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Abstract

Previous studies for cancer biomarker discovery based on pre-diagnostic blood DNA meth-

ylation (DNAm) profiles, either ignore the explicit modeling of the Time To Diagnosis (TTD),

or provide inconsistent results. This lack of consistency is likely due to the limitations of stan-

dard EWAS approaches, that model the effect of DNAm at CpG sites on TTD independently.

In this work, we aim to identify blood DNAm profiles associated with TTD, with the aim to

improve the reliability of the results, as well as their biological meaningfulness. We argue

that a global approach to estimate CpG sites effect profile should capture the complex

(potentially non-linear) relationships interplaying between sites. To prove our concept, we

develop a new Deep Learning-based approach assessing the relevance of individual CpG

Islands (i.e., assigning a weight to each site) in determining TTD while modeling their com-

bined effect in a survival analysis scenario. The algorithm combines a tailored sampling pro-

cedure with DNAm sites agglomeration, deep non-linear survival modeling and SHapley

Additive exPlanations (SHAP) values estimation to aid robustness of the derived effects pro-

file. The proposed approach deals with the common complexities arising from epidemiologi-

cal studies, such as small sample size, noise, and low signal-to-noise ratio of blood-derived

DNAm. We apply our approach to a prospective case-control study on breast cancer nested

in the EPIC Italy cohort and we perform weighted gene-set enrichment analyses to demon-

strate the biological meaningfulness of the obtained results. We compared the results of

Deep Survival EWAS with those of a traditional EWAS approach, demonstrating that our

method performs better than the standard approach in identifying biologically relevant

pathways.

Author summary

Blood-derived DNAm profiles could be exploited as new biomarkers for cancer risk strati-

fication and possibly, early detection. This is of particular interest since blood is a
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convenient tissue to assay for constitutional methylation and its collection is non-invasive.

Exploiting pre-diagnostic blood DNAm data opens the further opportunity to investigate

the association of DNAm at baseline on cancer risk, modeling the relationship between

sites’ methylation and the Time to Diagnosis. Previous studies mostly provide inconsistent

results likely due to the limitations of standard EWAS approaches, that model the effect of

DNAm at CpG sites on TTD independently. In this work we argue that an approach to

estimate single CpG sites’ effect while modeling their combined effect on the survival out-

come is needed, and we claim that such approach should capture the complex (potentially

non-linear) relationships interplaying between sites. We prove this concept by developing

a novel approach to analyze a prospective case-control study on breast cancer nested in

the EPIC Italy cohort. A weighted gene set enrichment analysis confirms that our

approach outperforms standard EWAS in identifying biologically meaningful pathways.

Introduction

DNA methylation (DNAm) is a chemical modification that consists of the addition of a methyl

group via a covalent bond to the cytosine ring of DNA, in correspondence of CpG sites

(CpGs), and a large body of evidence has demonstrated that CpG islands hypermethylation is

implicated in loss of expression of a variety of critical genes in cancer [1].

These alterations can be detected both in the target tissue (e.g., cancer biopsy vs tumor-free

adjacent tissue) and in blood-derived DNA. DNAm dysregulation in target tissue are likely the

effect of the disease rather than vice versa [2], whereas DNAm alterations in blood are com-

monly used as biomarkers of long-term exposure and insults to the DNA which includes vari-

ability related to genetic predisposition or individual response to risk factors. The above

suggest the possibility to use blood-derived DNAm profiles as new biomarkers for cancer risk

stratification and possibly, early detection. Investigating DNA methylation data from blood

samples is of particular interest since it is a convenient tissue to assay for constitutional meth-

ylation and its collection is non-invasive. Moreover, exploiting pre-diagnostic blood DNAm

data opens the opportunity to investigate the association of DNAm at baseline on cancer risk,

modeling the relationship between sites’ methylation and the Time to Diagnosis (TTD). That

would indeed be desirable, as to improve the effectiveness of current screening procedures via

the definition of novel effective and non-invasive biomarkers (e.g., via DNAm-based scoring

methods) is a public health necessity. In this regard, a recent paper by Muse et al. investigating

genome-wide DNAm differences of breast tumor tissue with adjacent normal tissue highlights

the possibility of identifying early DNAm alteration in breast carcinogenesis and consequently

developing epigenetic biomarkers of disease risk [3]. Previous studies investigated the associa-

tion of breast cancer risk with DNAm biomarkers of age acceleration (epigenetic clocks) and

global hypomethylation in prospective studies. In their review paper, Ennour-Idrissi et al.

highlight a global trend toward an association of age acceleration and lower global methylation

with a higher risk of breast cancer in 17 prospective studies [4]. However, the effect size was

modest or relatively weak for most of the studies, with a high risk of bias due to residual con-

founding for unmeasured (or poorly controlled) risk factors. It is known, in fact, the significant

association of both epigenetic clocks and global hypomethylation with breast cancer risk fac-

tors like smoking, BMI, parity, age at menarche, breast density, and hormonal risk factors [5,

6]. Further, epigenome wide association studies (EWAS) either ignore the explicit modeling of

TTD in a survival analysis setting or mostly provided inconsistent results as there was no over-

lap among the differentially methylated CpGs identified in different studies [4, 7].
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In this work, we focus on the identification of blood DNAm profiles associated with TTD,

with the aim to improve the reliability/reproducibility of the results, as well as their biological

meaningfulness. The unsatisfactory outcome of previous attempts to find reliable associations

may be induced by the limitations of the most traditional approaches for the analysis of whole-

genome DNAm data, i.e., Epigenome-Wide Association Studies (EWAS). Indeed, EWAS anal-

yses traditionally comprise multiple independent tests of individual CpG sites or regions, seek-

ing for significant associations by imposing p-value thresholds corrected for multiple

comparisons.

The main limitations of this approach are: (i) the extremely high dimensionality of epigen-

ome-wide DNAm data affects the reliability of multiple testing correction, driving p-value

thresholds down to extremely low values, (ii) the strong correlation among methylated sites,

that is usually not considered in statistical modelling, (iii) the presence of several (likely

unmeasured) confounders, since DNAm profiles are influenced by environmental exposures

and lifestyle behaviors [8]. Additionally, the context of pre-diagnostic blood DNAm carries

further complexities due to the (iv) very low signal-to-noise ratio of differential methylation,

as both cases and controls are healthy at the time of DNAm collection. Lastly, (v) these meth-

ods based on independent testing do not account for any of the complex and potentially non-

linear interactions that might exist between CpG sites or the combined effect of multiple loci

together on the phenotype. Indeed, findings from previous studies [9], suggest the need for an

epigenome-wide approach, that assigns individual parameters while accounting for sites’ com-

bined effect on the phenotype. We refer to this set of parameters as an effects profile.

