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ABSTRACT
Expensive forward model evaluations and the curse of dimensionality usually hinder
applications of Markov chain Monte Carlo algorithms to geophysical inverse prob-
lems. Another challenge of these methods is related to the definition of an appropri-
ate proposal distribution that simultaneously should be inexpensive to manipulate
and a good approximation of the posterior density. Here we present a gradient-based
Markov chain Monte Carlo inversion algorithm that is applied to cast the electrical
resistivity tomography into a probabilistic framework. The sampling is accelerated by
exploiting theHessian and gradient information of the negative log-posterior to define
a proposal that is a local, Gaussian approximation of the target posterior probability.
On the one hand, the computing time to run the many forward evaluations needed
for both the data likelihood evaluation and the Hessian and gradient computation is
decreased by training a residual neural network to predict the forward mapping be-
tween the resistivity model and the apparent resistivity value. On the other hand, the
curse of dimensionality issue and the computational effort related to the Hessian and
gradient manipulation are decreased by compressing data and model spaces through a
discrete cosine transform.A non-parametric distribution is assumed as the prior prob-
ability density function. The method is first demonstrated on synthetic data and then
applied to field measurements. The outcomes provided by the presented approach are
also benchmarked against those obtained when a computationally expensive finite-
element code is employed for forward modelling , with the results of a gradient-free
Markov chain Monte Carlo inversion, and also compared with the predictions of a
deterministic inversion. The implemented approach not only guarantees uncertainty
assessments and model predictions comparable with those achieved by more stan-
dard inversion strategies, but also drastically decreases the computational cost of the
probabilistic inversion, making it similar to that of a deterministic inversion.
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INTRODUCTION

The main challenge posed by geophysical inverse problems
is inherent to their ill-posedness: different combinations of
model parameters produce almost the same experimental
observations. Such non-uniqueness usually arises from noise
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contamination in the data, insufficient data coverage, and the
intrinsic mathematical properties of the forward operator. To
properly assess the uncertainties affecting the inverse solu-
tion a probabilistic, Bayesian framework is usually adopted
(Tarantola, 2005). Differently, a deterministic approach, al-
though guaranteeing rapid convergence towards a best-fitting
model, is incapable of accounting for the uncertainties in the
predictions. The Bayesian inversion combines prior model un-
certainties, data uncertainties (i.e., produced by noise con-
tamination) and modelling errors (i.e., related to the approx-
imated physics used to link the model to the data) into the
posterior probability density (PPD) function that is the out-
come of the probabilistic inversion. However, an analytical
PPD computation is possible only for Gaussian-distributed
model parameters and data, and linear forward operators.
Otherwise, a numerical assessment of the PPD is needed, and
to this end, Markov chain Monte Carlo (MCMC) sampling
methods can be adopted (Sambridge and Moseegard, 2002;
Sen and Stoffa, 2013). However, expensive forward model
operators and the curse of dimensionality occurring in high-
dimensional parameter spaces (Curtis and Lomax, 2001) usu-
ally hamper the application ofMCMC algorithms to geophys-
ical inversions.

To sample the PPD, MCMC algorithms iteratively sam-
ple the parameter space by perturbing the current state
of the chain (current model) according to a specified pro-
posal distribution. The generated samples are accepted or re-
jected according to the Metropolis–Hasting rule. Theoreti-
cally, the estimated PPD is independent of the proposal for
an infinite number of generated samples. However, from
a more practical perspective, the probabilistic sampling is
maximally efficient when the proposal is a fair approxima-
tion of the target PPD, and thus the choice of such a pro-
posal critically determines the computational efficiency of the
MCMC inversion. To solve this issue, some advanced MCMC
recipes have been proposed over the last decades (e.g., self-
adaptiveMCMC algorithms, preconditionedMCMC, and hy-
brid MCMC approaches; Haario et al., 2001, 2006; Turner
and Sederberg, 2012; Sambridge, 2014; Vrugt, 2016; Holmes
et al., 2017). As an alternative, gradient-based MCMC (GB-
MCMC) sampling (e.g., Hamiltonian Monte Carlo, Langevin
Monte Carlo; Sen and Biswaw, 2017; Fichtner and Simutè,
2018; Fichtner and Zunino, 2019; Fichtner et al., 2019; Ge-
brad et al., 2020; Aleardi and Salusti, 2020; Aleardi, 2020)
exploits the gradient information of the negative natural log-
arithm of the posterior to decrease the number of iterations
needed to converge towards a stable posterior (MacKay, 2003;
Neal, 2011). It has been demonstrated that the inclusion of
this information not only speeds up the probabilistic sam-

pling, but also maximizes the independence of the samples
while maintaining high acceptance probabilities. The down-
side is that derivatives have to be evaluated for each sampled
model.

The computational demand of both gradient-free and
gradient-based MCMC algorithms can be decreased by run-
ning the sampling in reduced model spaces (Lieberman et al.,
2010). Several either linear or nonlinear compression tech-
niques based on different basis functions can be employed
(Dejtrakulwong et al., 2012; Lochbühler et al., 2014; Aleardi,
2019; Liu and Grana, 2020). Another viable strategy makes
use of approximated forward modelling operators. In this
context, the regression ability of machine learning algorithms
(theoretically able to approximate any nonlinear function) has
been extensively exploited (Hansen and Cordua, 2017; Mose-
ley et al., 2020; Song et al., 2021).

The electrical resistivity tomography (ERT) is widely used
in a variety of hydrogeological, environmental and engineer-
ing problems to infer the subsurface resistivity values (Rucker
et al., 2011; Uhlemann et al., 2015; Moradipour et al., 2016;
Whiteley et al., 2017; Bièvre et al., 2018; Hojat et al., 2019a;
Dahlin, 2020; Hermans and Paepen, 2020; Aleardi et al.,
2020; Loke et al., 2020; Norooz et al., 2021). Due to in-
complete data coverage and noise contamination, the ERT is
an ill-posed problem affected by non-uniqueness and insta-
bility (i.e., small variations of the data produce large pertur-
bations in the predictions), and hence, an accurate estimation
of the model uncertainty is of primary importance. However,
the ERT is routinely solved through deterministic approaches
in which optimization algorithms minimize a predefined ob-
jective function. Such methods are generally computationally
efficient, but provide an estimation of the model (i.e., the most
likely solution) without accurately quantifying the associated
uncertainty. On the other hand, the computing time needed
for multiple forward evaluations (e.g., through a finite ele-
ment code) hampers the application of standard MCMC ap-
proaches to invert ERT data.

