: Same as Figure 2 but for T–slicing conditions (in this case the maximum of the

temperature is located on the NS surface).

Based on the above results, we conclude that the tabulated EOS treatment is

correctly handled by our implementation and we can then proceed in testing the neutrino

leakage scheme.

4.2. Testing the Neutrino Leakage Implementation

Here we report the results of simulations involving neutrino leakage with constant-S and

constant-T initial data, including the evolution of the total neutrino luminosity for each

neutrino species, computed according to Equation (29). We first present the results of

tests performed without the heating contribution of Equation (17) and then including

it.

4.2.1. Tests Without Heating. Figure 5 shows the comparison of tests evolving S–

slicing initial data with neutrino leakage, but without the contribution of neutrino

absorption and heating: the maxima of ρ and T normalized to their initial values are
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Figure 4: Evolution of initial data produced with the T–slicing conditions for simulations

where the temperature evolution is only allowed after 2 ms. The left panel shows the evolution

of the maximum rest-mass density normalized to its initial value, while the right panel shows

the same but for the maximum temperature.

shown in the top panels, while the bottom panels show the results for the luminosity of

each neutrino species (electron neutrinos, electron antineutrinos, and the µ and τ species

going from left to right) as computed in Equation (29). In particular, the luminosity

plots show that the scenario is clearly dominated by electron capture. Also in this

case we can see that the maximum temperature, which for the S–slicing initial data is

located at the NS centre, shows an increase of less than 1%. Neutrino cooling at the

centre of the star is not effective due to the high density (and thus high optical depths)

and therefore it does not significantly affect the temperature evolution in that region.

A similar comparison for T–slicing initial data is shown in Figure 6 (we remind

that in this case the maximum of the temperature is located on the NS surface and it is

strongly affected by the artificial shocks that develop there). Despite minor differences

due to the different implementations in the GRHydro and Spritz codes, the results

appear in good agreement.

4.2.2. Tests Including Heating. We now turn to consider how the heating contribution

alters the results of simulations. In Figure 7 and Figure 8 we compare the results

respectively of one S–slicing and one T–slicing ID performed with and without such

contribution. As already seen in Figure 3, starting from cold NS initial data produces a

sharp transient for the maximum of T (located at the NS surface for the T–slicing ID) in

the first few time steps, where the NS internal temperature undergoes a re-adjustment

(due also to the expected production of shocks at the NS surface). This transition may

be an issue when considering neutrino leakage since it may produce luminosities much

larger than expected. Moreover, we recall that the heating given by Equation (17) is
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Figure 5: Top panels: Same as Figure 2 but for S–slicing simulations considering leakage

and no heating. Bottom panels: Evolution of neutrino luminosities (Equation (29)) for the

different neutrino species (from left to right: νe, ν̄e indicated here as νa, and νx).

not self-consistent in terms of energy balance (see also Section 3.4). Therefore, when

considering the heating contribution (Figure 8), we activated the leakage 1 ms later,

i.e. after the initial transient.

Figure 9 collect results for S–slicing ID and neutrino leakage including heating. In

this case, without an initial temperature readjustment, the heating contribution does not

need to be activated after 1 ms. We also show the maximum magnetic field evolution

for the magnetized cases 13 (without leakage) and 14 (with leakage and the heating

contribution) in Figure 10. We found an exact match.

In Figure 11, we compare the cases with cold NS initial data (T–slicing) and

neutrino leakage including heating. For simulation 11, which evolves the temperature

since the beginning, we enable the leakage after only 1 ms. For simulations 12 and 16,
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Figure 6: Same as Figure 5 but for T–slicing simulations 10 and 11, performed respectively

with the GRHydro and the Spritz codes.

evolving the temperature only after 2 ms, we enable the leakage at 3 ms. Despite the

difference in the activation times of T evolution and leakage, and in the presence or

absence of magnetic fields, all the results show a very good agreement in the maximum

rest-mass density and the late-time electron neutrino luminosities. Finally, looking again

at the maximum magnetic field evolution, Figure 12 shows that also simulations 15 and

16 are perfectly matching each other.

