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Abstract

Since the last two decades, the use of laser scanners for generating accu-
rate and dense 3D models has been rapidly growing in multiple disciplines.
The reliance on human-expertise to perform an efficient scanning in terms of
completeness and quality encouraged the researchers to develop strategies for
carrying out an optimized and automated scan planning. Nevertheless, due
to the predominant use of static terrestrial laser scanners (TLS), the most of
developed methods have been focused on scan optimization by fixing stand-
points on basis of static scanning. The increasing use of portable mobile laser
scanning systems (MLS) enables faster non-stop acquisition which demands
appropriate approaches to optimise dynamic scan planning. Therefore, a
novel method addressing the absence of dynamic scan planning is proposed
considering specific MLS constraints such as maximum acquisition time or
closed-loops requirement. First, an initial analysis is carried out to deter-
minate key-positions to reach during data acquisition. From these positions
a navigable graph is generated to compute routes satisfying specific MLS
constraints by a three-step process. This starts by estimating the number of
routes necessary to subsequently carry out a coarse graph partition based on
Kmedoids clustering. Next, a balancing algorithm was implemented to com-
pute a balanced graph partition by node exchanging. Finally, partitions are
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extended by adding key nodes from their adjacent ones in order to provide
a desirable overlapping between scans. The method was tested by simulat-
ing three laser scanner configurations in four indoor and outdoor real case
studies. The acquisition quality of the computed scan planning was evalu-
ated in terms of 3D completeness and point cloud density with the simulator
Helios++.

Keywords: 3D digitalization, autonomous navigation, computational
geometry, path planning, scan-vs-BIM, spatial analysis

1. Introduction

With the development of reliable and rapid sensing methods for direct
3D point cloud acquisition, new opportunities for surveying and mapping
complex sites have emerged. Starting in first early 2000s, static terrestrial
laser scanning technology has developed and become a consolidate technique
for 3D data acquisition (Watt and author, 2005; Alba et al., 2006; Buck-
ley et al., 2008; Oppikofer et al., 2009; Abellan et al., 2014). These new
opportunities have become more relevant with the progress of mobile map-
ping systems (MMSs), and more recently with the development of indoor
mobile mapping systems (IMMSs) (Nocerino et al., 2017). Advances in the
reduction of size and weight of laser scanning sensors, together with improve-
ments in indoor positioning techniques such as the well-known simultaneous
localization and mapping (SLAM), have contributed to the consolidation of
new portable and mobile systems (Corso and Zakhor, 2013). MMSs are usu-
ally classified according to the platform in which sensors are placed: cart,
backpack, UAV, and handheld. The variability of platforms where sensors
are integrated gives an idea about how complex and challenging the sites to
acquire may be (Otero et al., 2020).

Despite the usefulness of laser scanning systems, data capture is generally
a time-consuming task especially when talking about terrestrial laser scan-
ning (TLS). Minimizing the number of scanning operations while maximizing
data completeness is essential for efficient data capture. In this context, the
optimal positioning of TLS has been extensively studied in the last few years
see, e.g., Ahn and Wohn (2015); Biswas (2020). On the contrary, the prob-
lem of scan planning for MMSs has not been addressed too much. This can
be explained by the fact that acquiring data with MMS is much faster, and
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acquisition time is no longer considered a problem except for the autonomy of
the systems. Nevertheless, scan planning for MMSs becomes also necessary
in the case of large and complex sites in a way to ensure data completeness,
avoiding repetitiveness, and dealing with time restrictions. This need is even
more essential for autonomous systems not following the Next Best View
(NBV) problem, that is all case studies in which there is previous knowledge
about the scene to capture, typically as 2D and 3D models. Applications
such as construction control or scan-vs-BIM are among the most popular in
recent times (Aryan et al., 2021).

Different to optimal scan planning for TLS, in which we typically define a
set of minimum positions maximizing the coverage from which the laser scan-
ners capturing data with a panoramic horizontal field of view, scan planning
for MMSs requires from the definition of a complete trajectory. In this paper,
we formulate the definition of a trajectory of acquisition as the definition of
an optimal route passing through a set of key scan positions. Route planning
has been widely addressed in the literature, and many related problems are
known to be NP-hard (Kim et al., 2020). The complexity increases substan-
tially with the size of the case study because more nodes conforming the
navigable graph need to be considered in the analysis. In the same way, the
coverage problem is becoming more complex when requirements from some
MMS, such as the need of closed loops, is taken into account.

To overcome the above challenges, this paper describes a novel approach
for the optimal scan planning for both static and mobile laser scanning sys-
tems. Previous developments focused on TLS scan planning (Fŕıas et al.,
2019) are taken as basis for the determination of the minimal scan positions
from which the MMS needs to pass through. Then, the scan planning for
MMS is formulated as an optimal-route planning problem in which main
restriction is given by the maximum acquisition time for each specific sen-
sor. In addition, the method also considers overlapping between laser scan
trajectories for ensuring subsequent registration tasks. The method deals
with polygons with holes and obstacles either from the perspective of the
navigable graph calculation and for the visibility analysis.

To summarize, the main contributions of this paper are listed as follows:

• a scan planning tool including optimal routing, which is flexible in the
sense that it can be applied to static and mobile scan planning, dealing
with non-closed loop and closed-loop requirements;
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• a mobile scan planning strategy based on optimal scan position place-
ment followed by optimal navigable routing;

• a balanced graph partitioning programming formulation for solving mo-
bile scan planning with closed-loops, which effectively find solutions in
case of large-site acquisition. The method includes the addition of
sharing nodes between adjacent clusters (loops) to ensure overlapping;
and

• a method for 3D data quality simulation including route soften based
on Helios, an open-source software developedby the Geoinformation
Group at the University of Heidelbergh, Germany.

The remainder of this paper is organized as follows. Section 2 reviews
the state of the art in terms of scan planning both for static and mobile
mapping systems. A subsection about quality analysis of planned scan data
is also included. Section 3 describes the proposed method while Section 4
analyses and discusses the results obtained from applying the method to
several case studies, including indoor and outdoor scenarios. Finally, Section
5 is devoted to conclude this work and to address future development which
will be necessary to go along with a continuously improving technology.

2. Related work

Scan planning problem is generally stated as a particular case of the exten-
sively studied View Planning Problem (VPP) (Scott et al., 2003). Techniques
to address this problem can be classified in two main categories depending on
scene model availability. On the absence of this, non model-based methods
are implemented by a Next Best View (NBV) planner designed to determi-
nate the best scan position providing greater coverage gain (Connolly, 1985;
Pito, 1999). Since no prior knowledge from the scene is available, heuristic
function is often defined to decide the next scan position using only infor-
mation obtained from previous scans. This online strategy is widely im-
plemented for automatic scanning by autonomous mobile robots (Quintana
et al., 2016) or Unmanned Aerial Systems (UASs) (González-de Santos et al.,
2018).

On the contrary, model-based methods enable to perform a scan planning
with complete scene information. Generally, the model consists of 2D layout
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or is reduced to it from a 3D model to represent the scene as a polygon such
that scan planning can be posed as the classical computational geometrical
“art-gallery problem”. This is formulated as the calculation of minimum
number of positions inside the polygon needed to provide free-obstacle line-
of-sight to any point composing the polygon. The NP-hard complexity of
the problem (Lewis and Papadimitriou, 1997) leads to make assumptions
to become good solutions. For example, González-Banos (2001) proposed
a randomized strategy to reformulate the “art-gallery problem” as a “set-
covering problem”. In his work, candidate positions are randomly generated
and polygon boundaries are dicretised on basis of the visibility from candi-
dates. Then, the minimum covering problem is solved by applying Greedy
strategy (Chvatal, 1979). This approach is also used by Blaer and Allen
(2007) extending laser constraints for a initial coarse scanning embedded in
a two-phase acquisition refined with a NBV scan planning.