In our recent research works on Bayesian ERT inversion,
the main comment raised by reviewers and colleagues always
concerned the increased computational cost with respect to
the local inversion. For specific implementations, the proba-
bilistic ERT is computationally feasible only if dedicated com-
putational resources are used to run the inversion (Aleardi
et al., 2020). The computational workload is much higher
than that of a deterministic strategy, even if compressionmeth-
ods are used to reduce the number of unknowns (Vinciguerra
et al., 2021) or when, instead of MCMC algorithms, less ac-
curate approaches (i.e., ensemble-based algorithms) are used
to numerically evaluate the PPD (Aleardi et al., 2021). This
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motivated us to exploit the compression capability of the dis-
crete cosine transform (DCT), the regression ability of a ma-
chine learning algorithm, and the efficiency of a gradient-
basedMCMC to make the computational cost of the Bayesian
ERT comparable to that of a local inversion even when limited
hardware resources are employed. More in detail, we here ex-
ploit the geometrical properties of the negative log-posterior
to define a proposal density that is a local approximation of
the target PPD. In this context, our primary aim was to de-
crease the computational cost of the probabilistic sampling,
while maintaining high acceptance rates, accurate model pre-
dictions and uncertainty assessments. The use of a DCT repa-
rameterization of both data and model spaces mitigates the
ill-posedness of the problem, the curse of dimensionality is-
sues, and also reduces the computing time for the Hessian
and gradient calculation and manipulation. We further de-
crease the computational cost of the inversion by replacing
the standard finite-elements (FE) forwardmodelling code with
the predictions of a properly trained residual neural network
(RNN; Glorot and Bengio, 2010; Mo et al., 2020). Note that
the modelling error introduced by the imperfect and approx-
imated physics that relates the model to the data is properly
accounted for and propagated into the final PPD.

After discussing the theoretical aspects of the proposed al-
gorithm, we first present a synthetic experiment over a simpli-
fied subsurface resistivity model, and we finally show the ap-
plication to field data. The results provided by our method are
also compared with the predictions of more standard proba-
bilistic and deterministic approaches. All the inversion tests
described here have been run on a notebook equipped with
an Intel i7-10750H CPU@2.60GHz with 16 Gb of RAM, and
with NVIDIA GeForce RTX 2060. The IP4DI Matlab soft-
ware (Karaoulis et al., 2013) provided us with the FE for-
ward operator, the code for the Jacobian computation via the
adjoint-state method and the code for the deterministic inver-
sion.

METHODOLOGY

Gradient-based Markov chain Monte Carlo

Let us first consider a deterministic inversion framework, in
which under the assumption of Gaussian-distributed noise
and model parameters, the error function to be minimized can
be written as follows (Menke, 2018; Aster et al., 2018):
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wherem and d denote the model parameters and the observed
data vectors, respectively; Cd and Cm represent the data and
prior model covariance matrices;mprior is the prior model vec-
tor,whereasG represents the forwardmodelling operator. The
error function of equation (1) can be iteratively minimized
through a local quadratic approximation around the current
model mk:
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G(mk) − d, with J representing the Jacobian matrix (i.e. the
partial derivative of the data with respect to model parame-
ters). For computational feasibility reasons, an approximated
Hessian is usually employed:H ≈ Ha = Ho + C−1

m . Therefore,
equation (2) can be re-written as:
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Then, the minimizer of Ẽ(m) can be computed according
to:

mk+1 = mk − H−1
a g, (6)

An approximated uncertainty quantification in determin-
istic inversions can be inferred from the inverse of the Hessian
matrix at the convergence point.

Differently, the Bayesian solution of an inverse problem
is fully expressed by the posterior probability density (PPD)
function in model space:

p (m|d) = p(d|m)p (m)
p (d)

, (7)

where p(m|d) denotes the PPD, p(d|m) is the data likelihood
function, whereas p(m) and p(d) are the prior distributions of
model parameters and data, respectively. In most applications,
the data likelihood is derived from the L2 norm difference
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between predicted and observed data, under the assumption
of Gaussian-distributed noise:

p (d|m) ∝ −0.5 × (d −G (m))TC−1
d (d −G (m)) . (8)

When the p(m|d) cannot be expressed in a closed form,
Markov chain Monte Carlo (MCMC) sampling algorithms
can be used for a numerical assessment of the PPD. These
methods iteratively sample the target posterior and define the
probability to move from the current model mk to the pro-
posed model mk+1 according to the Metropolis–Hasting rule:

α = p
(
mk+1|mk

) = min

[
1,

p
(
mk+1

)
p (mk )

× p(d|mk+1 )
p(d|mk )

× q(mk|mk+1 )
q(mk+1|mk )

]
, (9)

where q(.) is the proposal distribution that draws the new
model from the probability distribution q(mk+1|mk). Note
that the proposal ratio term vanishes if symmetric proposals
are used (i.e., a Gaussian proposal centred on the current state
of the chain). If mk+1 is accepted,mk = mk+1 . Otherwise,mk

is repeated in the chain and another perturbed model is gener-
ated. The ensemble of sampled models after the burn-in period
is used to numerically assess the PPD. It is clear that the main
computational requirement of an MCMC inversion lies in the
many forward modelling evaluations needed to compute the
data likelihood for each sampled model.

Now we can formulate the Bayesian inversion in terms
of E(m), H and g, under Gaussian assumptions for data and
model parameters:
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p (m|d) ∝ exp (−E (m)) . (12)

A Gaussian approximation of the PPD aroundmk can be
found as:
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This equation illustrates that the approximated PPD is
Gaussian distributed according to N (mk − H−1

a g;H−1
a ) with

mean equal to the minimizer of Ẽ(m) and covariance equal
to the inverse of the Hessian matrix. An adaptive proposal
for each sampled model can be formulated from such local
Gaussian approximation as follows:
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Then, similarly to standard MCMC sampling, each pro-
posed model is accepted according to the Metropolis–Hasting
rule. We must keep in mind that the new proposal is not sym-
metric (i.e., the proposal distribution is not centred on the
current model) and for this reason, the proposal ratio should
be evaluated for each sampled model. However, this is not
computationally demanding since the proposal is analytically
tractable. We also consider the full Hessian and not only its
diagonal entries so that posterior correlations between model
parameters are taken into consideration. Note that including
information about theHessianmatrixmeans that the proposal
depends on the curvature of the negative log-posterior and
then compensates for the different parameter illuminations.