Nonetheless, exploiting biostatistical approaches s.a. Cox Proportional Hazard (CoxPH)

regression, to model survival outcomes and infer this effect profile including all CpG sites as

predictors together, would lead to further methodological pitfalls. Firstly, modeling such a

large number of covariates leads to effect size overestimation. Moreover, CoxPH models suffer

the multi-collinear nature of CpG sites and are based on strong assumptions, such as the addi-

tive nature of covariates’ effect on the outcome, unless including an even larger number of

terms to account for interactions.

These limitations and the complexities of DNAm data can be naturally handled by Machine

Learning (ML) approaches, such as Neural Networks (NN) and Deep Learning (DL)-based

methods. Indeed, NN are optimized to extract rich latent features from DNAm data, handling

multi-collinearity, noise, and considering the complex non-linear interactions between very

large amounts of input covariates [10]. Quite a few examples exist of DL-based methods for

patients classification [11–13], risk prediction and survival modeling [14–17] from DNAm

data. On top of these, some recent works demonstrated the usefulness of AutoEncoders (AE),

Variational AE (VAE) and DL models specifically to obtain DL-based EWAS (henceforth,

Deep EWAS) [11, 12, 18], i.e. to estimate an effect profile. Oftentimes in this case, DL models

are coupled with post-hoc Explanation Methods (EM) [10]. EM like SHapley Additive exPla-

nations (SHAP) [19, 20] try to overcome the “black box” aspect of these complex models

assigning a contribution score (i.e., an importance weight) to each input feature, based on how

much it contributed to the model prediction. In Deep EWAS, EMs weights can be considered

as an estimation of the aforesaid effects profile on the phenotype. Nonetheless, the highly

parametrized deep models are prone to overfitting, unless they are presented with very large

training samples, and a suboptimal training may result in unstable and unreliable explanations

(i.e., importance weights). Indeed, to obtain effective explanations to derive meaningful con-

clusions from, both model’s accuracy and importance weights stability should be maximized

[21].

While Deep EWAS is gaining momentum, there is still a lack of approaches that try to

model TTD, inferring effect profiles, or global association parameters, in a survival setting.
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Indeed, the search for DNAm associations with a survival outcome (i.e. Survival EWAS)

exploiting DL methods has been largely unexplored and there has not been any application yet

in the context of blood DNAm. To the best of our knowledge, the existing Deep EWAS litera-

ture mainly focuses on classification settings (e.g., cancer type, cancer status, patients’ clinical

condition, etc.). The most prominent examples of this effort come from the works from Levy

et al. [10], that, in its seminal work, proposes an effective Deep EWAS framework based on

VAE-based encoding of DNAm data, followed by a prediction model explained through

SHAP. Despite the flexibility of the algorithm, no effort has been devoted to tackle the specific

facets of a time-to-event setting. Only one related study [11] deals with DNAm data and time

of BC recurrence to filter significant latent features. Yousefi et al. [22] propose a general frame-

work for genome-wide data, but their automatic hyperparameter optimization does not

account for the stability of their back-propagation based explanations. Despite the lack of

efforts towards DL-based EWAS for TTD from blood-derived DNAm, we argue that the

search for effective prognostic biomarkers from this type of data would instead benefit from a

paradigm shift from standard EWAS approaches. Indeed, we believe that to achieve reliable

biomarkers (i) the estimation of CpG sites effects profile requires a global approach rather

than independent association testing and that (ii) such approach should exploit the potential

of DL-based methods to capture the complex and potentially non-linear relationships inter-

playing between sites. Finally, (iii) the adopted methodology should be tailored to face the fac-

ets of real-life research settings.

In this work, we validate our hypothesis by analyzing blood based DNAm data from a pro-

spective case-control study on Breast Cancer (BC) nested in the EPIC Italy cohort. This cohort,

that was previously analyzed in [7, 9], presents all typical complexities of pre-diagnostic

DNAm studies, i.e., small sample size, risk of confounders effect due to the long time from

recruitment to cancer diagnosis, and the challenge of identifying differentially methylated sites

among individuals that are healthy at the time of blood collection.

To tackle this data and prove our concept, we develop a new DL-based approach that

assesses the relevance of individual CpG Islands in determining TTD while modeling them all

together in a survival analysis setting. The methodology is inspired by previous Deep EWAS

approaches [10, 11, 13, 23] and adapted for survival data, therefore we name it Deep Survival

EWAS. Our Deep Survival EWAS models the complex relationships among CpG sites and

between sites and TTD, and ultimately estimates the desired CpG Islands effects profile

through SHAP, in terms of importance weights in determining the hazard rate.

In summary, the objectives and contributions of this study are multiple:

• We highlight the need of novel approaches to cancer TTD modeling from blood-derived

DNAm. To derive meaningful and generalizable biological insights the proposed method

overcomes the limitations of standard EWAS approaches and takes into account the com-

bined effect of DNAm sites on cancer onset.

• We present our original approach to the problem, i.e., Deep Survival EWAS. Besides its nat-

ural capability to model complex and potentially non-linear interactions among CpG

Islands, the overall algorithm has several valuable methodological details meant to deal with

the complexities arising from this crucial real-life biological research context, s.a. small sam-

ples, collinearity, noise, and low signal-to-noise ratio of blood-derived DNAm.

• We validate the aforementioned hypothesis presenting the results of our Deep Survival

EWAS in an in-depth analysis of a prospective case-control BC study nested in the EPIC

Italy cohort. To demonstrate the biological meaningfulness of the obtained effect profile, we

perform weighted gene-set enrichment analyses (GSEA), comparing the results of Deep
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Survival EWAS with those of a traditional EWAS approach. The GSEA results, indicate that

our method performs better than the standard approaches both looking at the biological reli-

ability and the statistical stability of genes and pathways identified.

• We test our proposal by replacing the NN survival model with an alternative state-of-the-art

interaction-aware algorithm, i.e. XGBoost, showcasing the superior biological relevance of

our results. Finally, we confirm the value of a DL-based model accounting for predictors

interactions comparing our method with a simpler Cox model with additive effects only.

Results

DNAm data preprocessing

In this study we exploit blood based DNAm data collected for a BC study nested in the EPIC

Italy cohort. After data preprocessing, sample and probe filtering our primary dataset includes

DNAm values for 13,499 CpG sites in 248 incident BC cases and one-to-one matched controls.