All the test results presented in this Section are indicative of a correct

implementation of the neutrino leakage scheme and that the code is ready to be used

in more complex astrophysical scenarios, e.g., BNS mergers including tabulated EOS,

magnetic fields, and neutrino emission and absorption (with the intrinsic limitations of

the leakage scheme itself; see discussion below).
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Figure 7: Same as Figure 5 but for the simulation 06 including leakage, with and without

the heating contribution.
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Figure 8: Same as Figure 5 but for the simulation 10 including leakage, with and without the

heating contribution. Where heating is considered (blue solid curve), the leakage is activated

at t = 1 ms in order to avoid spurious effects due to the initial sharp drift in the maximum

temperature.
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Figure 9: Same as Figure 5 but considering the heating contribution.
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Figure 10: Comparison of results for evolution of Bmax produced with the S–slicing

conditions, with and without neutrino leakage and heating.
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Figure 11: Same as Figure 5 but considering T-slicing cases with neutrino leakage and heating

contribution, where leakage is activated 1 ms after temperature evolution is enabled (at t = 0

for model 11, at t = 2 ms for model 12, 16).
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Figure 12: Same as Figure 10 but for T–slicing ID.
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5. Discussion and Conclusions

We presented a new version of our fully GRMHD code Spritz (available on Zenodo as

version 1.1.0 [28]) that now includes neutrino cooling and heating via the ZelmaniLeak

code. We performed a series of tests to show the robustness of the code in handling

a variety of different physical scenarios, including the evolution of both “cold” and

“hot” NSs with and without magnetic fields or neutrino leakage. For the cases with

neutrino leakage, we also considered the effects of having neutrino heating activated or

deactivated.

The Spritz code will be used in future work to study the merger of magnetized

BNS systems employing finite temperature tabulated EOSs and including neutrino

emission and reabsorption. The code has indeed all the necessary routines to evolve

BNS systems during inspiral, merger and post-merger phases. Initial data for BNS

systems can be produced with the publicly available LORENE library and they can be

read with the EinsteinInitialData/Meudon Bin NS thorn included in the Einstein

Toolkit. Results from BNS merger simulations with Spritz will be presented in a

future paper. We note that the neutrino leakage scheme implemented here, which

represents the first step towards a more advanced neutrino treatment, presents some

limitations. First, the method adopts a ray-by-ray approach, which is well-suited for

problems involving geometries that are, at first approximation, spherically symmetric

(for instance, in the context of core collapse supernovae; see, e.g., [65] and references

therein). For this reason, it should work reasonably well in a post-merger remnant NS

phase where the latter has already achieved an approximately spherical configuration

[24], but in the early post-merger or after the collapse into a BH surrounded by an

accretion disk, when significant deviations from spherical symmetry are present, it

would in part over-estimate the neutrino opacities used in the leakage scheme. To

overcome such limitation, various groups implemented a local opacity calculation [66],

which better accounts for non-spherical geometries. This different opacity calculation

has been already employed in magnetized BNS mergers with neutrino leakage [25, 26],

but without accounting for neutrino heating/reabsorption. These simulations represent

the current state-of-the-art in the context of magnetized BNS mergers with neutrinos.

A second and more general limitation, that is shared among all leakage schemes, is

that neutrino energy estimates are not precise enough to provide an accurate estimate

of the electron fraction in the ejecta and thus in the computation of the r-process

nucleosynthesis and consequent kilonova emission (e.g., see [16]). The above limitations

can be overcome by adopting more accurate neutrino transport schemes, such as the

Monte-Carlo-based scheme recently adopted for the first time in (nonmagnetized) BNS

merger simulations [33] or even the (much more computationally expensive) full solution

of Boltzmann transport equations [67]. Future work will be devoted to improve on our

current neutrino treatment, possibly following the direction suggested by [33].

We have also implemented high-order methods for the evolution of hydrodynamical

quantities (see Appendix A for a discussion) which will allow our code to provide a
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better description of matter dynamics and produce also more accurate GW signals. We

plan to extend the implementation of these methods also to the equations describing the

evolution of magnetic fields, following an approach similar to the one discussed in [26].

The initial data and EOSs used in this paper are available for download in the

supplemental material.
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Appendix A. Higher order methods

Here we present the implementation of the high-order scheme in the Spritz code and

some tests that assess the convergence order of this algorithm.

Appendix A.1. Reconstruction step: WENOZ method

The first step in the development of a high-order scheme is the choice of the

reconstruction method. Here, we consider the fifth-order WENOZ algorithm [68].

In the following, we will consider only one dimension without loss of generality: the

multidimensional scheme is simply retrieved by considering the fluxes in each direction

separately.