A similar approach is adopted by Soudarissanane and Lindenbergh (2011)
in which elements of interest are discretised in equal-length segments whereas
a regular grid is used to generate candidates. Besides, laser constraints such
as range and incidence angle are regarded in visibility analysis. In the follow-
ing stage, the coverage optimisation is solved by Greedy selection again. A
variant from this optimisation algorithm is proposed by Jia and Lichti (2019)
coined Weighted Greedy Algorithm (WGA) that prioritises candidates cov-
ering segments not visible from other positions. Furthermore, the provided
solution is exploited to remove redundant candidates hierarchically in order
to carry out a reliable scan planning for large sites.

A different approach for a workable scanning of large scenes is proposed
in Zhang et al. (2016). In addition to the aforementioned laser constrains,
specific Level-of-Detail (LOD) requirement are included in the coverage opti-
misation involving an increase of computational complexity. To reduce this,
points of interest in the elements to scan are grouped in compliance with
required LOD for each point. After, the resultant clusters are arranged min-
imising geometrical scattering and coverage problem is solved separately per
each cluster.

A more recent work presented by Kim et al. (2020) generalises sensor
constraints to realise an efficient space representation oriented to a variety
of indoor applications beyond scan planning. The polygon representing the
scene is split into triangles which are then grouped according to the tar-
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get application, so that the expanded groups may fulfil required constraints.
Then, coverage optimisation (also the partitioning problem) is posed as a
binary linear programming problem (Hu, 2016). In addition, the space rep-
resentation is compatible with the well-known standard IndoorGML (Kang
and Li, 2017). Previous set-covering problem formulations are extended to a
mixed-integer programming problem in Dehbi et al. (2021) by adding non-
discrete variables to address overlapping constraint for further point cloud
registration. To do this, a graph is created representing candidate positions
as nodes which are connected according visibility. Furthermore, coverage is
not focused on vertical elements but also floor area acquisition is explicitly
managed.

Despite the numerous works addressing scan planning, almost all of them
are limited to static acquisition assuming that data is collected only from
the selected scan positions as is the case TLS is adopted. In addition, scan-
ning complex environments with TLS may become a tedious task because of
the inaccessibility for mobile robots or craggy surfaces. A real situation is
reported in (Rüther and Palumbo, 2012), where the objective of this study
was to scan with TLS an extend heritage site of 700 x 400 m of extension.
The 1200 scans collected to cover the entire scene required six weeks and its
subsequent registration about four months. In contrast, Zlot et al. (2014)
has evaluated the advantages of dynamic scan by a handheld laser scanner
performing a scanning of an heritage site with an extension of approximately
400 x 250 m. The scanning time was about 3.6 hours while the processing
time from raw data to provide a coherent 3D model was 2.6 hours. De-
spite the scanned area is almost three times smaller than the site scanned
with TLS, the consumed time for both data capture and post-processing is
drastically reduced by operating a dynamic acquisition with a mobile laser
scanning (MLS). However, as the scan planning planning of the MLS was
driven by human-expertise, some aspects about the redundant data captur-
ing, minimum number of scans and time optimisation per scan were missed.

Actually, there is a shortage in the literature about dynamic scan planning
requiring to deal with specific constraints of MLS devices such as tracing
closed trajectories and maximum acquisition time per scan. Therefore, this
work is focused to address this gap by extending previous static scan planning
proposed by Fŕıas et al. (2019) to dynamic acquisition in order to derive
efficient trajectories in terms of time-saving, coverage and overlapping.
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3. Method

A general overview of the method is represented in Fig. 1. Firstly, an
initial analysis for determining the minimal scan positions maximizing cov-
erage is performed. This process consists of a set of steps (space partitioning,
visibility analysis and scan optimization) and it considers a panoramic hor-
izontal field of view. The acquisition from these positions guarantees the
minimal coverage required, therefore, route planning starts by generating a
grid-based navigable graph ensuring that all initial scanning positions are
reached. Then, an optimal route is computed using a heuristic ant “colony
optimisation algorithm” (ACO). For TLS, only one route is sufficient to com-
plete an acquisition because it does not have time restrictions. However,
MLS planning may require several routes, especially on large environments.
In this case, navigable graph is partitioned into smaller subgraphs taken into
account MLS limitations, such as maximum acquisition time or closed route
requirement. The graph division is addressed as a balanced graph parti-
tioning problem deriving cluster subgraphs from which optimal routes are
computed by ACO algorithm. Each procedure is extensively explained in
the following subsections.

3.1. Initial analysis

Despite the optimisation of the minimal scan positions is similar to Fŕıas
et al. (2019), a brief summary of the processes conforming the initial analysis
is included for contextualizing the route planning problem.

The input data consists of a 2D CAD file structured in layers, each one
corresponding to an element type such as floor, walls or columns. In ac-
cordance with user selection, layers are classified into Lacq and Locc groups
containing element layers to be acquired and elements that cause occlusions
in laser visibility, respectively. Also, a predefined layer called ’floor’ or ’ex-
tension’ represents the navigable space which is defined as the floor area
where the acquisition system can be positioned by itself. Further, this layer
is represented geometrically as a closed polygon P . Then, elements of Lacq

and Locc are discretized so that their geometries are represented by evenly
spaced points composing the sets Xacq and Xocc.

In order to carry out a simulated scanning acquisition as realistic as pos-
sible, laser characteristics involving acquisition constraints are included in all
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Figure 1: General workflow of the method.

procedures composing the method. Since this study addresses two acquisi-
tions modes with different limitations, scanner parameters are divided into
two categories: common and specific constraints collected in Table 1.
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Table 1: Laser constraints classified in common and specific.

Constraints
Static acquisition

(TLS)
Dynamic acquisition

(MLS)

Common
Laser range 3D 2D

Minimum distance Yes Yes
Visibility Yes Yes

Specific
Maximum acquisition time No Yes
Closed-loops requirement No Yes/No

Overlapping - User-defined

3.1.1. Space partitioning

After elements have been discretised and classified, the geometry of the
navigable space is partitioned into smaller regions for a more efficient and
manageable representation. Although multiple partitions are possible, a
space partition can be generically defined as:

Definition 1. (Space partition)
Given a polygon P representing the navigable space, a set of the regions
R ⊂ P is a partition of P if given any region ri, rj ∈ R such that {ri∩rj,∀i,j |
i 6= j} = ∅} and {ri ∪ rj,∀i,j | i 6= j} = P .

For the initial analysis, two partitioning methods based on grid or triangu-
lation distribution can be selected to generate a discrete number of potential
positions Sini to be scanning places. Unlike most of scan planning works,
the boundary of P may not be the area of interest to be acquired, moreover,
it may not be represented as a closed polygon as is the case of construction
environments where outer walls have not already been built or as in open
outdoor environments.

The set Sini resultant from space partitioning (Figs. 2a and 2b) are fil-
tered by laser range and minimum distance constraints before the visibility
analysis. To do this, the positions from which no point of Xacq would be
acquired due to range constraints and positions at a distance less than the
minimum distance to occlusion elements are discarded. The filtering out-
come is a set of candidate positions Scand (Figs 2c and 2d) to be analysed in
the next step.
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(a) Grid-based partition (b) Triangulation-based
partition

(c) Constrained
grid-based partition

(d) Constrained
triangulation-based
partition

Figure 2: Points (red) representing navigable space generated by a) grid-based and b)
triangulation-based methods. Candidate points (red) are depicted in c) and d) after fil-
tering on basis of range (blue points) and minimum distance (light gold) constraints.

3.1.2. Visibility analysis

In this step, the coverage provided by each candidate position pcand ∈
Scand is evaluated by a visibility analysis based on a ray-tracing strategy
(Dı́az-Vilariño et al., 2019) as shown in Fig. 3. Prior to this analysis, an
occupancy binary map is generated projecting occlusion elements Xocc on it.
Then, visible points Xvis from each candidate are determined by simulating
laser beams on the map from pcand to elements of interest Xacq.

Generally, ray-tracing-based visibility analysis is a time-consuming pro-
cess due to the larger number of evaluations from candidates to target points
that have to be performed. Therefore, only points to be acquired Xacq falling
in covering range are used for beam simulations from each candidate. In
addition, auxiliary layers can be included in the input 2D model to lead a
more efficient analysis. These should correspond to subspaces of the naviga-
ble space, i.e., rooms and corridors in indoors. In this case, only visibility
from points to be acquired inside the subspace is checked.