DNAm values are expressed as the ratio of methylated cytosines over total cytosines (named

from here on β values). DNAm β values for CpGs pertaining to the same CpG island (accord-

ing to the UCSC annotation [24]) were grouped as described in Methods section, where we

refer the reader to for an in-depth description of the data preparation pipeline (cf. EPIC Breast

Cancer Data). The final dataset is composed of DNAm data for 3,807 CpG islands.

Overview of the Deep Survival EWAS approach

To enhance the extraction of relevant information from blood DNAm data, we defined our

methodological approach, i.e. the Deep Survival EWAS algorithm, as a set of steps tailored to

face the aforementioned facets of these complex dataset and research settings. In Fig 1, we rep-

resent the visual schema of the overall procedure.

In brief, as a first step (Panel A, Fig 1), we subdivide the study population between cases

(i.e., individuals diagnosed with cancer within the study follow-up) and controls (i.e., individ-

ual remained healthy until the end of follow-up). We begin with exploiting the population of

cases, and we agglomerate CpG Islands through Hierarchical Feature Clustering based on

Euclidean Distance of β-values (Panel B). Once the clusters are defined, we aggregate cluster-

specific β-values computing their mean. Through this step, we obtain a feature matrix

Fcases 2 R
N�J

, where N is the number of cases and J is the number of feature clusters. Hence-

forth, these aggregated CpG Islands will be referred to as features Fj. We apply the same clus-

tering structure to the CpG Islands of the controls’ population to obtain Fcontrols 2 R
M�J

, where

M is the number of controls, in order to maximize inter-group differences in distribution of

the aggregated features in case a true difference exists between cases and controls’ beta values.

Then, to make a robust and reliable estimation of the EWAS weights associated with the

input Fcases, we generate K random splits (Panel C) of the dataset into training and test set,

with 80/20 ratio and for each training-test split (Panel D): (i) we model the complex non-linear

relationship between the input and TTD, by exploiting a deep survival feed-forward neural

network predictive of the log-risk function; (ii) we exploit Kernel Shap from SHAP framework

[19] to estimate weights (wðkÞj ) associated to each feature f 2 F. Notably, SHAP relies on the use

of a “background dataset” to estimate the expected model output and estimates individual fea-

ture’s impact on prediction as their contribution to the difference between the observed and

the expected prediction (more details in the following section). Therefore, choosing the right

background data is crucial to obtain contextually meaningful explanations. Indeed, to
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resemble the differential estimation of DNAm effects in EWAS, we compute the importance of

the features in Fcases using Fcontrols as reference for SHAP. Finally, after generating indepen-

dently K sets of weights’ profiles, they are aggregated averaging them to obtain the final estima-

tion of the effects profile �w for BC TTD.

Deep Survival EWAS on the case-control study of breast cancer nested in

the EPIC dataset

We applied the described Deep Survival EWAS to the BC sample from EPIC Italy, to infer an

effect profile associated to the blood-derived DNAm CpG Islands in the dataset. As many ML

or DL based algorithms, our approach comprises several building blocks that require specific

choices in terms of hyperparameters and/or implementation details, that need to be optimized

to provide a robust estimation of the desired effect profiles. Of note, the term robust is used

throughout the paper to describe more generalizable and transferrable parameters, estimated

in such a way to avoid overfitting on the small sample they originate from.

First of all, even though the final objective of our algorithm is not per se the prediction of

TTD, this performance has to be maximized. Indeed the better the underlying K models will

perform in predicting the survival outcome, the more meaningful the feature importance

weights derived by SHAP will be. Concurrently, a stable feature importance ranking suggests

Fig 1. Algorithm pipeline of the methodology applied in this study. (A) We started from the EPIC BC cohort, equally split between cases (i.e.,

patients enrolled healthy but diagnosed with BC within the study time frame) and matched controls (i.e. patients matching cases at baseline, that were

not diagnosed with BC within the study time frame). (B) The first step is feature aggregation via hierarchical clustering, exploiting CpG Islands

continuous β values of the population of cases to infer the J clusters of features. The same clustering structure is then applied to both cases and controls,

grouping their CpG Islands accordingly. (C) The cases population is exploited to generate K independent and randomly split training and test sets, each

of them with 80% patients in training set and 20% patients in the test set. (D) Each of the K splits goes through step D independently. In particular, the

k-th training set is used to train a Deep Survival Model, that then is used to estimate SHAP weights profiles (wk) on the k-th test set using the controls’

population as background data. (E) After generating independently K sets of weights profiles, they are aggregated to obtain the final estimation of the

effects profile for BC TTD.

https://doi.org/10.1371/journal.pcbi.1009959.g001
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that the K models trained on different data subsets are consistently capturing and exploiting

the information from a specific set of features to obtain such prediction. A satisfactory perfor-

mance on both aspects together translates in a trustworthy and effective effects profile estima-

tion [25]. For this reason, we seek to identify the best combination of number of feature

clusters (J), i.e. the input dimension to the Survival NN, and the architecture and hyperpara-

meters of the best Deep Survival model. These two aspects were jointly optimized to maximize

the time to event prediction on the population of cases, averaged across K = 10 random splits,

and the robustness of the K derived effects profile. The overall best combination is the one we

use to compute the final effects profile averaging Shapley values across the 10 splits. The per-

formance for the time to event prediction was measured with the Harrell’s Concordance Index

(CI), while the robustness of profiles with the Kendall Tau Ranking Stability (KT-stability). To

aid both prediction performance and robustness, each of the 10 NN models underwent unsu-

pervised pretraining. This passage was meant to bias the models’ parameters towards an opti-

mal configuration, thus potentially aiding the stability and reliability of the derived Shapley

values, that are indeed directly impacted by the models’ parameters. Indeed, KT-stability was

improved significantly for almost all tested models’ architectures. Detailed results can be

found in Supporting Information S1 Table. Further details on pretraining, best model selection

and performance metrics’ definitions, including rationale for our choices, can be found in the

Methods Section, whereas complete results are available in Supporting Information, S2 Table.

The final results presented here, corresponding to the chosen best Deep Survival EWAS con-

figuration, were obtained by grouping CpG Islands into J = 128 clusters. The latter were used

as the input for the Deep Survival NN model with a J-dimensional input layer followed by

three fully connected layers of 64, 32, and 16 nodes respectively. This model’s configuration

resulted in an average CI of 0.702 ± 0.019 and an average KT-Stability of 0.669 ± 0.036. In Sup-

plementary Info S1 File we report the PCA plots of the latent components after unsupervised

pre-training and after fine-tuning of the survival model. Note that in our algorithm latent

components are generated in the process of training the K (with K = 10 in this case) DSNN.