After tailoring the proposal density q(m) to the under-
lying approximation of the PPD, the proposed model can be
analytically generated according to:

mk+1 = mk − λH−1
a g + μH

− 1
2

a n, (15)

withH−1
a = H−1/2

a (H−1/2
a )T , where n is a random vector drawn

from the Gaussian distribution N (0, I), with I denoting the
identity matrix. For a linear problem with Gaussian assump-
tions and an exact Hessian, the proposed method results in
a perfect sampling with an acceptance probability equal to 1
(i.e., all the proposed models are accepted; see Martin et al.,
2012). Finally, even though the proposal is derived from a lo-
cal Gaussian approximation of the PPD, it can be used to sam-
ple from whatever type of posterior model and under what-
ever a priori assumption (e.g., non-parametric prior), as it has
been done in the following experiments. λ and μ2 are tunable
parameters that determine the step length along the negative
gradient direction and the variance of the random perturba-
tion around the minimizer of Ẽ(m). These values influence the
exploration and exploitation of the algorithm, and then the ac-
ceptance rate of the probabilistic sampling. The λ value should
be large enough to make the proposal depend on the gradient
information, but small enough so that the updating model is
not dominated by the deterministic information. The μ2 value
should be large enough to ensure an efficient exploration of
the model space, but small enough so that the gradient infor-
mation is not completely masked by the random update. A
proper setting of these parameters can be easily found by the
inspection of the acceptance rate and the convergence rate of
the sampling towards the steady state. Note that the values
of these parameters only influence the efficiency of the sam-
pling and not the final estimated PPD. In particular, in all the
following examples, we consider an acceptance rate around

© 2022 The Authors. Near Surface Geophysics published by John Wiley & Sons Ltd on behalf of European
Association of Geoscientists and Engineers.,Near Surface Geophysics, 20, 440–461



444 M. Aleardi et al

0.8 to be optimal, and in this context all the λ and μ2 values
around 0.2–0.5 and 0.7–0.9, respectively, work well.

The major computational requirement of the imple-
mented approach with respect to gradient-free MCMC algo-
rithms is the need of computing the Jacobian for each sam-
pled model. To this end, when the forward is expressed by a
partial differential equation, the adjoint-state method can be
used (Plessix, 2006). The Jacobian can also be evaluated using
a finite-difference scheme or for weakly nonlinear problems,
a linearized approximation of the forward mapping can be
employed as well. Large dimensional parameter spaces also
need an extra computational workload related to the manip-
ulation of large Hessian matrices and gradient vectors. There-
fore, a compression strategy can help to reduce the dimension
of the parameter and data spaces (i.e., thus mitigating the ill-
conditioning and reducing the dimension of the Hessian ma-
trix and gradient vector), and to also decrease the number of
forward evaluations needed for the computation of the Jaco-
bian when a finite-difference strategy is adopted.

Discrete cosine transform

In this section, we briefly introduce the discrete cosine trans-
form (DCT) compression used to reduce the model and data
domains. Additional information about this popular com-
pression strategy and its application to solve geophysical in-
verse problems can be found in Lochbühler et al. (2014) and
Moghadas and Vrugt (2019).

The basis functions employed by the DCT are cosine
functions oscillating with different frequencies. This trans-
formation can be applied to mono or multidimensional sig-
nals. For example, for a 2D resistivity model ρ (x,y) with x =
[1,…,Mx] and y = [1,…,My] the transformation can be com-
puted as follows:

R = ByρB
T
x , (16)

where Bx and By are the matrices with dimensions Mx ×Mx

and My ×My, expressing the basis functions, whereas the
My ×Mx matrix R contains the DCT coefficients. The DCT
concentrates most of the information of the original signal
into the low-order coefficients, and hence an approximation
of the 2D resistivity model can be computed as follows:

ρ̃ =
(
Bq
y

)T
RqpBp

x, (17)

where ρ̃ is the approximated model, Bq
y is a [q×My] matrix,

with only the first q rows of By; B
p
x is a [p×Mx] matrix with

only the first p rows of Bx; the matrixRqp represents the first q

rows and p columns of R. The q and p values are the retained
number of basis functions along the y and x directions. There-
fore, the DCT transformation reduces the full (My ×Mx)-D
model space to a (q× p)-D DCT-compressed domain (with
p < Mx and q < My). In this context, the p× q non-zero nu-
merical coefficients of the Rqp matrix become the inverted pa-
rameters in the compressed space.

Forward approximation through a trained network

Similar to Aleardi et al. (2022), we use an approximated for-
ward operator that in this case significantly speeds up both
the computation of the Jacobian matrix (i.e., when a finite-
difference scheme is adopted) and the data likelihood evalua-
tion. To this end,we train a residual neural network. The main
idea is to use the trained network as a computationally effi-
cient approximation to the forward problem. Multiple resis-
tivity models and associated apparent resistivity data are used
to make the residual neural network (RNN) learn the non-
linear mapping between the model and the data space. The
models forming the training and validation sets are generated
according to prior model assumptions, while a 2.5D finite-
elements (FE) Matlab modelling code constitutes the forward
operator (Karaoulis et al., 2013) that computes the associ-
ated apparent resistivity data. We refer the interested reader
to Aleardi et al. (2022) for more details about this approach.
Here, we briefly introduce the reader to the basic RNN prin-
ciples and we briefly show the adopted network architecture.

Similar to a convolutional neural network, a RNN uses
convolutional filters and fully connected layers to extract fea-
tures from mono- or multidimensional inputs. Such networks
can be used to solve both classification or regression problems
(Monajemi et al., 2016; Goodfellow et al., 2016). However, in
a traditional convolutional neural network, each layer feeds
into the next one. Differently, a RNN makes use of shortcuts
and skip connections to add the result of a shallow layer di-
rectly to the corresponding output of a deeper layer. This strat-
egy helps to prevent the so-called vanishing gradient problem
that occurs when training a deep CNN. This results in the
degradation problem: the accuracy (i.e., the similarity between
desired and computed network responses) gets saturated for
a given number of layers and then starts degrading rapidly if
additional layers are added.

In our application, the resistivity model is the input of
the network, whereas the flattened apparent resistivity sec-
tion constitutes the output response. The optimization of the
network internal parameters is driven by the minimization of
the root-mean-square error between desired and computed
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Figure 1 Representation of the employed RNN architecture annotated with key parameters. For example, in the second convolutional layer
‘CONV 2’, the term within bracket (5, 3×3, Pad) indicates that we employ 5 convolutional filters with size 3×3 and that zero-padding is
applied. Note that the LeakyRelu with a leakage value of 0.1 is used as the activation function in all the convolutional layers. Skip convolutions
are used to adjust features dimensions before additional layers. A dropout of 10% and batch normalization are used to avoid overfitting and
as the regularization operator, respectively. The only difference in the synthetic and field data applications concerns the dimension of input and
output response. See the text for details. Figure taken from Aleardi et al. (2022).

output. The employed network architecture in both the syn-
thetic and field inversions is represented in Figure 1.

The implemented probabilistic inversion

The resistivity values along a 2D profile of dimension (My ×
Mx) and the associated N apparent resistivity values, consti-
tute the model and data vectors, respectively. In common ap-
plications, hundreds of model parameters have to be inverted

for and, in this context, the curse of dimensionality problem
makes the application of standard probabilistic inversion pro-
cedures a formidable computational challenge.