3.1.3. Scan optimization

Finally, the selection of the best scanning positions is formulated as a
minimum coverage problem. As already implemented in Fŕıas et al. (2019),
the candidate position covering unseen greater area to acquire is selected
(maximum coverage) by a combinatorial iterative process as shown in Fig. 4.
The implemented algorithm based on a ‘backtracking’ strategy stops when
the minimum required completeness Covmin is achieved. The selected po-
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Figure 3: Visibility analysis process determines which points to be acquired (blue) would
be reached by the simulated laser beam (green) from any candidate position (red).

sitions S are the minimum positions necessary to accomplish the required
coverage in terms of completeness (minimum coverage).

Figure 4: From candidates (blue points) resulting after visibility analysis, scan optimiza-
tion procedure selects the candidate providing the most coverage (at the centre of dashed
circle) in each iteration considering only visible points (green).

In summary, the initial analysis provides a set S containing the theoret-
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ically optimal scan placements to acquire the points of interest Xacq. The
coverage/completeness provided by the selected locations satisfies scanning
requirements. Moreover, the panoramic Field-of-View (FoV) considered for
the analysis assumes all points of interest falling in a sphere (3D) centred
at each scanner placement are visible. However, acquisition area of most
iMMS consists in a 2D plane orthogonal to the system motion. Despite
this difference, the obtained positions used in the further analysis performed
for dynamic acquisition are valid since similar 3D coverage is obtained by
making a U-turn at a scan position with a MLS system. Besides, the im-
plemented procedure achieves to compute high quality placements with a
reasonable computational effort avoiding the higher complexity entailed for
a 2D acquisition.

3.2. Route planning

Although the optimal scanning positions calculated in the initial analy-
sis contribute to reduce acquisition time, addressing route planning problem
can minimize the route distance to reach all positions. This is more critical
to carry out an efficient acquisition plan in large complex environments ac-
quisition with a iMMS. Therefore, remaining part of the proposed method
deals with route computation taking into account common and specific laser
constraints. Route planning for static acquisitions is implemented as in Fŕıas
et al. (2019) but the novelty of this work lies in route computation for acqui-
sition based on MLS.

Route planning is divided into the three processing steps explained below.
The first one consists in a graph generation to obtain routes for both laser
operation modes. The second step corresponds to route computation for
static acquisition with TLS while dynamic route planning is addressed in the
latter process.

3.2.1. Graph generation

The most common representation of the navigable space for route compu-
tation is by means of a graph, therefore, route planning starts by generating
a navigable graph. Since the method is geared to autonomous mobile robots,
square grid was selected as graph nodes distribution. With regard the fore-
going, a navigable graph can be formally defined as:
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Definition 2. (Navigable graph)
A navigable graph is a simple undirected connected graph Gn = {N,E}
where N is the set of graph nodes and E the set of collision-free edges con-
necting graph nodes.

Furthermore, nodes composing N are categorized into two classes: scan
nodes Ns corresponding to nodes located at scan locations from S and nav-
igable nodes Nn that the mobile system can reach while travelling through
the graph edges. An example of a Gn is depicted in Fig. 5a representing
scan and navigable nodes in red and blue respectively.

(a) Navigable graph (b) Scanning graph

Figure 5: Graphical representation of a) a navigable graph and b) its corresponding high-
level representation as a scanning graph.

As nodes Ns are the key-positions to route computation, a simpler higher
hierarchy graph representation is made by abstracting navigable nodes. We
call this high-level graph representation scanning graph (Fig. 5b) and it is
defined as:

Definition 3. (Scanning graph)
Given a navigable graph Gn = {N,E}, a scanning graph is a complete graph
GS = {Ns, Es} where Ns is the set of all scan nodes contained in N and
Es ⊂ E the set of collision-free edges connecting nodes.

The scanning graph is generated from Gn computing shortest path be-
tween each pair of nodes (us, vs) ∈ Ns using Dijkstra algorithm (Dijkstra,
1959). The obtained paths constitute the set of edges Es representing the
shortest route between scan nodes. Thus, only the relevant information to
route computation is kept in the scanning graph.
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3.2.2. Route computation for static acquisition

An optimal route should reach all scan locations travelling as short a
distance as possible. Hence, the route computation can be formulated as the
well-known Travelling Salesman Problem (TSP) defined as the search for the
shortest route reaching all key-positions only once. The NP-hard complexity
of this problem makes its applicability unfeasible in large environments where
the number of scan positions would be high. This limitation is generally
overcome by using available heuristic algorithms providing good results as
the ACO selected for this work.

For a static acquisition with TLS, the optimal route is obtained by directly
applying a ACO algorithm to the whole scanning subgraph. This is possible
because no time restrictions have been considered for this acquisition mode,
assuming that the scan planning can be completed with only one route. Fig.
6a depicts an optimal route passing through all of scan positions while Fig.
6b shows another route for the same graph finishing at the start position
(closed route).

(a) No-closed optimal route (b) Closed optimal route

Figure 6: Optimal routes

3.2.3. Route computation for dynamic acquisition

Unlike TLS-based systems, dynamic acquisition is generally performed
with Mobile Mapping Systems (MMSs) based on SLAM that may cause
positioning drift in large trajectories decreasing acquisition accuracy. To
avoid this degradation, manufacturers recommend to limit the scanning time
to a certain temporal value tmax or tracing closed trajectories during the
acquisition. The temporal restriction together with the velocity of the mobile
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system vsys fix the maximum acquisition distance dmax computed by Eq. 1:

dmax = tmax ∗ vsys (1)

Especially in large environments, the recommended maximum acquisition
time leads to require multiple scans to complete the scan planning involving
a route computation per each scan. To address this problem, a balanced-
clustering algorithm is proposed to accomplish laser requirements while min-
imising the number of scans. The algorithm consists of three steps starting
by a rough initial graph partitioning that is refined in the next step by a
balancing process. Finally, clusters are extended to provide enough overlap
between scans to facilitate the further registration of point clouds derived
from each scan.

3.2.3.1. K-medoids coarse partition.

In this step, clustering K-medoids (Park and Jun, 2009) algorithm is used
for an initial coarse grouping of scan nodes. As the popular K-means method
(Krishna and Narasimha Murty, 1999), the number of goal clusters and the
distance between key-points are the required input parameters. Unlike this,
K-medoids can minimize other magnitudes beyond Euclidean distance. This
property makes K-medoids more suitable for graph distance minimization.
Hence, the distance matrix from scanning graph Ds is one input used as the
dissimilarity measure to be minimised while the input number of clusters
k must be estimated. The proposed solution for this problem consists in
estimating the average number of scan nodes forming a cluster nnpc complying
laser constraints. The estimation of nnpc is obtained by Eq. 2, which takes
into account dmax and the overlapping fixed by an arbitrary number of scan
nodes to be shared between clusters nsh:

nnpc =
⌊dmax/davg

2
− nsh

⌋
(2)

Besides, the average distance between clusters davg is necessary to deter-
minate nnpc but this not can be computed directly. Since all nodes composing
a scanning graph are connected, the average distance between them cannot
be taken as a reliable measure. This is because the value obtained would
increase according to the graph´s length. To find a more robust value, an
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adjacency relation between the scan nodes is established on the basis of graph
connectivity. Thus, only adjacent nodes are used to compute the davg with
respect to each other.

To determinate adjacency between scan nodes, the navigable graph is
split into smaller subgraphs hereinafter referred to as scanning subgraphs.
Before defining a scanning subgraph, the concept of induced subgraph in
graph theory is introduced:

Definition 4. (Induced subgraph)
Given a graph Gn = {N,E}, let be Y a subset of nodes such as Y ⊂ N . The
induced subgraph Gn[Y ] is a graph composed of nodes from Y and the edges
from E whose both nodes belong to Y.