Therefore, we have one set of embeddings for each split. As patients with similar TTD after

fine-tuning are better clustered together in the embedding space, these plots further validate

how the different DSNNs are learning meaningful representations for time to event

prediction.

Once selected the best configuration of the algorithm, we exploited the 10 sets of Shapley

values weights to derive the final weights profile. Indeed, as mentioned in the previous section,

these weights (�wj) were computed as the average impact on log risk prediction of each feature

across the K = 10 random resamples. In Fig 2, left panel, we show the features that correspond

to the top 10 highest values in the obtained effects profile on log risk prediction. As for the

background dataset, in this case impact was measured w.r.t. the control group of all BC con-

trols. We performed some post-hoc analyses to showcase the tight relationship between the

most relevant features according to the estimated effects profile and TTD. In Fig 3, panel A, we

split the population of cases into time-to-event classes (i.e., early event [0 − 3.5y], mid-early

event [3.5y − 7y], mid-late event [7y − 10.5y] and late event [10.5 − 16y]) and we plot the distri-

bution of the aggregated β values of the most important feature (F120). The boxplot shows a

decreasing trend of the feature value with increasing TTD. Note that F120 groups 20 CpG

Islands (cf. Table 1), meaning that higher methylation values on those 20 sites are associated

with earlier diagnosis (i.e., higher log risk).

As a further validation, for each CpG Island pertaining to F120, we extracted two sub-popu-

lation of cases: the hypermethylated population, composed of patients with β value above the

75th percentile for that CpG island, and the hypomethylated population, composed of patients
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with values below the 25th percentile. Then, we compared the risk profiles of the two groups

via Kaplan-Meyer (KM) test. In Fig 3, panel B, we plot the KM curve obtained and the log-

rank test p-value for CpG Island 9:34518796–34619343, as representative of the 20 islands in

F120. Similar behavior and log-rank test results was obtained for the other 19 islands in F120

(all KM curve plots for the CpG Islands in F120 are reported in S2 File). As expected, modeling

TTD of BC cases only, both KM tend to 0 as t increases. However, it is clear from KM and test

results how methylation on those sites is associated with TTD for those patients. It is crucial to

note that, despite modeling cases TTD only, the inference of features’ relevance exploits data

form the controls group used as the reference (i.e. background). In other words, CpG Islands

associated with higher weights by our Deep Survival EWAS approach are those with higher

Fig 2. Deep Survival EWAS estimated effects profile. On the left panel, the top 10 aggregated features with the highest associated �wj value in the

effects profile at Feature’s level. On the right, sharing the same y-axis, the effects profile at CpG Island, where each methylated islands in the dataset is

associated with the �wj value of the feature they are clustered in.

https://doi.org/10.1371/journal.pcbi.1009959.g002

Fig 3. Post-hoc analysis results. (A) Distribution of aggregated DNAm beta-values in the feature (F120) associated with the highest impact in the

estimated effect profile. Subjects are binned according to their TTD into four classes. (B) Kaplan-Meier curves of low DNAm (below 25th percentile of

β-values distribution) and High DNAm (above 75th percentile) populations’ in CpG Island 9:34518796–34619343. This island belongs to the cluster

that is aggregated into feature F120. The plot reports the Log-Rank test p-value for the difference between the two groups; the lower part of the plot

reports the count of subjects in High DNAm and Low DNAm populations for CpG Island 9:34518796–34619343, according to TTD.

https://doi.org/10.1371/journal.pcbi.1009959.g003
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influence on the difference of risk prediction (hazard rate) compared to an expected model

built with methylation profiles from the control group. Finally, the right panel of Fig 2 repre-

sents the resulting effects profile in terms of CpG Islands, that is the final goal of our Deep Sur-

vival EWAS. Specifically, to this end we associated each site to the weight of the feature it was

clustered in. The whole list of the ranked features F, with the respective CpG Islands they clus-

ter and the resulting effects profile can be found in S3 Table (first sheet for BC controls’ refer-

ence group).

Validation through gene set enrichment analysis

To validate the biological relevance of the identified effects profile, we performed a Gene Set

Enrichment Analyses (GSEA) using a Weighted Kolmogorov-Smirnov (WKS) test [26]. In this

work, we have assigned weights to all the features in the dataset rather than performing feature

selection. Therefore, we applied a pathway enrichment analysis method which compare the

distribution of observed weights with those expected by chance, instead of an enrichment anal-

ysis based on Fisher or hypergeometric test (more suitable when feature selection is

performed).

For each CpG site, the weight (input for the enrichment analysis) is that of the feature Fj the

CpG site belongs to. In Fig 4 we present the KEGG pathways enriched according to the WKS

procedure. We found 12 pathways with empirical p-value (1,000 permutations) lower than

0.05, being ‘Pathways in Cancer’ the most significant (empirical p< 0.0001). Interestingly, all

the identified pathways were previously described as dysregulated in breast cancer, including

‘Human Papilloma virus infection’ [27] and ‘Epstein-bar virus infection’ [28] in addition to

well-known BC related pathway like ‘Breast Cancer’, ‘PI3K/Akt/mTOR signalling pathway’,

‘Calcium Signaling pathway’ and ‘Mineral absorption’ [29, 30], and some cancer generic

Table 1. CpG Islands in feature 120. List of CpG Islands agglomerated in F120, therefore assigned to the highest effect

weight.

CpG Island

1:90945518–90945656

1:158090642–158091676

10:102493904–102494072

10:119294070–119294143

14:87862626–87863008

16:85096322–85097146

18:75811758–75814395

19:1704275–1706659

19:13070446–13070515

2:100086548–100088317

20:21438169–21438255

20:21449303–21449404

22:37180713–37182260

4:149584089–149584799

6:1570179–1570756

6:43530362–43531683

6:166137998–166138866

8:21701267–21701566

8:145119282–145120028

9:34618796–34619343

https://doi.org/10.1371/journal.pcbi.1009959.t001
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pathways like ‘Signaling pathways regulating pluripotency of stem cells’, ‘Proteoglycans in can-

cer’, ‘Neuroactive ligand-receptor interaction’, and ‘Cytokine-cytokine receptor interaction’.