Here we mitigate the curse of dimensionality by com-
pressing the model space with a reduced number of DCT coef-
ficients expressed by a q× pmatrix (p < Mx and q < My). On
the same line, to reduce the dimension of the Hessian matrix,
we also employ the DCT to compress theN-dimensional data
space to a b-dimensional domain (with b < N). Because of its
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Figure 2 Schematic representation of the GB-MCMC inversion framework. Green and grey rectangles refer to operations performed in the
reduced and full spaces, respectively.

trapezoidal shape, the apparent resistivity section cannot be
enclosed within a 2D matrix, and thus, it has been flattened to
a 1D vector before the DCT projection. More detailed discus-
sions about DCT compression applied to electrical resistivity
tomography inversion can be found in Aleardi et al. (2021)
and Vinciguerra et al. (2021). As in these works, prior model
realizations and apparent resistivity data have been used to
determine the optimal number of basis functions to retain.
In particular, we analysed how the explained variability (i.e.,
the ratio between the variance of the compressed and origi-
nal signals) changes as the number of considered DCT coeffi-
cients increases. Therefore, the GB-MCMC algorithm runs in
the compressed (p× q)-D model space and estimates the DCT
coefficients expressing the resistivity model from the retained
b basis in the data domain. As a consequence, the computa-
tion of the likelihood ratio, proposal ratio and prior ratio for
each sampled model is performed in the compressed space. A
schematic representation of this strategy is given in Figure 2.
Note that the multiple forward and inverse DCT projections
needed in each iteration can be analytically evaluated with
a negligible computational cost. Finally, the sampled models
after the burn-in period are projected onto the full, uncom-
pressed, space to numerically compute the statistical proper-
ties of the PPD in the original resistivity domain.

A simple Gaussian prior is often employed in probabilis-
tic inversions even if this usually oversimplifies the actual dis-
tribution of the model parameters in the investigated area. For
example, in the case of multiple litho-fluid facies, the parame-
ter distributionmight be better approximated by amultimodal
prior, in which each mode is associated with a different facies
(Aleardi et al., 2020). Here, in both the synthetic and field ap-
plications, we assume multimodal non-parametric priors that

properly model the facies dependency of the resistivity val-
ues in the study areas. A stationary spherical variogrammodel
is used to express the lateral and vertical variability pattern.
We also assume a Gaussian-distributed noise, so that the data
likelihood can be analytically computed from the L2 norm
distance between predicted and observed data vectors. The
direct sequential simulation algorithm (Soares, 2001) is used
to generate random realization from the a priori model. The
non-parametric prior in the uncompressed space impedes an
analytical derivation of the prior in the DCT domain; thus,
the prior assumption in the compressed space is numerically
computed by applying the kernel density estimation algorithm
to prior resistivity realizations projected onto the DCT space.
Differently, the assumed Gaussian noise model allows for an
analytical derivation of the data covariance matrix in the com-
pressed data domain.

The main limitation of any GB-MCMC approach arises
from the need of computing the gradient of the negative log-
posterior. For this reason, this strategy is usually applied to
problems in which the derivative information can be com-
puted quickly (Neal, 2011). In our application, the Jaco-
bian matrix can be derived by adopting a finite-difference
scheme or the adjoint-state method. However, if a common
finite-element (FE) forward operator is employed the com-
putation of the Jacobian will make the GB-MCMC inver-
sion computational unfeasible on the limited hardware re-
source here employed. For example, if we consider a forward
finite-difference (FD) scheme and the uncompressed model
space, My ×Mx forward evaluations are needed to evalu-
ate the Jacobian around each sampled model. The resulting
computational workload is impractical, even though the Ja-
cobian computation can be easily parallelized (i.e., each
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column of this matrix can be independently computed on a
different core).TheDCTmodel compression can partiallymit-
igate this issue because, after compression, only q× p forward
runs are needed to evaluate the Jacobian with the forward FD
scheme. However, also in this context the application of the
implemented inversion schemewould be very computationally
demanding. See the next section for a detailed discussion on
the times needed for the Jacobian computation using different
approaches and forward operators. Here the computational
cost for the Jacobian evaluation is drastically reduced by the
approximated RNN forward operator. This not only makes
the GB-MCMC inversion feasible on the employed hardware
resources but also provides a probabilistic inversion frame-
work much faster than a gradient-free MCMC.

The use of the RNN forward introduces a modelling er-
ror related to the approximated physics that maps the model
parameters onto the corresponding data. Ignoring this theo-
retical error might generate overfitting with the observed data
and introduce artefacts in the final solution.Therefore,we also
properly propagate the error introduced by the network ap-
proximation onto the final PPD. To this end, the data covari-
ance matrix Cd is computed as the sum of the noise contam-
inating the data Cn and the modelling error that takes into
account the imperfect physics relating the model to the data
Cp (Menke, 2018): Cd = Cn + Cp. Both noise and modelling
errors are considered to be Gaussian-distributed with a zero
mean value. The modelling error matrix is derived from the
covariance of the difference between desired and actual net-
work outputs and is computed on the validation set (Hansen
and Cordua, 2017).

SYNTHETIC INVERS IONS

We consider a schematic subsurface resistivity model repre-
sented by a rectangular block with a resistivity of 50 �m
hosted in a homogeneous half-space with resistivity equal to
150 �m (Fig. 3). The high and low resistivity values within
the half-space and the rectangular block, respectively, can be
thought of as representative of two different litho-fluid classes.
The area is discretized with 11 × 35 = 385 rectangular cells
with vertical and lateral dimensions of 0.5 m and 1.0 m, re-
spectively. The resistivity values within the cells correspond to
the model parameters to be estimated. We simulate a Wen-
ner acquisition layout with 36 electrodes with a = 1.0 m. The
maximum a value is 11. This configuration results in 198 data
points. In this example, we employ the Wenner layout because
it has also been used for the field data acquisition, but the pre-
sented inversion framework can be applied to different elec-

Figure 3 The true model for the synthetic inversion.

trode configurations as well. The finite-element (FE) code was
used to compute the noise-free observed dataset that was con-
taminated with uncorrelated Gaussian noise with a standard
deviation equal to 20% of the total standard deviation of the
noise-free data.

Figure 4 represents the prior model assumptions used
to generate the training and validation sets and also used
in the following probabilistic inversions. We employ a non-
parametric prior estimated by applying the kernel density esti-
mation algorithm (with an Epanechnikov kernel) to Gaussian
perturbations of two resistivity columns extracted from the
central part of the true model. This multimodal prior com-
pared to a simple Gaussian assumption guarantees a better
representation of the actual distribution of the resistivity val-
ues. A spherical variogram is used as the spatial continuity
pattern with horizontal and vertical ranges equal to 8 and 3
m, respectively.