Relying on the above definition, a scanning subgraph can be defined as
follows:

Definition 5. (Scanning subgraph)
Given a navigable graph Gn = {N,E} , let be Ns the set of scan nodes on
the graph and GSS = {NSS, ESS} the subgraph induced by NSS ⊂ N . GSS

is a scanning subgraph if the subset NSS contains only one scan node ni
s ∈ Ns

and the navigable nodes closer to ni
s than to any other scan node.

Definition 6. (graph partition)
Given a navigable graph Gn = {N,E}, Np = N0, ..., Nk is a partition of Gn

if
⋃k−1

i=0 Ni = N and Ni ∩Nj = Ø,∀i,j, i 6= j.

Hence, a navigable graph can be partitioned into |Ns| scanning subgraphs
deriving into a scanning partition formally defined as:

Definition 7. (scanning partition)
Given a navigable graph Gn = {N,E}, let be Np = N0, ..., Nk a partition of
Gn, Np is a scanning partition of Gn if the induced subgraph Gi

SS = Gn[Ni]
is a scanning subgraph ∀i = 0, ..., k.

An example of a scanning partition is shown in Fig. 7a where each group
of nodes is depicted by the same colour. Note that subgraphs are connected
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to each other by edges of Gn not belonging to any scanning subgraph (black
dashes edges). In this paper, these edges will be referred to as adjacent scan-
ning edges since they determinate the adjacency relation between scanning
subgraphs. Consequently, two scan nodes ni

s, n
j
s ∈ Ns are adjacent if their

induced scanning subgraphs Gi
SS and Gj

SS are connected in the scanning
partition by at least one adjacent scanning edge.

(a) Scanning partition. (b) Cluster partition.

Figure 7: Graph partitioning from a) scan nodes and b) clusters.

After the mean distance of each scan node with respect to their adjacent
ones is obtained and davg is computed by averaging all these distances the
initial number of clusters kini is determined by Eq. 3. As conservative estima-
tions have been assumed, the number of clusters is refined by the Algorithm
1 in order to optimise its value. In the first iteration, initial kini clusters
are obtained by K-medoids. Then, the route distance of each cluster is es-
timated using the Greedy approach considering the closed-loops constraint.
The mean of length of routes lavg and the shortest route are evaluated to
decide whether k is optimal or it has to be increased or decremented. This
process is repeated until k is optimal. In addition, the k value used at each
iteration is saved in a buffer kbuffer to avoid oscillations since evaluation
conditions are not mutually exclusive:

kini =
⌈
|S|

/
nnpc

⌉
(3)
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Algorithm 1 Optimal k computation
1: procedure k computation(kini, Ds, dmax)
2: kc ← False
3: k ← kini
4: Kbuffer ← k
5: while kc = False do
6: Cini ← Kmedoids(k,Ds)
7: for ci ← cini do
8: Dest ← Greedy estimation(ci)

9: lavg = mean(Dest)
10: if lavg > dmax then
11: k ← k + 1
12: kbuffer ← k
13: else
14: if (lavg + min(Dest)) < dmax and not (k − 1) in Kbuffer then
15: k ← k − 1
16: Kbuffer ← k
17: else
18: kopt ← k
19: kc ← True

Output:kopt, Cini

Since clustering is only based on the distance between scan nodes, initial
clustering Cini may be unbalanced such that the estimated route distance for
some clusters can exceed dmax. In order to comply with laser requirements,
next step consists in a balancing process that seeks to compensate the cluster
distance difference through node exchange between adjacent clusters.

Like in the case of scanning subgraphs, adjacency between clusters is de-
termined by the navigable graph partitioning (Fig. 7b). The sets derived
from the partitioning correspond to nodes inducing to clustersubgraphs de-
fined as follows:

Definition 8. (Cluster subgraph)
Given a navigable graph Gn = {N,E} , let be Ns the set of scan nodes on
the graph and Nc ⊂ Ns a set of scan nodes composing a cluster, the subgraph
GCS = {NCS, ECS} is a cluster subgraph if:

1. NCS is the set of nodes from N closer to Nc than to scan nodes not
belonging to Nc.

2. GCS is the induced subgraph Gn[NCS].
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Therefore, the navigable graph can be partitioned into k node sets induc-
ing a k cluster subgraphs. The obtained graph is refereed as cluster partition
that is defined as:

Definition 9. (Cluster partition)
Given a navigable graph Gn = {N,E} , let be Np = N0, ..., Nk a partition of
Gn, Np is a scanning partition of Gn if the induced subgraph Gi

SS = Gn[Ni]
is a cluster subgraph ∀i = 0, ..., k.

According to the previous definition, the relation between scan nodes
composing a cluster Ci and the cluster subgraph Gi

CS induced from them
is unambiguous. Like scanning partition, edges not belonging to any cluster
subgraph are used to determinate adjacency relations between clusters. These
edges are referred to as adjacent cluster edges.

Besides, since cluster subgraph connectivity is required in the balancing
process to exchange nodes between adjacent clusters, the cluster subgraphs
derived from the cluster graph partitioning must be connected. However, the
induced subgraphs from clusters obtained by K-medoids clustering may not
satisfy the connectivity condition. Therefore, before starting the balancing
procedure, cluster subgraphs are analysed to meet connectivity requirement
by moving scanning subgraphs between clusters, if necessary. The resultant
clusters Ccon are the input for the balancing process.

3.2.3.2. Cluster partition balancing.

The implemented balancing process consists in exchanging scan nodes
between clusters for the purpose of making all cluster routes shorter than
dmax, for forcing the distance variance from them be as small as possible.
Main operations performed by the algorithm to attain a balanced cluster
partition from the coarse clustering are visualised in Fig. 8.

First, the initial clustering graph is generated by partitioning the naviga-
ble graph according to the coarse clustering Ccon computed in the previous
step. At each iteration, the length of every cluster subgraph is estimated by
Greedy-based route computation. Also, the clustering distance variance is
calculated for the refinement of the balancing.

From the previous estimations, two clusters are selected to perform the
node(s) exchange between them. The criteria for this selection depends on
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Figure 8: General clustering graph balancing process.

whether the estimated length of any cluster exceeds the maximum acquisition
distance dmax or not. In the first case, the longest cluster subgraph is chosen
as the cluster to be reduced Crdc. Subsequently, the shorter cluster subgraph
adjacent to Crdc is the cluster selected to be expanded Cexp. Otherwise, the
algorithm seeks to improve the balancing by clustering variance reduction.
To do this, cluster selection is based on the length deviation of the clusters
around the clustering average distance. First, the most deviated cluster cd is
selected in agreement with Eq. 4:

cd | d = max
d
|Dd| (4)

Then, Eq. 5 is used to determinate the cluster whose deviation better
compensate that of cd. Once both clusters have been determined, the cluster
with the smallest deviation value is selected as the one to be expanded (Cexp)
while the other one is the one to be reduced (Crdc). In the example visualised
in Fig. 9, the cluster c2 is the most deviated cluster and it is selected as Cexp

because D2 is smaller than D0:

co | o = min
o
|Do +Dd| (5)
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Figure 9: Graphical representation of cluster deviations around the mean distance. The
largest deviation is visualized in red while the deviation that most offsets it is coloured in
light blue.

Next step consists in determining the node(s) to move from Crdc to Cexp

regardless of the criteria previously used to select both clusters. Balancing
process is based on nodes’ connectivity, thus, all subgraphs composing Crdc

adjacent to Cexp are candidates to be exchanged. Following the example in
Fig. 10a, let us suppose that C1 (purple nodes) has been selected as Crdc

and C2 (green nodes) as Cexp. Thus, the nodes corresponding to subgraphs
G5

ss, G
6
ss, G

11
ss are the candidates to exchange for being adjacent to C2. Since

multiple exchanges are possible, a criteria of prioritisation is defined with the
aim of conducting the most advantageous exchange. Therefore, candidate
nodes are evaluated in connectivity terms to establish node priority. Due to
the fact that Cexp is adjacent to any candidate, the resultant expanded cluster
will always be connected after the exchange. However, this is not true for
the reduced cluster. Continuing with the example in Fig. 10a, the exchange
of one subgraph such as G5

ss or G11
ss to C2 does not break the connectivity

of Crdc. In contrast, Crdc is split into three connected components if G6
ss

is exchanged generating a cluster graph partition of k + 1 sets. To avoid
this inconsistency, the candidate node associate to G6

ss is discarded. After,
the priority of the remaining candidates is determined according the number
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of adjacent cluster edges (dashed black edges) joining candidate subgraph
with Cexp. Thus, the subgraph G5

ss have a level of priority 5 while that for
subgraph G11

ss is 1 being priority 1 the highest level.