As mentioned, the inference of feature importance, and the derived effects profile, can be

influenced by the chosen background. Thus, different biological insights can be gathered by tai-

loring the reference group to answer different research question. For this study we wished to

investigate both the robustness of the enrichment results changing the background sample,

and whether some additional biological associations could be collected on EPIC BC case-con-

trol study estimating weights �w according to different background control groups. Therefore,

we created 3 additional reference groups to use as background:

Fig 4. Enrichment analysis results of Deep Survival EWAS on breast cancer controls reference group. In blue are highlighted the significantly

associated pathways, i.e. those with empirical p-value above 0.05 (red vertical line), estimated through 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1009959.g004
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• ’BC Matching Controls’ was defined specifically for each of the K splits. In other words, for

the k-th test set including 20% of BC cases, we defined the k-th BC Matching Controls group

including only the matched controls of those cases. Therefore, we had K BC Matching Con-

trols datasets (with potential subjects’ overlap) to use as background data in estimating effect

profiles.

• ’All Controls’ sample included all female control subjects collected for breast, lung and

colon cancer. It contained 556 healthy individuals supplied together as Background data.

• ’All Controls with Cases’ included all subjects of the previous sample, with the addition of

female cases diagnosed with lung or colon cancer during the EPIC follow up period.

To perform these additional analyses, we kept the same optimal configuration of Deep Sur-

vival EWAS, supplying to SHAP applied to the survival NN different background samples to

estimate wj for the 128 features. In Fig 5, we report the results of the three additional enrich-

ment analyses. The full tables of enrichment analyses results for all four reference groups can

be found in Supporting Information S4 Table.

Deep Survival outperforms standard EWAS in identifying biologically

meaningful effects profiles

In this work we argue that a complex DL-based approach to estimate a global effects profile on

TTD from blood-based DNAm can provide better biological insights compared to traditional

approaches. Therefore, to prove our concept and investigate whether taking into account the

complex interrelationships among features and outcome modeled with Deep Survival leads to

more relevant discoveries than Standard EWAS, we compared the enrichment analyses of the

two approaches. In Fig 6, we report the results of the weighted GSEA for Standard EWAS,

where weights were estimated independently for each CpG Island as the test statistic of a uni-

variate Cox Survival Model. For consistency with our approach, we modeled each univariate

CoxPH for the cases population only without adjustment for covariates Detailed tabular results

(i.e. p-values and test statistics) are reported in Supporting Information S5 Table). The deriv-

ing estimated weights profile (i.e. all CpG Islands p-values, with or without Bonferroni adjust-

ment) are represented in S1 Fig. Finally, Standard EWAS GSEA tabular results are reported in

S6 Table. We found eight pathways with empirical p-value lower than 0.05, being ‘Non-small

cell lung cancer’ the most significant. Among the identified pathways, two of them are related

with the immune system regulation ‘Intestinal immune network for IgA production’ and ‘Che-

mokine signalling pathway’; two of them with inflammatory processes ‘Leukocyte transen-

dothelial migration’ and ‘C-type lectin receptor signalling pathway’, whereas none of them

have been previously described as BC specific. For completeness, we performed the same anal-

ysis’ pipeline on CpG sites without aggregating them into islands. Results from site-by-site

EWAS and Enrichment Analysis are reported in Supplementary Information S7 and S8

Tables.

The value of complex non-linear modeling of CpG sites interactions

So far, we validated our claim on the need for a global approach to blood-based DNAm. In our

Deep Survival EWAS, this global view is obtained by modeling complex and potentially non-

linear interactions between DNAm sites via a deep non-linear survival NN. Nevertheless, a

global approach can, by definition, be estimated with a simpler model accounting for the

effects of all CpG Islands together with additive contribution on the phenotype only. An
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example of such a simpler model is a CoxPH model for TTD with a multivariate input and no

interaction terms. Therefore, to justify our choice of including a more complex Survival NN

model in our procedure, we tested a multivariate epigenome-wide CoxPH model against the

two metrics we deem relevant to evaluate the reliability of the derived effects [21]: model pre-

diction performance and robustness of the estimated effects across the K subsamples, using the

C-index and KT-stability metrics respectively. For consistency, we supplied as input to the

CoxPH model the CpG Islands aggregated in the same features exploited by our Deep Survival

EWAS approach. As detailed in the Methods Section, we tested the performance of the CoxPH

model for all feature aggregation (J) tested when optimizing our approach. To compute

CoxPH KT-stability, the weights rank was derived from the regression parameters (i.e., the

effect size) of the CoxPH model. Complete results are reported in S9 Table in Supporting

Information. For all values of J, our approach outperforms CoxPH on both metrics, especially

for the CI (cf. S2 and S3 Figs).

Fig 5. Weighted enrichment analysis results from Deep Survival EWAS (additional reference groups). In blue are highlighted the pathways with

significant association, i.e. empirical p-value based on 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1009959.g005
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On the choice of the interaction-aware survival prediction model

In the previous section we validated the relevance of modeling complex non-linear interac-

tions to predict TTD, rather than exploiting simpler additive models like CoxPH. In this study

we chose a DSNN for this task, but other methods exist in the Machine Learning literature that

can capture the effect of interactions while modeling a time to event outcome. One quite rele-

vant state-of-the-art example is represented by XGBoost for survival prediction. This tree-

based algorithm could in principle replace the DSNN in the framework proposed by our algo-

rithm, as it similarly allows for the estimation of Shapley values through SHAP, both via Ker-

nelSHAP and the efficient model-specific SHAP TreeExplainer. To verify whether our

preference for the DSNN was supported by evidence, we ran an experiment comparing the

Fig 6. Weighted enrichment analysis results from standard EWAS approach.

https://doi.org/10.1371/journal.pcbi.1009959.g006
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two predictors both in terms of survival modeling and biological relevance of the identified

effects profiles, which is, notably, the final objective of our proposed approach. We trained

both alternatives on the same 10 splits, for all the usual four input dimensions J. XGBoost was

trained with standard hyper-parameters, kept consistent across input dimensions for a fair

comparison. In Supplementary Information S10 Table we report the results in terms of CI and

KT-stability. The two non-linear predictors have a comparable performance in terms of CI,

with the DSNN slightly outperforming XGBoost on larger J values, suggesting a better scalabil-

ity of our approach. Of note, XGBoost significantly outperforms the DSNN in terms of KT-sta-

bility on the same dimensions where our proposed approach shows better prediction

performance, which might imply that XGBoost is consistently picking suboptimal interaction

paths in its tree construction. However, none of the alternative state-of-the-art methods dem-

onstrate an evident superiority, while both are clearly better then the simpler CoxPH model,

highlighting once again the need for interactions to aid TTD prediction. As a final comparison

among the two, in Supporting Information S4 Fig we report the results of the enrichment anal-

ysis run on the effects profile estimated by SHAP from XGBoost. Comparing these results with