The fifth-order WENO scheme employs a 5-points stencil, S5, which is subdivided

into three 3-points substencils, {S0, S1, S2}. The polynomial approximation fi+1/2,

which is the reconstruction of the grid function fi on the left side of the interface],

is built through the following convex combination of the interpolated values fki+1/2, that

are third degree polynomials defined on each substencil Sk, k = 0, 1, 2:

fi+1/2 =
2∑

k=0

ωkf
k
i+1/2 . (A.1)

The polynomial on each substencil is given by the quadratic interpolations

f 0
i+1/2 =

1

8
(3fi−2 − 10fi−1 + 15fi) , (A.2)

] fi−1/2 is simply given by swapping the indices of the stencil: (i − 2, i − 1, i, i + 1, i + 2) →
(i+ 2, i+ 1, i, i− 1, i− 2)
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f 1
i+1/2 =

1

8
(−fi−1 + 6fi + 3fi+1) , (A.3)

f 2
i+1/2 =

1

8
(3fi + 6fi+1 − fi+2) . (A.4)

The weights ωk are defined as

ωk =
αk∑2
j=0 αj

. (A.5)

For WENOZ, the unnormalized weights αk are defined as

αk = dk

(
1 +
|β0 − β2|
βk + ε

)
, (A.6)

with ε = 10−26 (which avoids a possible division by zero), optimal weights dk =

(1/16, 10/16, 5/16), corresponding to the weights obtained for smooth fields, and

smoothness indicators

β0 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2 , (A.7)

β1 =
13

12
(fi−1 − 2fi + fi+1)2 +

1

4
(fi−1 − fi+1)2 , (A.8)

and

β2 =
13

12
(fi − 2fi+1 + fi+2)2 +

1

4
(3fi − 4fi+1 + fi+2)2 , (A.9)

that measure the regularity of the k-th polynomial approximation fki at the stencil Sk.

Note that the choices of the coefficients in (A.2) - (A.4) and of the optimal weights

dk follow the one in [69], which differ from the one in the original paper, because it has

been noted that these values suit better the high order scheme in combination with the

derivation operation.

Appendix A.2. Derivation operation

The derivation operation is a high-order procedure which allows one to obtain a high

order approximation from the point value quantities calculated at the intercell location.

This step has to be performed right after the computation of the fluxes via

an approximate Riemann solver and it is necessary to preserve the accuracy in the

calculation of spatial derivatives for schemes with order n > 2. As we did before, we

will restrict the discussion to one dimension. The procedure described here follows the

one outlined in the ECHO paper [69]. Using this procedure, we will provide the numerical

flux function f̂i+1/2, given a stencil of intercell fluxes {fi+1/2}.
The finite difference approximation of the first derivative in the point xi can be

written as

hf ′(xi) ≈ f̂i+1/2 − f̂i−1/2 =

= a(fi+1/2 − fi−1/2) + b(fi+3/2 − fi−3/2) + c(fi+5/2 − fi−5/2) (A.10)
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Table A1: Coefficients of the approximation f̂j+1/2 .

n d0 d2 d4

2 1 0 0

4 13/12 -1/24 0

6 1067/960 -29/480 3/640

where the approximation has been truncated at sixth order and h is the constant grid

spacing.

If we now expand both sides of the equation in Taylor series around xi we find

hf
(1)
i =

+∞∑
k=0

f
(k)
i

hk

k!2k
[
1− (−1)k

] [
a+ 3kb+ 5kc

]
, (A.11)

where the exponents indicate the corresponding order of derivation, and the first

derivative has been rewritten as f
(1)
i ≡ f ′(xi). It is clear that all terms with even k

vanish. For n = 2, where b = c = 0, we find a = 1. For n = 4, where c = 0, we have

a = 9/8 and b = −1/24. Finally, for n = 6, the solution is a = 75/64, b = −25/384,

c = 3/640. The next step is to write

f̂i+1/2 = d0fi+1/2 + d2(fi−1/2 + fi+3/2) + d4(fi−3/2 + fi+5/2) , (A.12)

and the comparison with (A.11) gives the relations d0 = a+b+c, d2 = b+c, d4 = c. The

numerical values of d0, d2, and d4 for the different order of approximation are provided

in Table A1. Note that for n = 2 one gets f̂j+1/2 = fj+1/2 as expected.