We train the residual neural network (RNN) on prior
model realizations and associated data to approximate the
nonlinear forward modelling operators (Aleardi et al., 2022).
As demonstrated in that study, only 2000 models for training
and 500 for validations are enough to get accurate forward
predictions. The FE code is used to generate the associated ap-
parent resistivity values. Considering a parallel code running
on the previously mentioned hardware resources, the genera-
tion of the 2000 training examples takes 15 minutes, approxi-
mately, while the training running on the GPU is completed in
less than 5 minutes. As an example, Figure 5 compares some
examples of apparent resistivity pseudosections predicted by
the trained RNN and the associated FE datasets taken from
the validation set. The close similarity between the actual and
desired output confirms that the network can effectively ap-
proximate the nonlinear relation linking the model to the data.

The next step is to select the optimal number of discrete
cosine transform (DCT) coefficients to compress the data and
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Figure 4 (a) Non-parametric prior distribution for the synthetic example. (b and c) Spatial correlation functions associated with the assumed
2D variogram model for the horizontal and vertical directions, respectively.

Figure 5 Some comparisons between (a) the network responses and (b) the desired (i.e. FE) output from the validation set.

the model spaces. Here we employ the same strategy as de-
scribed in Vinciguerra et al. (2021) and Aleardi et al. (2021) to
which we refer the readers for further details. The basic idea
is to exploit prior model realizations and associated data to
assess how the explained variability (i.e., measured as the ra-
tio between the variance of the compressed on original signal)
changes as the number of retained DCT coefficients varies.
Figure 6 shows an example of this approach on a model and
the associated data vector. In the model space, we observe that
just 3, and 5 coefficients along the two DCT dimensions al-
most completely explain the full variability of the original sig-
nal. Similarly, 80 coefficients are needed to successfully ap-
proximate the data. This means that the 385-D model space
can be sparsely represented by 15 coefficients, while the 198-
D data domain is compressed in an 80-D domain: this signifi-
cantly reduces the dimensions of the Hessian matrices and the
time to compute the Jacobian via an FD approach.

After selecting the appropriate number of DCT coeffi-
cients, we compare the computing time needed for the Jaco-
bian computation in this synthetic experiment using different
approaches and considering the full and compressed data and
model spaces. We consider 5 different cases:

1. Jacobian computation through a forward FD approach in
the DCT-compressed model and data spaces and using the
RNN forward approximation;
2. Jacobian computation through a forward FD approach in
the DCT-compressed model and data spaces and using the FE
forward code;
3. Jacobian computation through a forward FD approach in
the uncompressed model and data spaces and using the RNN
forward approximation;
4. Jacobian computation through a forward FD approach in
the uncompressed model and data spaces and using the FE
routine;
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Figure 6 (a) Examples of explained model variability as the number of retained DCT coefficients along the two DCT dimensions increases. The
numerical value with coordinate (x, y) indicates the explained variability if the first x, and y DCT coefficients along the first and second DCT
dimensions, respectively, are used for compressing the resistivity model. (b) Explained variability as the number of DCT coefficients increases
for the data associated with the model shown in (a).

Figure 7 Box plots showing the times needed for the Jacobian computation using different approaches: a) RNN forward + FD scheme in the
compressed domain. (b) FE forward + FD scheme in the compressed domain. (c) RNN forward + FD scheme in the uncompressed space. (d)
FE forward + FD scheme in the uncompressed space. (e) Adjoint-state method running in the uncompressed space. Note the different scales on
the vertical axes.

5. Jacobian computation via the adjoint-state method run-
ning in the uncompressed model and data domains.

Note that the code for the adjoint-state method imple-
ments this computation only in the full model and data space,
and for this reason, this method has not been considered for
the Jacobian computation in the DCT space. Also note that
when the FD strategy and the FE code are used, the compu-
tation of the columns of the Jacobian is distributed across
different cores. For each case, we run 50 Jacobian evalua-
tions on a resistivity model extracted from the prior and we
evaluate the computing time for each run. The box plots of
Figure 7 summarize our results: In both the compressed and
full spaces, the RNN forward reduces the computing time for
a single Jacobian evaluation of almost three orders of mag-
nitudes with respect to the FE algorithm, while in the full
space the adjoint-state method is two times faster than the
FD + FE approach. For what concerns our inversion running
in the DCT space, Figure 7 demonstrates that when the FE
code is used as the forward modelling engine, it is more con-

venient to compute the Jacobian directly on the compressed
domain instead of evaluating the Jacobian in the full spaces
with the adjoint-state method and then projecting this matrix
back onto the DCT domain: This reduces the time for a single
Jacobian computation of one order of magnitude (compare
Fig. 7b and e).

Figure 8 compares the Jacobians derived in the full model
and data domain with the three considered approaches. As
expected, it turns out that the FD and adjoint-state methods
provide very similar results, but also the approximated RNN
forward gives very accurate Jacobian estimations albeit some
minor scattering is visible moving along the columns of the
matrix. The difference between the Jacobian computed with
the RNN forward and the adjoint-state method becomes even
smaller if we consider the DCT domain (Fig. 9), this is because
the projection onto the compressed space attenuates the lateral
scattering visible in Figure 8(a) . For this comparison, the Jaco-
bian provided by the adjoint-state in the uncompressed spaces
has been analytically projected onto the compressed domain.
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Figure 8 Comparison between the Jacobian matrices computed in the full model and data spaces with three different approaches. (a) RNN
forward + FD scheme. (b) FE forward + FD scheme. (c) Adjoint-state method.

Figure 9 (a) Comparison between the Jacobian matrices computed with the RNN + FD approach in the DCT space (black) and the projection
onto the DCT domain of the Jacobian derived with the adjoint-state method in the full space (red). (b) Their sample-by-sample difference.

Our analysis demonstrates that the trained network not only
provides quite accurate data predictions but can also be con-
veniently employed to greatly speed up the Jacobian evalua-
tion. It is worth remembering that the implemented inversion
framework does not need an extremely accurate Jacobian be-
cause this does not affect the estimated posterior probabil-
ity density (PPD) but only the computational efficiency of the
probabilistic sampling (e.g., the acceptance probability value
and the convergence towards the steady state).

We now describe the results obtained in three different
inversion experiments all running in the compressed model
and data spaces:

• Test 1: Gradient-based Markov chain Monte Carlo (GB-
MCMC) inversion in which the RNN forward is used for
both the likelihood evaluation and the Jacobian computa-
tion via a forward FD scheme.

• Test 2: GB-MCMC inversion in which the FE forward is
used for both the likelihood evaluation and the Jacobian
computation with a forward FD scheme.

• Test 3: gradient-free MCMC inversion in which the differ-
ential evolution Markov chain (DEMC) is used to sample
the PPD. The FE code provides the forward operator. This
method is the same as the one presented in Vinciguerra et al.
(2021).