The break in connectivity of Crdc is an usual situation in graphs of in-
door spaces since topological connections between corridors and rooms occur
through by a door. Therefore, a more complex node exchange is addressed to
provide greater flexibility to the algorithm. To visualise the problem, a new
clustering graph represented in Figure 10b that corresponds to the previous
example adding a slightly modification is used. In this case, subgraphs G5

ss

and G6
ss are the adjacent candidate nodes to be exchanged. As in the example

above, G5
ss has priority 5 while the exchange of G6

ss breaks continuity of Crdc.
But unlike the previous case, this exchange breaks the subgraph into two
connected components only. In this case, a solution to allow the exchange of
nodes that break cluster graph connectivity keeping cluster partition consis-
tency is more feasible to implement. To solve clustering consistency, a new
operation called multi-node exchange has been added. This exchange con-
sists in moving the shorter component ({G5

ss}) together with the candidate
subgraph (G6

ss) to Cexp which ensures connectivity of resultant subgraphs.
Although this exchange is possible, the candidate G5

ss is priority because this
can be moved by single-node operation, that is, only one subgraph is moved.

(a) 3 connected components (b) 2 connected components

Figure 10: Unconnected cluster subgraph (purple) after moving one scanning subgraph
(G6

ss) generating a subgraph composed by a) 3 and b) 2 connected components.

Then, a new clustering is obtained after exchanging the highest-priority
node(s) but it must be checked in order to avoid exchanges leading to os-
cillations in the balancing process. The clustering properties to evaluate
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depend on the criteria used for cluster selection. The length of the result-
ing expanded cluster is computed from the comparison with the previous
length of Crdc if any cluster exceeded dmax in the previous clustering. In
this case, the exchange is valid if length of Cexp is smaller. Otherwise, when
clusters are selected on the basis of variance reduction, the exchange is valid
if the variance of the new clustering is smaller than the previous variance
and the length of Cexp does not exceed dmax. According to this check, the
new clustering is ruled out if the exchange is not valid. Consequently, the
remaining candidates are chosen according to priority until a valid exchange
is performed.

In complex cases, exchange validation may be invalid for all candidates.
To avoid the non-convergence of the algorithm in this situation, the node
exchange between Crdc and Cexp is blocked until one of them is modified in a
further iteration. Thus, the balancing process concludes when any exchange
is allowed.

3.2.3.3. Overlapping sharing nodes

Once scan nodes have been clustered, a route from each cluster can be
computed separately with the expectation that the routes obtained comply
with the specific MLS constraints. However, the overlapping between indi-
vidual point clouds collected from each route may not be enough for further
registration. To ensure this, clusters are extended by adding nodes from their
adjacent clusters. The level of overlapping is determined by the user-selected
parameter nsh, which corresponds to the number of nodes that clusters must
share with each other. Hence, from clusters do not sharing nsh, the shortest
one is selected to expand it with the closest node from an adjacency cluster
and this process is repeated until all clusters share at less nsh. The routes ob-
tained after to apply this to the previous example with nsh = 1 are depicted
in Fig. 11b.

3.3. MLS visibility analysis

In order to make a coverage/completeness comparison between static and
dynamic acquisition, a new visibility analysis is carried out with dynamic con-
straints. First, trajectory positions for laser beam simulation are computed
on the basis of binary map obtained by projecting trajectory segments as
shown Fig. 12a. The occupied cells by the projected trajectory are the source
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(a) Routes without overlapping. (b) Routes with overlapping

Figure 11: Routes computed a) directly from balanced clustering and b) after adding
shared nodes

positions to perform the ray-tracing test. Second, the FoV is adapted to 2D
laser range of MLS that limits the reachable points from source positions.
Thus, the coverage area covered from a trajectory position corresponds to
the orthogonal plane to the direction of motion. In addition, the yaw effect,
inherent to mobile system movement is simulated by an angular sweeping of
the coverage plane considering an offset of ±Ψ degrees. Abrupt changes in
the direction along the trajectory generating gain in coverage are regarded
as well by extending the plane sweeping with the angle Θ as is represented
in Fig. 12b.

3.4. Scan simulation

The methodology developed for route planning is considering as searching
space for the estimation of the optimal path a 2D domain. To evaluate
the possible effects of this assumption in terms of scan quality, density and
completeness in realistic 3D applications a scan simulation has been carried
out for the four case study analysed.

Scan simulation is carried out by using the HELIOS++ library (Wini-
warter et al., 2021). The Heidelberg LiDAR Operations Simulator (HE-
LIOS++) is a laser scanning simulation framework originally implemented
in C++ and allowing bindings with Python by using pyhelios extension. The
HELIOS++ framework allows the virtual laser scanning simulations of Li-
DAR sensors placed on different platforms. For scan simulation five main
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(a) Grid space (b) Euclidean space

Figure 12: (a) Trajectory segments are projected to binary map to determinate unique
trajectory positions which (b) are used to carry out visibility analysis in the Euclidean
Space .

elements are necessary: i) the definition of the scanner characteristics, prop-
erties and the platform behaviour, ii) an adequate 3D model of the scene to
be simulated, iii) a simplification of the real-world interaction between the
laser beam and the objects in the 3D scene to be simulated.

The HELIOS++ framework is highly flexible and arranged into mod-
ules allowing for the definition of new sensors in terms of: the emitter (e.g.,
beam divergence full-angle, pulse frequencies, laser pulse length/duration,
wavelength), the laser beam deflector (e.g., rotating mirror, fiber array, os-
cillating mirror, conic mirror, risley prims, etc.), characteristic of the range
detector (e.g., minimum and maximum range, sensor accuracy) and scan-
ner head properties (e.g., maximum speed, axis of rotation, etc.). Defined
scanners can be coupled with static and dynamic as well as terrestrial and
airborne platforms.

The model of the scene to be simulated can be provided as triangular
meshes, digital elevation raster, voxel grids and point clouds. The model can
be obtained either from a real survey or can be generated digitally. Materials
can be applied to the 3D to simulate intensity behaviour and laser return
intensity values are calculated using the laser radar equation.
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The physical interaction among laser beam and simulated object is mod-
elled using a set of parameters considering both physical and material be-
haviour of the object and characteristics of the laser beam such as: trans-
mitted optical power, receiver aperture diameter, atmosphere transmission,
beam divergence, angle of incidence, range distance to the target, angle of
incidence to the target, reflectance of the target surface.

In this context simulations are carried out to evaluate the performance of
the estimated optimal path considering two different metrics:

1. Data completeness, that considers if a certain area of the scene is cap-
tured or not by the scanner

2. Data density, that provides the amount of points recorded to approxi-
mate the surface of the reflector

Data completeness reflects if the surface of the investigated object is sur-
veyed and represented in the point cloud or not. Lack of completeness can
be the consequence of an incomplete acquisition due to wrong planning of
the scan standpoints (static scanner) and paths (mobile scanner). In par-
ticular, data completeness is defined as the ratio between the surface of the
scene covered by scan data and the total area of the scene. Completeness
is evaluated considering a voxel based strategy: the original scene is repre-
sented using a regular voxel structure and if scanned data are present into a
voxel occupied by the original simulated scene that voxel is labelled as “com-
plete”. Otherwise, if the voxel is not covered by scanner data it is labelled
as “empty”.