Deep Survival EWAS, we observed that the most relevant pathways like ‘Pathways in cancer’,

‘Proteoglycan in cancer’, ‘Breast cancer’ and ‘Gastric cancer’ were correctly identified by the

XGBoost as well. However, some of the pathways previously described as dysregulated in

breast cancer that our algorithm found significant were not identified by the tree based

method, such as ‘Human Papilloma virus infection’, ‘Epstein-bar virus infection’, ‘PI3K/Akt/

mTOR signalling pathway’, ‘Calcium Signaling pathway’ and ‘Mineral absorption’. In addition,

XGBoost identified a set of immune response-related pathways like ‘Complement and coagu-

lation cascade’, ‘Glycosphingolipids biosynthesis’, ‘NK mediated cytotoxicity, and ‘Viral carci-

nogenesis’, whose role in breast cancer development is not yet well characterized, suggesting

that some degree of noise might have been introduced in weight assignment. Therefore, from

a biological meaningfulness standpoint, the Deep Survival EWAS exploiting the DSNN model

definitely outperforms the benchmark classifier.

Discussion

In this work, we presented our approach to solve the complex task of determining the effect of

pre-diagnostic blood DNAm in prospective epidemiological studies. Specifically, we focused

on the time from recruitment to cancer diagnosis outcome, with the aim of modeling the effect

of DNAm CpG sites on the phenotype as in a survival (time to event) analysis setting. To dem-

onstrate the need of a paradigm shift from Standard EWAS approaches (i.e. multiple indepen-

dent tests) for the analysis of blood based DNAm, we developed and applied a novel approach,

Deep Survival EWAS, that robustly estimates weights associated to each CpG Island by consid-

ering the combined (global) effect of CpG islands and their complex interactions on the phe-

notype. To this aim, we modeled the non-linear relationships and interplay between CpG sites

and TTD by first grouping them into aggregated features and then feeding them as input to a

non-linear deep survival NN, deriving the effects profile through SHAP. We validated our

claims analyzing pre-diagnostic blood-derived DNAm from a BC case-control study nested in

the EPIC Italy cohort. This is the first attempt to analyze a dataset from an epidemiological

prospective study trying to model explicitly the TTD using a DL approach with the aim of

obtaining EWAS weights. Notably, BC research is one of the areas that could mostly benefit

from a proper modeling of TTD from blood based DNAm, as well as one that suffered the

most from inconclusive outcomes (e.g. [7] and references therein). This makes the case study

presented in this work an interesting yet challenging testing ground for our proof of concept.
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In the present study, we decided to filter our DNAm predictors on a restricted number of

CpG Islands, focusing on Polycomb Repressive Complex 2 (PCR2) regulated sites based on

previous evidence of the importance of these genomic regions in cancer. In addition to the bio-

logical rationale, this choice was motivated by methodological/analytical considerations.

Indeed, with the objective of obtaining reliable feature weights, rather than prediction perfor-

mance, a much larger input space may harm the reliability of the parametrized model, incur in

overfitting on such small sample, and in turn affect the estimation of the importance weights.

Similarly, keeping the same number of clustered features J, with a much larger islands base,

may have a negative impact on the aggregation of beta values per cluster (reducing the effect of

the signal carried by each site when computing the average) and harm the reliability of assign-

ing the same weight to each site in the same cluster. Given the above, a user defined feature

selection appear to be the most reasonable way to proceed, and instead of an outcome-driven

selection (that once again might be biased by the small sample size and reduce generalizability

of the obtained biological insights), we went for a selection driven by external knowledge (i.e.

specific transcription factors).

By estimating the desired global effects profile for BC TTD on EPIC DNAm data, we note

that the CpG islands grouped in the most relevant features show a clear association of blood

DNA methylation with the TTD, with higher methylation values associated with a higher risk

of BC in the short term, as shown in the KM curves. Moreover, the overall biological meaning-

fulness of our procedure was confirmed by the results of a GSEA that identified pathways pre-

viously described as associated with cancer onset (with some BC-specific pathway). Instead, a

GSEA analysis based on the results of a Standard EWAS (one association test for each CpG

island, or one test for each CpG site in the site-specific version) identified molecular pathways

indirectly associated with cancer onset (via immune system dysregulation or inflammatory

processes), whereas none of them was BC specific. This results suggest how a global model of

methylation profile captures the relationship with the phenotype better than considering

DNAm variables one-by-one.

Then, we compared the survival modeling and weights’ stability performances (i.e., CI and

KT-stability) of our approach against a multidimensional CoxPH model, demonstrating that

even after CpG islands aggregation into features clusters, a global yet simpler additive effects-

based model could not obtain comparable results, further supporting the need to account for

non-linear interactions among DNAm predictors as well. Indeed, XGBoost algorithm that nat-

urally accounts for interactions while modeling the outcome performed comparably to the

DSNN in terms of CI. However, the resulting weights profile identified just a subset of the rele-

vant pathways’ associations found through our NN-based algorithm, accompanied by some

biologically less meaningful associations.

Besides Deep Survival EWAS is computationally more expensive than Standard EWAS, or

more parametrized and complex than a more traditional survival model, the above results pro-

vide strong evidence about the advantages of using such an approach in Epigenome-Wide pro-

spective studies using blood DNAm data. Additionally, we compared the results from GSEA

by varying the reference group. This is the first time this peculiarity of SHAP is exploited to

gain more insights from a biological perspective, comparing the biological function of the dif-

ferent weights associated to CpG Islands. Specifically, we did not observe significant differ-

ences when including women who developed other type of cancers (lung and colon) within

the control group. These results suggest our findings provide a specific DNAm signature of BC

cancer risk rather than a DNAm signature for all cancer risk.