The DEMC used in test 3 is a modification of the stan-
dard random walk Metropolis sampling, and it makes use
of multiple and interactive chains to improve the efficiency
of the probabilistic sampling (see, Vrugt, 2016). For tests 1
and 2, the inversions run for 300 iterations with a burn-in of
10 iterations. Test 3 uses 3000 iterations with a burn-in of
1000. In all cases, 20 chains are used to explore the parameter
space, where each chain starts from a different model drawn
at random from the prior. The use of multiple chains reduces
the risk of entrapment in local maxima of the posterior den-
sity and also increases the independence of the samples used
to compute the PPD. To assess the quality of the results we
first evaluate the most likely solutions and the associated un-
certainty. The potential scale reduction factor (PSRF; Brooks
and Gelman, 1998) is also used to assess the converge of the
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Figure 10 The most likely solutions (left) and the associated posterior standard deviations (right) for the different inversion tests. (a) Test 1. (b)
Test 2. (c) Test 3.

samplings towards a stable posterior model. We also com-
pute the autocorrelations on some model parameters to illus-
trate that the GB-MCMC sampling decreases the correlations
of successively sampled models, thus decreasing the number
of samples needed to get accurate uncertainty appraisals. In-
deed it is known that the approximation error of the Markov
chain is inversely proportional to the number of indepen-
dent samples. Therefore, for highly correlated samples, the
convergence to a stable posterior is usually slower (MacKay,
2003).

Figure 10 shows that all the three tests provide very sim-
ilar and congruent most likely solutions and uncertainty es-
timations: the low rectangular resistivity body is successfully
located and, as expected, the posterior uncertainties are lower
in the central and well-illuminated part of the model and in-
crease towards the bottom and lateral edges of the investigated
area due to lower parameter illumination. For a more com-
plete overview of the results, Figures 11 and 12 compare the
marginal prior, posterior and true model parameter values in
the DCT domain obtained in tests 1 and 2. All the considered
15 DCT coefficients are displayed. The very similar posterior

evaluations estimated in the two tests prove the reliability of
the presented approach.

Figure 13(a–c) compares the observed data with the ap-
parent resistivity pseudosections generated on the most likely
solution of Figure 10(a) when the RNN and FE codes are em-
ployed. On the one hand, the similarity between Figure 13(a)
and (b) illustrates that the predictions provided by the im-
plemented inversion successfully reproduce the observed data.
Moreover, the good agreement between Figure 13(b) and (c) is
a further demonstration of the capability of the trained RNN
to predict the forward mapping for a model not seen during
the learning stage. Figure 13(d–e) shows instead the predicted
data associated with tests 2 and 3, respectively. In all cases, the
predicted model successfully reproduces the observations.

In Figure 14 we compare the evolution of the negative
log-likelihood, the evolution of the PSRF over iterations, and
we also show some examples of autocorrelations estimated
from the sampled models for some DCT parameters. From the
data likelihood evolution, we conclude that both GB-MCMC
inversions reach the steady state within 10 iterations, while
300 iterations are needed by the DEMC algorithm. We can
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Figure 11 Inversion results in the DCT space for test 1. Each plot refers to one of the fifteen considered DCT coefficients. The red lines represent
the marginal priors, the black bars are the marginal posteriors and the green lines indicate the true DCT parameter values.

Figure 12 As in Figure 11 but for the second inversion test.

also observe that the two considered GB-MCMC implemen-
tations reach the steady state in the same number of iter-
ations, thus demonstrating that the RNN forward provides
quite accurate Jacobian matrices comparable to those com-
puted with the FE code. The similar data likelihood values
attained in the three tests prove that in all cases the mod-

els sampled after the burn-in period reproduce the observed
data with the same accuracy. The PSRF evolutions for all the
DCT model parameters illustrate that just 150 iterations are
needed by the GB-MCMC inversions to reach a stable PPD
estimation, while 1500 iterations are needed by the DEMC.
Finally, the comparison of the autocorrelation functions
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Figure 13 (a) Observed data. (b) Apparent resistivity pseudosection computed on the model shown in Figure 10(a) when the RNN forward
operator is used. (c) Apparent resistivity pseudosection computed on the model shown in Figure 10(a) when the FE forward operator is used.
(d) Predicted data computed on the most likely model of Figure 10(b). (e) Predicted data computed on the most likely model of Figure 10(c).

Figure 14 From left to right: Evolution of the negative log-likelihood for the three tests; PSRF value in which the red line indicates the threshold
of convergence fixed at 1.1; normalized autocorrelation computed from the sampled models and for some parameters. (a) Test 1. (b) Test 2. (c)
Test 3.
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Table 1 Summary of the inversion results for the three tests

Time per iteration
considering all the 20

chains (s)

Iterations to converge Time to converge
(minutes)

RMSE data Coverage ratio (90%)

Test 1 ≈ 0.8 s 150 ≈ 2 6.25 86.7%
Test 2 ≈ 200 s 150 ≈ 500 6.17 87.2%
Test 3 ≈ 24 s 1500 ≈ 600 6.14 87.0%

demonstrates that the correlation drops to zero in 10 itera-
tions in the two GB-MCMC inversions, while hundreds of it-
erations are needed when the DEMC sampling is adopted. On
the one hand, this proves that both the GB-MCMC inversions
provide maximally decoupled models, despite the approxi-
mated forward employed in test 1. On the other hand, this
also illustrates that the GB-MCMCalgorithm significantly im-
proves the efficiency of the probabilistic sampling compared
to the DEMC. Indeed, the high correlation between succes-
sively sampled models is responsible for the slower conver-
gence of the DEMC towards a stable PPD.

As a final and more quantitative assessment of the results,
we list in Table 1 and for all the tests, the computing time
per iteration (considering all the employed Markov chains),
the number of iterations to converge as indicated by the in-
spection of the PSRF, the time needed to converge toward a
stable PPD, the root-mean-square errors (RMSE) between ob-
served and data generated on the most likely solutions previ-
ously shown, and finally the 90% coverage ratio. The comput-
ing times refer to the hardware resources previously described.
We remind that the 90% coverage ratio quantifies the percent-
age of resistivity values in the true model that fall within the
90% confidence interval as estimated by the probabilistic in-
version. All three inversions give very similar data predictions
and accuracy in the estimated posterior uncertainties. The ma-
jor differences concern the times to complete a single iteration
and the time needed to converge: In test 1 a single iteration is
completed in just 0.8 s. If the RNN forward is replaced by the
FE code, this time increases by more than two orders of mag-
nitude, while the DEMC completes a single iteration in 20 s. If
we consider the number of iterations needed to converge (i.e.,
then to achieve a PSRF < 1.1 for all the model parameters)
these computing times translate into dramatic differences: in
test 1 the probabilistic inversion is completed in 2 minutes,
while several hours are needed by the other two approaches.
Note that in test 2 the GB-MCMC converges in a much lower
number of iterations than the DEMC, but both methods re-
sult in similar computational efforts because of the extra time

needed by the gradient-based sampling for the Jacobian eval-
uation.