Data completeness accounts only if a certain area is covered by scan
data or not. However, it is not accounting if the recorded point cloud has
a sufficient resolution to reconstruct all the details of the investigated site.
According to this concept, a further metrics is added in the evaluation of
the estimated optimal path performance. Data density is locally evaluated
on the surface within a prefixed diameter around each point, as proposed
in Fugazza et al. (2018)). This metric can be depicted to model the point
density distribution that can be obtained from the proposed data acquisition
plan. A minimum threshold for the local point density can be established to
check whether this parameter is acceptable or a revision of the scan plan is
needed.
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4. Results and discussion

Experiments carried out to validate the proposed method and the ob-
tained results are outlined in this section. Datasets used for testing and the
designing of the experiments are described in section4.1. Results presented in
section 4.2 are divided in two parts in accordance with both main problems
addressed: initial analysis and route planning. The results of the latter are
further split into TLS and MLS analysis.

4.1. Case studies

With the aim to evaluate the robustness of the method for different appli-
cations, four case studies from indoor and outdoor environments have been
selected (Fig.13). Case studies a) and b) correspond to indoor environments
and they are provided by the ISPRS Benchmark on Indoor Modelling dataset
(Khoshelham et al., 2017). An archaeological site is selected as case study c)
in order to demonstrate the reliability of the method in complex and large
outdoor scenarios. And finally, a large mall is selected as case study d). This
mall has the particularity of being composed of rooms with a highly variable
size. Special focus should be put into the large size of case studies; the total
processed area is area is 304 m2, 373 m2, 18,364 m2 and 35,503 m2, for case
studies 1, 2, 3 and 4, respectively.

Simulations were intended to assess the utility of the proposed method
with three different theoretical laser scanners imitating core features of com-
mercial devices. The technical specifications defined for the emulated systems
are summarized in Table 2. One of the systems is a terrestrial laser scanner
selected to simulate static acquisitions, while the other two are MLS systems
used for dynamic mapping. The main differences between the two mobile sys-
tems in terms of scan planning are the maximum recommended acquisition
time and the requirement of closed loops.

For each case study, five simulations are conducted. One simulation cor-
responds to a static TLS, two simulations are conceived for a MLS referred
as IMMs-1 considering maximum acquisition times of 5 mins and 2 mins,
respectively, and the last two simulations are conducted for another MLS
coined IMMs-2 with 15 mins and 10 mins of acquisition time. For all MLS
simulations, a travel speed of 4 km/h is considered. This value is similar
to the base travel speed of non-disabled people (Montufar et al, 2007). The
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(a) (b)

(c)
(d)

Figure 13: BIM of the case studies a) 1, b) 2, c) 3 and d) 4.

(a)
(b)

(c) (d)

Figure 14: dxf models of the case studies a) 1, b) 2, c) 3 and d) 4.
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Table 2: Technical specifications of laser scanner systems used to test the method.

TLS-1
(TLS)

IMMs-2 (MLS)
IMMs-1
(MLS)

Field of view 360ºx360º 360ºx270º 360ºx270º

Range 330
30m (optimal conditions)/
<10m (recommended)

0.5-25

Point measurement
(rate pts/s)

976,000 43,000 420,000

Maximum recommended
acquisition time

No limited 30 min 2 min

Closed-loops
requirement

No Yes No

optimal route for TLS is also calculated to consider the option of mounting
the system on an autonomous system for performing a Scan&Go procedure
as in Fŕıas et al. (2019). In this case, the optimal route corresponds to the
shortest route not considering time restrictions.

4.2. Results

This section is devoted to show the results obtained from simulations.
Section 4.2.1 collects the output data from initial analysis while the relevant
results of route planning are presented and analysed in section 4.2.2. Results
of simulations on Helios are reported in section 4.2.3.

4.2.1. Initial analysis

For initial scan candidate generation both partition methods were used,
triangulation in the two first case studies, while a 2 m grid resolution was
selected for cases 3 and 4. Regarding environment extension, two different
laser ranges were chosen to carry out the planned simulations. A range
of 5 m was used for the cases 1 and 2 whereas for the other much larger
scenarios a laser operating distance was set to 10 m. From this configuration
for simulations, the number of initial scan candidates obtained for studies
case 1, 2, 3 and 4 were 151, 185, 3,261 and 6,675 respectively. Finally, scan
positions were computed in order to ensure a theoretical coverage of 90%
of the elements of interest for all of the cases resulting in 15, 18, 210 and
300 positions. The outcome of this analysis previous to route computation
is depicted in Figs. 15 and 16
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(a) (b)

Figure 15: Initial analysis results depicting discarded candidates (grey) and scan positions
(red).

(a) (b)

Figure 16: Initial analysis results depicting discarded candidates (grey) and scan positions
(red).

4.2.2. Route planning

4.2.2.1. Route planning for TLS.

The main results for TLS simulation in the four case studies are collected
in Table 3. The larger the case study extension, the longer the computed
routes listed in the second column of Table 3. The processing time to compute
the optimal route grows as well as the number of scan nodes increases. This
is because the ACO algorithm complexity depends on the number of nodes
involving a high computation time for route planning in large environments
as in cases 3 and 4. The computed routes for the middle-sized buildings 1, 2
and large scenes 3, 4 are depicted in Figs. 17 and 18 respectively.
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Table 3: Route length and processing time for TLS simulation with the four selected study
cases.

Case study Route length (m) Processing time (s)
1 94.6 0.8
2 107.2 1.3
3 1,825.3 2,987.6
4 6,136.0 5,152.0

(a) (b)

Figure 17: Routes obtained from TLS simulation for cases a) 1 and b) 2.

(a) (b)

Figure 18: Routes obtained from TLS simulation for cases c) 3 and d) 4.

4.2.2.2. Route planning for MLS.

Some relevant results to analyse the computed routes for MLS are col-
lected in Table 4 for the simulations described in section 4.1. The number
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Table 4: Summarize of MLS results

Case
study

Closed
Loops

tmax

(min)

k Coarse clustering
Balanced
clustering

Routes

ct σ2 ct σ2 ct
Avg.

length (m)
Proc.

time (s)

1

No 2 2 2 588.6 2 25.6 2 39.4 0.4
No 5 1 1 0.0 1 0.0 1 94.4 0.9
Yes 10 1 1 0.0 1 0.0 1 128.4 0.9
Yes 15 1 1 0.0 1 0.0 1 129.3 0.9

2

No 2 2 2 0.3 2 0.3 2 52.0 0.6
No 5 1 1 0.0 1 0.0 1 106.6 1.3
Yes 10 1 1 0.0 1 0.0 1 138.0 1.3
Yes 15 1 1 0.0 1 0.0 1 136.6 1.4

3

No 2 23 16 15 633.2 21 254.2 22 88.6 168.3
No 5 13 9 77 454.0 13 2052.1 13 167.1 114.2
Yes 10 8 5 58 888.5 8 1080.0 8 3.4 122.4
Yes 15 6 4 87 776.0 6 2662.6 6 485.7 136.0

4

No 2 43 31 34 881.6 36 9709.8 38 95.4 276.6
No 5 22 15 174 332.2 20 16 486.0 21 199.9 174.2
Yes 10 14 9 219 839.8 13 18 642.6 14 394.3 160.0
Yes 15 11 8 842 479.7 11 11 040.6 11 512.4 190.7

clusters k obtained in simulations, decreases longer the maximum acquisition
time tmax and increases as the number of scan nodes is higher. This behavior
is congruent with Eqs. 2 and 3 used for k calculation. The suitability of this
estimation is evaluated in the analysis of final routes.

From k estimation, the balanced-clustering algorithm is tested by com-
paring balanced clusters with the coarse clustering previous to balance. The
number of clusters complying time restriction (column labelled as ’ct’) and
the clustering distance variance (σ2) have been the measures chosen to eval-
uate the performance of the process. In cases studies 1 and 2, the only
simulation requiring more than one cluster is the 2 minutes without loops.
For both cases, the two clusters obtained by coarse clustering satisfy time
constraint but the balancing algorithm reduces clustering distance variance
in case 1. Fig. 19 shows that cluster distribution is improved by applying
the balancing algorithm. On the contrary, no balancing is performed in the
case 2 since the result generated by the coarse clustering with variance of
0.32 m2 is already valid.