Whilst we believe the most relevant highlight of this study lies in Deep Survival EWAS

achievement of an improved biological interpretability of blood-derived DNAm data on TTD,

the tailored choices we made in algorithm design deserve some attention as well. First of all,
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we decided to focus on modeling TTD for BC cases only. This approach resembles the case-

only analysis performed through a standard EWAS approach in [31]. From a methodological

standpoint, it allowed to improve survival modeling accuracy, increasing the reliability of the

derived explanations [25]. Other methodological details were included to account for all the

complexities and peculiarities of both DNAm data facets, and real-life research settings. In par-

ticular, clustering CpG Islands based on similarity had the objective of reducing noise and

dimensionality simultaneously. The latter aspect reduces the effort in parametrizing the down-

stream survival model based on NN, alleviating the risk of overfitting on very small sample

size, and obtaining suboptimal training results. Besides, this step had a biological justification

in that previous studies identified potentially non-contiguous genetically controlled methyla-

tion clusters significantly associated to several diseases [32]. Furthermore, the rationale for the

metrics exploited in CpG Islands clustering (i.e. Euclidean Distance and mean) was inspired

by the results presented in Gagliardi et al. [9], where the association between blood-based

DNAm and the phenotype was modeled under the hypothesis that extreme methylation values

(i.e., epimutations) are significantly associated with the outcome. The Euclidean Distance

would first identify Islands with similar beta values distribution across patients, while comput-

ing their mean (a metric that is sensitive to outlier values) we wish to preserve the effect of

extreme values. Finally, the choice of clustering on the basis of cases group’s distribution of

beta values and then transfer the clustering structure to the controls’ population is meant to

maximize inter-class separability, and aid SHAP algorithm to identify truly relevant features

when using controls’ group as background. Likewise islands agglomeration, the K training-test

split and subsequent aggregation of results, aims at alleviating the risk of overfitting when the

sample size is small, providing a final weight profile that potentially generalizes better on

unseen patients. Finally, NN optimal parametrization is aided by pretraining and network reg-

ularization (see Methods). This care for attaining a model with carefully estimated parameters

is indeed extremely relevant for the estimation of reliable weight profiles through SHAP. Nota-

bly, most of the aforementioned methodological cautions meant to tackle the real-life com-

plexities of epidemiological studies and blood-based DNAm data, can be considered per se

valuable algorithmic suggestions whose rationale apply to a broader systems biology research

context. For instance, the risk of overfitting resonates with any analysis trying to model com-

plex high-dimensional omic data (s.a., genomic, transcriptomic, metabolomic, gut micro-

biome, etc.) with ML or DL-based methods when sample size is small. To the best of our

knowledge, closely related methods for DNAm data, irrespectively of the specific task, mostly

test on large datasets from public biobanks. Similarly, the attentions devoted to the reliability

of SHAP-derived explanations, or the peculiar use of the background data to answer precise

research question, are relevant aspects that have been largely ignored.

Conclusion

In conclusion, the contributions of this work are twofold: on the one side, by presenting the

results of a case study in the context of BC research, we defend our claims and highlight the

need for a paradigm shift from Standard EWAS approach when modeling blood-derived

DNAm data in the search for effective TTD biomarkers; on the other, we describe the method-

ology we applied to effectively achieve the desired effect profile, that has per se several notable

and transferrable points of attention. This study presents some limitations that should be

accounted for. One is related to the lack of adjustments for clinical covariates in our analyses.

However, this choice was supported by recent literature, suggesting that DNAm signature of

risk factors may predict diseases better than measured risk factor itself [33–35]. Therefore,

adjustment for clinical covariates and lifestyle related risk factors that is usually implemented
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in EWAS studies may remove significant variability due to genetic and metabolic profiles that

can influence the response to exposures and stressors. Similarly, we did not adjust for esti-

mated cell type proportions, which are usually estimated directly from DNAm data [36],

although it is a common practice in EWAS studies. Current literature provides discordant

opinions about the reliability and biological interpretability of the results after such a proce-

dure [37]. Further, previous works using this study datasets report no significant differences in

estimated cell type proportion between BC cases and healthy controls [38], supporting our

analytical choice.

Another limit of the present study is the lack of external validation. Unfortunately, no com-

parable dataset with pre-diagnostic blood-based DNAm data and TTD outcome was available

at this time. Despite being aware that the biological insights we obtained in this case study

should not be considered general findings before a proper validation has been performed, note

that the aim of this work is not that of making general discoveries from a clinical/biological

point of view. Rather, we aim at demonstrating that a multivariate global approach can

describe the role of CpG Islands methylation on BC cancer onset better than univariate

approaches, in particular when a time-to-event outcome is considered. We demonstrate this

by comparing our method with the standard procedures, and constructing through our algo-

rithm a CpG Islands weights ranking that significantly associates to BC pathways, where tradi-

tional methods fail. As mentioned in the Introduction to this paper, previous studies

oftentimes presented inconsistent results. While we cannot currently verify whether better

generalizability on new samples can be achieved through our approach, we proposed a solu-

tion that overcomes most of the theoretical limitation of standard EWAS methods and the

specificity of the findings with regards to BC is promising in that direction. Nevertheless, the

real impact of this algorithm on generalizability has still to be verified and will be the next

research effort as soon as proper external data becomes available. Moreover, the complex

multi-step algorithm based on highly parametrized models we applied here opens the way for

future works, that will investigate on what of these algorithms should be transferred as-is on

new data (e.g., feature clusters, model parameters, etc.) or retrained from scratch. Nevertheless,

the strength of the biological results obtained on the highly challenging case study presented

here, and the generalizable methodological cautions, make the present work a relevant mile-

stone in the advancement of blood-based DNAm studies and epidemiological studies in gen-

eral, whenever reliable inference of global effect profiles on a time to event outcome is needed.

An interesting future perspective for this study might be the development of an easily inter-

pretable risk prediction model extracting the most important features and their interactions

from our algorithm, obtaining a kind of methylation-based Polygenic Risk model. One similar

example can be found in [39], but further research would be needed to avoid one such model

to incur in the curse of dimensionality and include complex interactions of potentially very

high order. Moreover, while we discussed the theoretical and technical rationale behind a

knowledge-driven selection of input CpG islands, one future evolution of our algorithm might

entail the application of the same pipeline in parallel on different CpG Islands subsets (differ-

ent binding sites, for example) to then aggregate results downstream. This might be a promis-

ing way to scale-up our approach without the risks we mentioned in the Discussion.