In order to highlight the nature of this procedure as a correction for higher than

second order approximation, it is convenient to rewrite Equation (A.12) as

f̂i+1/2 = fi+1/2 −
1

24
∆(2)fi+1/2 +

3

640
∆(4)fi+1/2 , (A.13)

where only the first term is used in the case n = 2, the second is added for n = 4 and

the complete expression is used for n = 6. For a generic index i the second and fourth

order numerical derivative are given by

∆(2)fi = fi−1 − 2fi + fi+1 (A.14)

and

∆(4)fi = ∆(2)fi−1 − 2∆(2)fi + ∆(2)fi+1 =

= fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2 , (A.15)

respectively.

Appendix A.3. Simple Wave Test

The first test performed to check the convergence of the total procedure is the evolution

of a relativistic simple wave [70, 71]. We have run this test using WENOZ as

reconstruction method along with n = 2, 4, 6 correction to the HLLE Riemann solver

(in the following, they will be addressed as HLLE2, HLLE4, and HLLE6, respectively).
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The initial data are set up by choosing a reference state: following [35], we chose

a right-propagating simple wave with ρ0 = 1 and v0 = 0. Assuming a polytropic EOS

with Γ = 5/3 and K = 100, one can compute the sound speed in the reference frame

via

c2
0 =

KΓ(Γ− 1)ρΓ
0

(Γ− 1)ρ0 +KΓρΓ
0

(A.16)

obtaining, in the specific case, c0 ≈ 0.815. After the reference state has been defined,

the velocity is perturbed with a sin-like function, so that its profile becomes (dashed

line in the left panel of Figure A1)

v = aΘ(X − |x|) sin6
[π

2

( x
X
− 1
)]

, (A.17)

where Θ(x) is the Heaviside function, a = 0.5, and X = 0.3. Finally, the new sound

speed is computed according to the Riemann invariant [71]

cs =
√

Γ− 1

√
Γ−1+c0√
Γ−1−c0

(
1+v
1−v

)√Γ−1/2 − 1
√

Γ−1+c0√
Γ−1−c0

(
1+v
1−v

)√Γ−1/2
+ 1

, (A.18)

so that cs = c0 at v = 0 and cs →
√

Γ− 1 as v → 1. The other quantities follow from

the EOS:

ε̂ =
c2
s

Γ(Γ− 1− c2
s)
, (A.19)

ρ̂ = ε1/(Γ−1) , (A.20)

p̂ = εΓ/(Γ−1) , (A.21)

where ε̂, ρ̂, and p̂ are, respectively, the specific internal energy, the density, and the

pressure normalized over the corresponding quantities in the reference state. The

solutions are computed on a 1-dimensional domain [−1.5, 1.5], employing RK4 integrator

for HLLE2 and HLLE4, and RK65 for HLLE6††, with a CFL factor of 0.125.

During the evolution, the profile of the wave begins to steepen until a shock is

formed at t ≈ 0.63 (see [70]). In order to quantify the convergence properties of the

various methods, we computed the self convergence factor defined as

p ≡ log2

(
||f(4∆x)− f(2∆x)||
||f(2∆x)− f(∆x)||

)
. (A.22)

The functions f(∆x), f(2∆x), and f(4∆x) represent the numerical solutions calculated

on uniform grids with corresponding grid spacing, and the norm employed is the L2-

norm. In this test, the three different resolutions are ∆x = 0.0075, 0.00375, 0.001875,

corresponding to 400, 800, 1600 points.

As it can be seen from the right panel of Figure (A1), the nominal convergence

order is reached until the appearance of the shock. For both WENOZ+HLLE2

††This choice has been carried out in order to avoid a possible limitation on the order of convergence

due to the Runge-Kutta integrator.
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Figure A1: Left: Solution with 400 points. Right: Self-convergence factor (A.22), computed

from three different resolutions: 400, 800, 1600 points.

and WENOZ+HLLE4, the convergence is dominated by the order of the derivation

operation; otherwise, for WENOZ+HLLE6, the convergence is dominated by the order

of the reconstruction method and this is why we cannot get an order of convergence

higher than fifth. As expected, the convergence order goes down for all methods when

the shock is formed.