These results demonstrate that the proposed approach
not only drastically reduces the computational workload
of the probabilistic sampling but, more importantly, also
provides model estimations and uncertainty assessments
comparable to those achieved when an accurate FE modelling
is employed or when a more standard, gradient-free MCMC
sampling is adopted. As a final remark, we point out that the
acceptance probability during the sampling stage for both the
GB-MCMC inversions oscillates around 0.8–0.85, while it re-
duces to 0.25–0.3 during the DEMC inversion. This also indi-
cates that the infusion of the gradient andHessian information
into the sampling framework reduces the time wasted to per-
form forward evaluations for models that will be rejected by
the Metropolis–Hasting rule.

F IELD DATA APPLICATION

We now apply the presented approach to invert a field dataset
acquired for levee monitoring along the Parma river in Col-
orno (Italy). We refer the interested reader to Hojat et al.
(2019b) for more information about the study area. We in-
vert a single dataset acquired with electrodes buried in a 0.5
m deep trench and employing the Wenner configuration using
48 electrodes with the unit electrode spacing of a = 2.0 m.
The dataset is corrected for the effect of the soil covering the
electrodes (Hojat et al., 2021). The investigated site covers an
area that is 94 m wide and 14 m deep, and it is discretized
with rectangular cells with vertical and lateral dimensions of
1.0 m and 2.0 m, respectively. This configuration results in 15
× 47 = 705 resistivity values to be estimated from 360 data
points.

To define the prior assumptions we exploited both the
available geological information about the investigated area
and the multiple data and associated predicted resistivity sec-
tions obtained during the permanent monitoring (see Hojat
et al., 2019b). We still employ a non-parametric prior and a
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Figure 15 (a) Non-parametric prior distribution for the field data inversion. (b c) The spatial correlation functions associated with the assumed
2D variogram model for the horizontal and vertical directions, respectively.

Figure 16 Some comparisons between (a) the network responses and (b) the desired output extracted from the validation set.

spatial variability pattern described by a spherical variogram
with lateral and vertical ranges equal to 10 m and 4 m, respec-
tively (Fig. 15). The prior aims to properly model the multi-
modality of the resistivity distribution in the investigated area
where different litho-facies are expected: a low-resistivity clay
body that around 2–3 m depth hosts more permeable forma-
tions with higher resistivity values associated with sands and
gravels.

As in the synthetic case, the residual neural network
(RNN) forward has been trained using training and valida-
tions sets with 2000, and 500 prior realizations. We main-
tain the same RNN architecture previously described being
the only difference in the dimension of the input image and
the output response (in this case a model with 15 rows and
47 columns and 360 apparent resistivity values). In Figure 16
the similarity of the RNN predictions with the corresponding
finite-element (FE) responses extracted from the validation set

proves the capability of the trained machine learning model to
predict the forward relation.

Similar to Aleardi et al. (2021), 150 discrete cosine trans-
form coefficients have been used to compress both model and
data space. Figure 17 shows box plots of the time needed for
the Jacobian computation with different strategies. Different
from the previous synthetic test we limit our attention to the
Jacobian computed in the compressed space via a forward FD
scheme with the RNN and FE forwards, and the Jacobian
computed in the full domains with the adjoint-state method.
Note that the considerable time per forward evaluation and
the large parameter space make the computation of the Jaco-
bian with the FD + FE strategy impractical in the full model
space.

Figure 18 demonstrates that the RNN approximated for-
ward provides accurate Jacobian evaluations with a com-
putational effort three orders of magnitude lower than that
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Figure 17 Box plots showing the computing times for the Jacobian
computation using different approaches in the field data test: (a) RNN
forward + FD scheme in the compressed domain. (b) FE forward +
FD scheme in the compressed domain. (c) Adjoint-state method ap-
plied in the uncompressed space. Note the different scales along the
vertical axes.

associated with the adjoint-state and the FE code. From this
analysis, it turns out that the application of the gradient-
based Markov chain Monte Carlo (GB-MCMC) inversion
will be computationally unfeasible on the employed compu-
tational resources without the RNN forward approximation.
As discussed by Vinciguerra et al. (2021) even the gradient-
free DEMC algorithm running in the compressed model space
needs several days of computing time to complete this field
data inversion. For these reasons, we here compare the results
achieved by the GB-MCMC with the RNN forward with the
predictions of a standard deterministic (i.e., gradient-based)
inversion.

We run the GB-MCMC inversion for 500 iterations, 20
chains, with a burn-in of 10 and starting from prior realiza-
tions. Figure 19 compares the predictions yielded by the deter-
ministic method with the most likely solution estimated by the
presented approach along with the associated posterior stan-
dard deviation. Similar and congruent outcomes are achieved
in both cases: the inversion predicts a sand-gravel body at shal-
low depth hosted in shales. As expected, the uncertainty tends
to increase in correspondence of the high resistivity body and
at the lateral and bottom edges of the model.

Figure 20 shows the observed data and the data gener-
ated by the RNN and FE codes on the model of Figure 19(b),
together with the apparent resistivity data computed with
the FE code from the deterministic solution (Fig. 19a). Both
inversions accurately reproduce the field measurements with
very minor differences in the data generated by the RNN and
FE codes. This demonstrates that the trained network can
properly approximate the forward relation even for realistic
resistivity models not seen during the learning procedure.

Finally, Figure 21(a, b) illustrates the evolutions of the po-
tential scale reduction factor for all the model parameters and
the negative log-likelihood for the 20 chains. As in the syn-

thetic example, the probabilistic inversion reaches the steady
state in 10 iterations, while the full convergence is attained
in 400 iterations. Figure 21(c) illustrates that also in this case
the GB-MCMC samples maximally decoupled models as the
autocorrelation values drop to zero in very few iterations.

As a final remark,we point out that the acceptance proba-
bility during the GB-MCMC inversion oscillates around 0.75–
0.85, while one single iteration is completed in 2 seconds. This
means that the convergence for all the unknown parameters
is achieved in 13 minutes, approximately. Since the gradient-
based inversion is completed in 6 minutes, we deem that the
implemented approach makes the computational cost of the
probabilistic sampling comparable with that of a determinis-
tic inversion.

DISCUSS ION

Reducing the computational cost of a probabilistic elec-
trical resistivity tomography (ERT) inversion is needed to
make this approach more appealing than popular local in-
version algorithms. The Bayesian framework provides crucia
l information regarding the uncertainties affecting the recov-
ered solution. Such estimated model uncertainties can be used
to generate different subsurface scenarios in agreement with
the experimental data and the prior assumptions. Such mod-
els extracted from the posterior add an extra level of informa-
tion over gradient-based solutions and contribute to a more
informed decision-making process in many ERT applications
(e.g.,monitoring applications, or 3D inversions). For example,
the 3D ERT is usually a severely under-determined problem
with more unknowns than observations, in which the deter-
ministic solution is highly affected by the initial choice of the
starting model (Aguzzoli et al., 2021). In this context, an ac-
curate uncertainty estimation is of fundamental importance to
give hints on the ambiguity affecting the predicted resistivity
values.