Case studies 3 and 4 are really challenging for the balancing process since
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(a) (b)

Figure 19: Clustering in the simulation of an acquisition performed by IMMs-1 with
maximum acquisition time of 2 minutes in case study 1, before balancing (a) and after
balancing (b).

the variance of distances of coarse clustering is high and several clusters ex-
ceed tmax condition. In case 3, the clustering distance variance is strongly
reduced for all simulations and balanced clusters satisfy tmax restriction ex-
cept in one simulation. This corresponds to the most restrictive simulation
in time of 2 mins for which the coarse clustering generates clusters vary-
ing from 0 m (one scan node) to 400 m. Despite this difficulty the algorithm
archives to improve significantly cluster distribution. Variance is also reduced
but two clusters exceeds tmax by no more than 15 m due to a exceptional
situation. Both clusters are almost the same length and they are adjacent
to each other. Beyond, they are also adjacent to another cluster of length
similar to dmax what does not allow any exchanges between them. Theoreti-
cally, the algorithm should be able to reduce this cluster in order to enable
the exchange with its adjacent ones in a later iteration. But this is not re-
duced since the unique possible exchange with its adjacent cluster generates
a longer expanded cluster, violating the exchange validation. Consequently,
as the estimation of the distance is far from optimal route the balancing is
not completed. Even more complex is the case study 4 both in extension
and in space distribution. As in the other case studies, balancing algorithm
improves significantly clustering distribution, however, some clusters exceed
tmax limitation. By visual analysis we note that balanced clusters longer than
dmax are located in the same areas during different simulations. These areas
are composed of a narrow corridor connecting several small rooms adjacent
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to each other on both sides. This distribution involves to perform a large
multi-exchange operation for the balancing that, in many cases, infringes the
the exchange condition locking node moving with their adjacent clusters. As
these clusters are shorter than dmax when tmax = 15 min, the balancing is
successfully completed as depicted in Figs. 20a and 20b, respectively.

(a) (b)

Figure 20: Clustering in the simulation of an acquisition performed by IMMs-2 with
maximum acquisition time of 15 minutes in case study 4, before balancing (a) and after
balancing (b).

The last three columns in the Table 4 contain the results of the computed
optimal routes after adding shared nodes nsh = 1. The average length of
clusters for every simulation is at least a 10% shorter than the maximum ac-
quisition distance. Therefore, the estimated number of clusters (k) is enough
to carry out a cluster balancing fulfilling the adopted MLS constraints. An
example of the final routes for each case study with open and closed loops
are visualized in Figs. 21 and 22, respectively.

Processing time is the sum of the complete process from coarse clustering
to route computation. While simulations requiring one route path are pro-
cessed with a similar temporal cost as TLS route (case 1 and 2), processing
time consumed to compute partitioned routes in the same cases is drastically
reduced. Such as, the worst MLS simulation for case 4 the computation time
was 276.6 seconds which is approximately a 5% of the route computation
time in the TLS planning for the same case study.
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(a) (b)

Figure 21: Final route with node sharing from IMMs-1 2min simulation for case study a)
1 and b) 2.

(a) (b)

Figure 22: Final route with node sharing from IMMs-2 10 min simulation for case studies
a) 3 and b) 4.

4.2.3. Scan simulation

4.2.3.1. Scan simulation for TLS.

The main results for TLS simulation in the four case studies are presented
in Table 5 and Table 6. In Table 5, the second column represents the 2D
completeness (ratio computed in 2D space) used as the stopping criteria
for the definition of the optimal scanning positions to capture the scene.
The remaining columns presents the completeness for the main elements
composing the scene (i.e., wall, ceiling and floor) and the overall completeness
of the scene. Completeness is evaluated considering a regular voxel size of
(3.0 x 3.0 x 3.0 cm). As it can be observed the completeness of walls is
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really close to the 2D completeness used as stopping criteria. Ceiling and
floor present a lower completeness and this is mainly due to the fact that the
acquisition is assumed on a tripod at an height with respect to the ground
equal to 1.5 m so the area under the scanner tripod is not surveyed and the
incidence angle between the laser ray and the reflector is unfavourable for
those areas compared with walls.

Table 5: Data completeness for TLS simulation using Helios with the four selected study
cases.

Case
study

Estimated 2D
completeness

Overall 3D
completeness

(simulation)[%]

Wall
completeness

(simulation)[%]

Ceiling
completeness

(simulation)[%]

Floor
completeness

(simulation)[%]

1 90 85.6 89.7 84.4 78.5
2 90 84.3 88.5 82.7 77.7
3 90 82.7 90.1 80.3 66.5
4 90 81.8 89.3 81.1 63.2

Table 6 presents data density as the percentage of points in the points
cloud having a number of neighbouring points (computed in a circle of radius
0.2 m).

Table 6: Data density for TLS simulation in Helios with the four selected study cases.

Case
study

Point density >
5000 pts

[%]

Point density >
15000 pts

[%]

Point density >
25000 pts

[%]

Point density >
35000 pts

[%]

1 87.55 66.86 37.10 15.50
2 86.24 64.52 35.98 15.23
3 63.30 21.57 5.68 3.61
4 62.45 19.96 6.49 2.87

4.2.3.2. Scan simulation for MLS.

The main results for MLS simulation in the four case studies are presented
in Table 7 and Table 8. In Table 7 the results for the simulation of the for
case study. Simulations were carried out considering a walking speed of 0.8
m/s.

Table 8 presents data density as the percentage of points in the points
cloud having a number of neighbouring points (computed in a circle of radius
0.2 m).
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Table 7: Data completeness for MLS simulation in Helios with the four selected study
cases.

Case
study

Estimated 2D
completeness

Overall 3D
completeness

(simulation)[%]

Wall
completeness

(simulation)[%]

Ceiling
completeness

(simulation)[%]

Floor
completeness

(simulation)[%]

IM
M

s-
1

2
m

in

1 90 89.4 90.1 87.7 87.5
2 90 89.7 86.9 86.9 86.8
3 90 73.3 77.1 N.A. 61.8
4 90 74.8 81.1 62.3 62.3

IM
M

s-
1

5
m

in

1 90 90.1 90.3 89.3 89.3
2 90 89.0 89.9 87.1 87.1
3 90 75.2 79.0 N.A. 65.8
4 90 76.8 81.3 65.3 65.3

IM
M

s-
2

1
0

m
in

1 90 60.2 60.4 59.4 89.3
2 90 61.0 61.5 60.7 60.7
3 90 53.3 56.6 N.A. 40.1
4 90 54.8 58.7 42.2 42.2

IM
M

s-
2

1
5

m
in

1 90 60.2 60.4 59.4 59.3
2 90 61.1 61.6 60.7 60.7
3 90 52.4 55.4 N.A 38.3
4 90 53.2 55.3 40.1 40.1

Table 8: Data density for MLS simulation with the four selected study cases.

Case
study

Point density >
5000 pts

[%]

Point density >
15000 pts

[%]

Point density >
25000

[%]

Point density >
35000

[%]

IM
M

s-
1

2
m

in

1 53.44 14.52 6.66 4.24
2 52.65 11.36 5.11 2.18
3 19.80 9.24 2.12 0.35
4 22.30 13.54 3.32 0.53

IM
M

s-
1

5
m

in

1 50.87 14.01 5.95 3.72
2 49.38 10.24 5.00 1.98
3 20.13 10.43 3.29 0.43
4 23.12 14.27 4.21 0.65

IM
M

s-
2

1
0

m
in

1 15.67 5.12 0.87 N.A.
2 12.45 4.79 0.54 N.A.
3 0.40 0.02 N.A N.A.
4 0.52 0.03 N.A N.A

IM
M

s-
2

1
5

m
in

1 14.82 4.75 0.65 N.A.
2 11.39 3.54 0.53 N.A.
3 0.35 0.01 N.A. N.A.
4 0.50 0.02 N.A. N.A.