Appendix A.4. Non-magnetized TOV

A second test that has been performed is the evolution of a non-magnetized TOV star;

the setup is the same used in the first paper of Spritz [27]. In particular, the initial

configuration is generated using a polytropic EOS with Γ = 2.0 and K = 100, and

initial rest-mass density ρ = 1.28 × 10−3. The evolution of the system is then carried

out adopting an ideal fluid EOS with the same value of Γ. The physical domain is

[−20, 20] for x-, y-, and z-coordinates, with low, medium, and high resolution having

323, 643, and 1283 cells, respectively. All the tests lasted for 5 ms using the WENOZ

reconstruction method and the three approximation for the Riemann solver (HLLE2,

HLLE4, and HLLE6). In the cases of HLLE2 and HLLE4, RK4 method is employed for

time stepping, while RK65 is used in HLLE6 case, with a CFL factor of 0.25.

In the continuum limit, the evolution of this kind of system is trivial; however, the

discretization of the problem brings errors (due to the discretization itself) that cause

radial oscillations, which are observable, for example, in the central rest-mass density

(see Fig. A2). The amplitude of these oscillations becomes smaller as the number of

points increases. In the right panels of Figure (A2) it is possible to note that the

density has a peculiar behavior for low and medium resolution at late times. This fact

can be traced back to the choice of the ideal fluids EOS in the evolution of the system:

it is known that truncation errors with this EOS are very large, because significant

unphysical shock-heating is observed at low densities [35].
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Figure A2: Left: Evolution of |ρc(t)− ρc(0)|. Right: Self-convergence factor p (top panels),

computed from the three different resolutions (323, 643, 1283 points), and ρmax/ρmax,0 (bottom

panels).
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Figure A3: Power spectrum of the central rest-mass density evolution, normalized to the

maximum amplitude of the oscillation frequency peaks.

In order to verify the convergence of the high-order methods, we compute the self-

convergence factor (based on deviations of central rest-mass density with respect to the

initial value), which oscillates around the value p = 3 for both HLLE4 and HLLE6. Such

order of convergence is maintained until the aforementioned truncation errors become

significant, i.e., until ∼ 4 ms.

In the end, Figure (A3) reports the power spectrum of the evolution of the rest-

mass densities of the different runs. The power spectrum is computed via a fast

Fourier transform (FFT) in order to extract the amplitudes and the frequencies of

the oscillations, and then the amplitudes are normalized to the maximum for each

simulation. Figure (A3) also shows the peaks’ frequencies of the oscillations taken from

the literature [72], that were obtained with independent codes. All the simulations show

a good agreement with each other and the independent results. In particular, it is worth

noting that the high-order reconstruction coupled to high-order Riemann solvers (black-

dotted and green-dashed curves in the figure) is evidently capable of better resolving

the overtones (i.e. the higher frequency peaks in the spectrum) with respect to the

lower-order methods (red-solid and blue-dash-dotted curves in the figure).

Appendix A.5. Magnetized TOV with Tabulated EOS

Finally, we performed a test evolving a magnetized TOV star using a tabulated EOS

(LS220), with a S-slicing initial condition, and employing WENOZ as reconstrunction

method and the 4-th order approximation for the HLLE Riemann solver (this case has

been called WENOZ+HLLE4). This case is then compared with the same case evolved

using PPM reconstruction method and the 2-nd order approximation to HLLE, denoted

with PPM+HLLE2.

The upper panels of Figure (A4) show the evolution of the central rest-mass density

ρc and of the maximum of the temperature Tmax, both normalized over their initial
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values, respectively ρc,0 and Tmax,0. The results obtained with the use of the high-

order scheme, in particular the setup WENOZ+HLLE4, are more precise than the ones

obtained with the older version of the Spritz code; using high-order methods helps

reducing the oscillations around the real value. Moreover, enabling WENOZ and the

fourth-order correction to HLLE softens the slight increasing behaviour of Tmax, as

shown in the upper right panel of Figure (A4).

The gain in accuracy is particularly evident in the plot for the power spectrum of

the evolution of the central rest-mass density, shown in the lower panel of Figure (A4).

Each power spectrum is computed, as before, via the FFT and the amplitudes are

normalized over their maximum for each simulation. It can be easily seen that, while

the lower-order version of Spritz shows a noticeable peak only for the fundamental

frequency, the high-order upgrade can resolve very well also the first overtone, which

results to be more prominent than the one of the PPM+HLLE2 case.
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Figure A4: Comparison between the results obtained with and without high-order methods

for a TOV evolved with the LS220 EOS. Upper panels: Evolution of the central rest-mass

density (left) and the maximum of the temperature (right), both normalized to their initial

values. Bottom panel: Normalized power spectrum of the central rest-mass density.
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