Therefore, this work was aimed at implementing a sam-
pling algorithm for accurate and fast uncertainty assessments
in ERT inversion. To this end, we combined the sampling
efficiency of a gradient-based Markov chain Monte Carlo
(MCMC) algorithm with the fast forward evaluations pro-
vided by a trained residual neural network. The network
was successfully trained with just 2000 examples, while 500
examples formed the validation set. Note that these val-
ues are much lower than the number of forward evalua-
tions needed by the probabilistic sampling. The modelling er-
ror introduced by the approximated forward was properly
taken into consideration and included in the data covariance
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Figure 18 (a) Jacobian computed with the FD scheme and the RNN forward in the compressed model and data spaces. (b) Projection onto the
DCT domain of the Jacobian computed with the adjoint method. (c) Difference between (a) and (b). The Jacobian has been computed around a
model drawn from the prior.

Figure 19 (a) Model predicted by the gradient-based inversion. (b) Most likely solution provided by the GB-MCMC inversion. (c) Posterior
standard deviation estimated by the probabilistic inversion.

matrix under a Gaussian assumption. In this regard, the num-
ber of examples in the validation sets should not be too
small to avoid the underestimation of the modelling error.
In the following examples, we have found that 500 models
are enough to get an accurate representation of the theoret-
ical error introduced by the network. However, larger val-
idation sets are likely needed for wider investigated areas
and in 3D applications. We also point out that a proper net-
work architecture to reliably approximate the forward oper-
ator is not that hard to find at least in the 2D scenario we
considered here. Indeed, in Aleardi et al. (2022) we found
that different architectures also provide quite accurate data
predictions.

The probabilistic sampling was guided by the gradient
and Hessian information of the negative log-posterior. This
generates proposal moves that are locally a Gaussian approx-

imation of the posterior probability density (PPD). The pro-
posal is analytically tractable, and this makes the generation
of the proposed models and the evaluation of the proposal ra-
tio straightforward. The gradient information guides the sam-
pling towards solutions with higher data likelihood values,
while the random perturbation term avoids entrapments in lo-
cal maxima of the posterior density. In the present work, the
number of unknowns in the uncompressed space (few hun-
dreds) makes the projection of the Jacobian from the full space
to the compressed domain computationally feasible.However,
in the case of larger model spaces (i.e., 3D applications), it
would be convenient to compute the Jacobian directly in the
compressed domain to avoid the extra workload needed for
the projection (Laloy et al., 2019).

A good compromise between exploitation and explo-
ration can be found by setting the two hyperparameters λ and
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Figure 20 (a) Observed data. (b) Apparent resistivity pseudosection computed on the model shown in Figure 19(b) when the RNN forward
operator is used. (c) Apparent resistivity pseudosection computed on the model shown in Figure 19(b) when the FE forward operator is used.
(d) Predicted data generated by the deterministic solution with the FE code.

μ. Their proper setting is important for the efficiency of the
sampling (i.e., a poorly chosen parameter combination would
slow down the convergence toward stable uncertainty assess-
ments) but does not alter the final estimated PPD.We adopted
a trial-and-error procedure to set the λ and μ values with the
aim to get an acceptance probability of around 0.8 during the
sampling stage. Note that the very limited computational cost
of the implemented method greatly reduces the human effort
for the hyperparameter setting. In the many inversion tests
carried out, we also found that the desired acceptance can be
achieved by many λ and μ combinations, and hence a proper
selection of these parameters is not that hard to find.

The discrete cosine transform (DCT) compression was
used to mitigate the ill-posedness of the ERT inverse prob-
lem, to reduce the dimension of the model space, and to
also decrease the computational efforts for the Hessian and
gradient manipulation, and the Jacobian computation via a
finite-difference scheme. Another possibility to further reduce
the computational workload is to compute the Jacobian ma-
trix only for the very first iterations (i.e. the burn-in period)
and hence use the same Jacobian during the sampling stage.
This recipe should still guarantee a faster convergence toward
the steady state and a more efficient sampling with respect
to gradient-free MCMC algorithms. Since the DCT can be
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Figure 21 (a) Evolution of the negative log-likelihood for the 20 chains. (b) PSRF value in which the red line indicates the threshold of convergence
fixed at 1.1. (c) Normalized autocorrelations computed from the sampled models for some parameters.

applied to any multidimensional signal, the implemented
method can be also extended to 3D models. In addition, the
linearity of the DCT greatly simplify the proper setting of
the number of basis functions to consider (the p and q co-
efficients) because only some prior realizations are needed
to analyse how the recovered model variability is related to
the number of retained coefficients (see Aleardi et al., 2021).
However, the main limitation of this compression method is
related to the large number of coefficients to be retained to
accurately represent sharp spatial contrasts in the resistivity
values. In these contexts, the DCT can be replaced by other
nonlinear compression strategies (i.e., deep generative mod-
els) that can better preserve nonlinear features in the solu-
tion (Laloy et al., 2017; Jiang and Jafarpour, 2021). How-
ever, these strategies can severely complicate the geometry of
the posterior distribution (i.e. many local maxima), thus re-
ducing the convergence speed of the Monte Carlo sampling
(Lopez-Alvis et al., 2021). Therefore, the optimal choice for
the compression method to be used is case dependent as a rea-
sonable compromisemust be found between the desiredmodel
resolution and the computational cost of the entire inversion
procedure.

CONCLUSIONS

We presented a Bayesian approach to the electrical resistiv-
ity tomography inversion in which a machine learning algo-
rithm, a compression strategy and a gradient-based Markov
chain Monte Carlo (GB-MCMC) were combined to drasti-
cally reduce the computational cost of the probabilistic sam-

pling.The regression ability of residual neural network (RNN)
was used to approximate the forward operator; the discrete
cosine transformwas used to compress data andmodel spaces,
whereas the gradient and Hessian information of the posterior
density were exploited to increase the efficiency of theMCMC
sampling. The synthetic inversions indicated that the pre-
sented inversion reaches stable uncertainty estimations with a
much lower number of iterations than a gradient-free MCMC
algorithm, while the RNN forward reduces of two orders of
magnitude the computational cost of the probabilistic inver-
sion compared to the case in which a common FE modelling
code is employed. The field example not only showed that
the GB-MCMC and the deterministic inversions provide sim-
ilar final model predictions and data fitting but they are also
characterized by comparable computational costs. Therefore,
our inversion strategy makes the application of a probabilistic
ERT inversion also possible on limited hardware resources.
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