Simulation results with IMMs-1 are showing for case study 1 and 2 a
really high completeness (90%) even better with the one achieved in the
simulation of the TLS. In particular, completeness of ceiling and floors is

37



high and this is mainly connected with the different acquisition pattern that
is more favourable, for those surfaces, compared with TLS static acquisition.
The high completeness is connected with the high point measurement rate.
For case study 3 and 4 completeness decreases and this is, in our opinion,
mainly due to the large scale of the case study, the relatively limited range
of the instrument and the relatively small voxel size used for simulation.

Simulation results with IMMs-2 are showing a much lower completeness
compared with IMMs-1 and, this could be mainly connected with the lower
point measurement rate compared with IMMs-1. Results in terms of density
are also confirming this.The lower measurement rate results in a much lower
data density and keeping a quite tight voxel size (3.0 x 3.0 x 3.0 cm) influences
the results also in terms of completeness. Considering density analysis the
TLS data are showing as expected, a concentration of areas with high density
points compared to MLS, that instead are showing a lower density but an
higher homogeneity in the distribution.

5. Conclusion

In this paper, a novel approach for both static and mobile scan planning
is presented. The method is flexible in the sense that it can deal with sev-
eral MMSs constraints such as maximum acquisition time and non-closed
loop and closed-loop requirement. These constraints configure the graph
partition balancing process implemented to generate routes specific for an
user-configurable MMS. The method is tested in four real case studies with
variable size and complexity. Five simulations are performed for each case
study considering different laser scanning system configurations. Simulation
with Helios++ is used for demonstrate the reliability of the computed route in
terms of 3D completeness, and validate the acquisition assumption for MLSs.
Results show a good performance of the scan planning method, including op-
timal routing, in large scale and complex sites. Furthermore, scanning from
multiple routes with MLS not only allows to capture the scene more quickly
than using TLS but also the processing time to compute the optimal route
is significantly reduced, particularly in large scenes.

In future work, some limitations should be addressed to improve the pro-
posed method. The use of grid-based graph for large scenes involves a high
computation cost in memory, therefore, a more efficient graph nodes dis-
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tribution should be studied. In this line, a flexible graph generation for
multiple platforms carrying the MLS or for different environments, i.e. in-
door/outdoor would improve route accuracy.
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Appendix A. Balanced graph partitioning algorithm

This appendix is devoted to extend the balanced graph partitioning algo-
rithm described in section 3.2.3.2. A detailed pseudocode of the entire process
is collected in Algorithm 2. This takes the the coarse clustering computed in
in the previous step Ccon, the navigable graph Gn and the MLS constraints
of maximum acquisition distance dmax and the closed loops requirementcl
as input parameters. Before to start the main iterative process, estimated
distances of each cluster Dest are computed by a Greedy-based algorithm
to determinate the binary condition lc which is true if any cluster is longer
than dmax. To exchange control, the boolean matrix E is initially filled with
true values where the elements el,m with value true means that the exchange
between cluster l and cluster mis enabled while the exchange is disable when
the value is false. Consequently, the exchange between two clusters is allowed
if they are adjacent and the corresponding change is enabled in E.

At each iteration, an adjacency cluster matrix Ac is computed to define
adjacency relations between clusters from the clustering at this iteration Cb.
Then, clusters to be reduced Crdc and expanded Cexp are selected according
to criteria explained in section 3.2.3.2. From Crdc, adjacent nodes to Cexp

are retrieved and arranged by the function candidate adj nodes. Next, the
candidate exchange is evaluated in order of priority. Since candidate moving
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may involve a multi-node exchange operation, the function nodes to exchange
computes nodes which must be moved to keep connectivity of Crdc. The re-
sultant clusters after exchange are saved in C

′

rdc and C
′
exp to compose the

clustering derived from the exchange C
′
. From these, the length of new

clusters D
′
est and the clustering distance variance σ2′

D are calculated to de-
terminate if the exchange satisfied the conditions (val exc) defined in section
3.2.3.2. If not, the candidate na is remove from candidate list Nadj and the
next candidate is evaluated. In case the exchange is valid, no more candi-

Algorithm 2 Cluster balancing
1: procedure Cluster balancing(Ccon, Gn, dmax, cl)
2: Cb ← Ccon
3: E ←matrix initialization()
4: Dest ← greedy estimation(Ccon, cl)
5: if max(Dest) > dmax then
6: lc ← True
7: else
8: lc ← False
9: σ2D ← variance(Dest)

10: while lc == True or any(E) do
11: Ac ← adjacent cluster matrix(Cb, Gn)
12: Dest ← greedy estimation(Cb)
13: if lc == True then
14: Crdc ← longest cluster(Cb, E)
15: Cexp ← adjacent cluster(Cb, Crdc, Ac, E)
16: else
17: davg ←mean(Dest)
18: D ← Dest −Davg

19: Cmax dev ← abs most dev cluster(Cb, D,E)
20: Cadj dev ← adj offset dev cluster(Cb, D,Ac, E)

21: Crdc ←max dev cluster(Cmax dev, Cadj dev)
22: Cexp ←min dev cluster(Cmax dev, Cadj dev)
23: if Crdc == null or Cexp == null then
24: exit()

25: Nadj ← candidate adj nodes(Crdc, Cexp, A,Gn)
26: valexc ← False
27: while Nadj 6= ∅ and valexc == False do
28: na ← Nadj [0]
29: Ne ← nodes to exchange(Crdc, Cexp, A,Gn, na)

30: C
′

rdc ← Crdc \Ne

31: C
′

exp ← Cexp ∪Ne

32: C
′ ← Cb \ {Crdc, Cexp}
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33: D
′

est ← greedy estimation(C
′
)

34: σ2
′

D ← variance(D
′

est)
35: if lc == True then
36: if D

′

est[C
′

exp] <= Dest[Crdc] then
37: valexc ← True
38: if max(D

′

est) then
39: lc ← False
40: else
41: if σ2

′

D < σ2D and max(D
′

est) < dmax then
42: valexc ← True
43: if valexc == False then
44: Nadj ← Nadj \ na
45: if valexc == True then
46: Cb ← C

′

47: Dest ← D
′

est

48: σ2D ← σ2
′

D
49: E ← unlock exchange(Crdc, Cexp)
50: else
51: E ← lock exchange(Crdc, Cexp)

Output:Cb

dates are tested and clustering is updated. Since Crdc and Cexp have been
modified due to the exchange, matrix E is also actualised to allow further
exchanges from them.
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Aryan, A., Bosché, F., Tang, P., 2021. Planning for terrestrial laser scan-
ning in construction: A review. Automation in Construction 125, 103551.
doi:https://doi.org/10.1016/j.autcon.2021.103551.

Biswas, H., 2020. Automatic planning for scanning: Optimizing 3d laser
scanning operations using bim and tls. IAENG International Journal of
Computer Science 46.

Blaer, P.S., Allen, P.K., 2007. Data acquisition and view planning for 3-d
modeling tasks, in: 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 417–422. doi:10.1109/IROS.2007.4399581.

Buckley, S.J., HOWELL, J., ENGE, H., KURZ, T., 2008. Terrestrial laser
scanning in geology: data acquisition, processing and accuracy considera-
tions. Journal of the Geological Society 165, 625–638. doi:10.1144/0016-
76492007-100.

Chvatal, V., 1979. A greedy heuristic for the set-covering problem. Math.
Oper. Res. 4, 233–235. doi:10.1287/moor.4.3.233.

Connolly, C., 1985. The determination of next best views, in: Proceedings.
1985 IEEE International Conference on Robotics and Automation, pp.
432–435. doi:10.1109/ROBOT.1985.1087372.

Corso, N., Zakhor, A., 2013. Indoor localization algorithms for an ambulatory
human operated 3d mobile mapping system. Remote Sensing 5, 6611–6646.
doi:10.3390/rs5126611.

Dehbi, Y., Leonhardt, J., Oehrlein, J., Haunert, J.H., 2021. Op-
timal scan planning with enforced network connectivity for the
acquisition of three-dimensional indoor models. ISPRS Jour-
nal of Photogrammetry and Remote Sensing 180, 103–116.
doi:https://doi.org/10.1016/j.isprsjprs.2021.07.013.
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