Materials and methods

Ethics statement

This study was performed according to the principles of the Declaration of Helsinki; all EPIC

Italy participants provided written informed consent; the Human Genetics Foundation

(HuGeF) Ethics Committee approved the study as reported elsewhere [40].
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Study sample description

The European Prospective Investigation into Cancer and Nutrition (EPIC) is a large European

study on diet and cancer and has been previously described elsewhere [41]. The Italian compo-

nent of EPIC (EPIC-IT) [42] recruited 47,749 adult volunteers (men and women) at five cen-

tres. It is a prospective cohort study with blood samples collected from healthy participants at

recruitment. After recruitment, participants were then observed for over 15 years for the insur-

gence of cancer, cardiovascular diseases and all-cause mortality. At the end of the follow up, all

breast, colon and lung cancer cases with available blood sample suitable for epigenetic analyses

were paired with an equal number of controls, individually matched on age (±5 years), sex,

season of blood collection, center, and length of follow-up (incident density sampling method)

to perform case-control studies nested in the cohort. In this study we focus on the breast can-

cer case-control dataset, which includes 248 incident cases and matched controls. The average

time from recruitment to diagnosis was 7.22 years (min = 1.02 years; max = 15.64 years) for

breast cancer cases, whereas the average time from recruitment to the last follow up was 14.88

years (min = 14.11 years; max = 17.68 years) for matched controls.

A detailed description of data collection, DNA methylation measurements and pre-process-

ing and sample filtering can be found in S1 Appendix.

In this work, we focused on the BC case-control study, composed of 248 BC cases and an

equal number of matching controls. Additionally, we exploited samples collected for lung can-

cer (168 control subjects) and colon cancer (140 control subjects) to enlarge our controls

group exploited for effects profile weight estimation as described in section Validation through

Gene Set Enrichment Analysis.

Each subject was described in terms of CpG sites methylation scores, reported as β-values,

i.e., the proportion of methylated cells per site over the total. Therefore, each CpG site is a con-

tinuous value bounded between 0 (no methylation) and 1 (complete methylation). After

DNAm data preprocessing, quality control and filtering, we had data for 313,324 CpG sites per

subject. In this work we focus on CpG sites corresponding to transcription factor binding sites

of EZH2 and SUZ12: two proteins pertaining to the Polycomb Repressive Complex 2 (PRC2).

This choice was motivated by previous evidence of the accumulation of DNAm outliers values

in these genomic regions, considering also previously described association of the total num-

ber of DNAm outliers with BC risk [9]. After filtering on EZH2 and SUZ12 CpG sites, we

decided to perform an additional pre-processing by grouping CpG sites into CpG Islands.

CpG islands are regions of the genome with a high proportion of CpG dinucleotide repeats in

which DNAm is generally conserved. To derive CpG islands β-values we aggregated all single

sites falling in a specific island by computing their mean. By doing that, we eventually obtained

a DNAm representation of 3,807 methylated islands for each subject, that was the input dataset

for the algorithm described below.

As shown in Figure S5 Fig, 38% of CpG islands fall in intergenic regions (intergenic CpG

islands), 48% in intragenic regions without overlap of different gene elements, and only 14%

of CpG Islands are in intragenic regions with both CpG sites in the promoter and the body of

the same gene. Besides, for the latter class of CpG islands, we have investigated the within-

island correlation structure. Only a negligible proportion of the pairwise comparison have a

negative Pearson correlation coefficient, consistently with previous observation about the ten-

dency of DNAm of CpG sites on the same island to be positively correlated [43].

Details of the proposed approach

The algorithm we crafted for Deep Survival EWAS on blood DNAm comprises several steps:

(i) the Feature Agglomeration of CpG Island methylation profiles, (ii) the non-linear survival
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modeling of the aggregated features to model the complex relationship between the CpG

Islands-derived features and BC TTD and (iii) the estimation of the relevance of each of those

features in determining TTD (i.e. their importance in predicting survival risk). A schematic

graphical representation of the overall process flow is reported in Fig 1. In this section we will

provide a more detailed description of the applied algorithm with theoretical underpinnings

when needed.

Feature agglomeration. The first step of our approach comprises a hierarchical feature

clustering that is spatially independent. This technique is similar to a hierarchical agglomera-

tive clustering procedure, but recursively merges features instead of samples.

Specifically, given the initial input data XðcasesÞ 2 RN�Q
, where N is the total number of cases

and Q the total number of CpG Islands, to identify J clusters of CpG Islands we exploited the

Euclidean Distance with Ward linkage. Then, we computed the representative value of the j-th

agglomerated feature as

FðcasesÞj ¼
1

jCjj

X

q2Cj

xq

Where Cj is the j-th cluster and xðcasesÞq is the q-th CpG Island, expressed as β-value bounded in

[0,1], in the sample of cases. We exploit the same clustering structure (i.e., the same groups Cj
of indexes q) to compute FðcontrolsÞj from XðcasesÞ 2 RN�Q

. As mentioned, throughout this paper

we refer to the aggregated CpG Islands as features.
Deep non-linear survival modeling. To model the relationship between the just defined

input features and BC TTD we exploit a Deep Survival NN, closely related to DeepSurv [44],

to account for the complex non-linear interactions determining the phenotype. In particular,

our Deep Survival model is a multi-layer feed-forward NN which predicts the effects of a

patient’s covariates on their hazard rate parameterized by the weights of the network θ. The

input to the network for patient i is its baseline data in terms of DNAm features (F(i)), while

the output bhyðFðiÞÞ is a single node with a linear activation which estimates its log-risk function.

Let T be the times to disease and E the event indicator, the objective function to optimize

becomes:

LðyÞ ¼ �
X

i:Ei¼1

ð bhyðF
ðiÞÞ � log

X

j2RðTiÞ

ebhy ðFðjÞÞÞ

where the risk set RðtÞ ¼ fi : Ti � tg is the set of patients still at risk of disease at time t.
Deep Survival model architecture and training. The architecture of the Survival NN was

inspired by DeepSurv containing a set of consecutive fully connected layers of decreasing

dimensionality (i.e., number of nodes), each followed by a batch normalization layer. The out-

put layer is composed of one node only, that makes a linear combination of the nodes in the

second-last layer to predict the log-risk function bhyðFÞ. The number of layers and the number

of nodes in each layer were optimized as described in Section Algorithm Design and Optimiza-

tion, below.

Among other choices to improve Deep Survival Model training and mitigate the risk of sub-

optimal parametrization, we included an unsupervised pre-training step before training our

model to minimize the survival loss function. In particular, given a NN model architecture

from input to second-last layer (embedding layer) before the single output node, hereby

defined encoder, we initialized its parameters through AutoEncoder (AE) Layer-wise pretrain-

ing. In this work, we exploit the concept of Stacked AEs to identify an initial set of parameters

for the Survival NN. To do that, we train progressively deeper AEs: starting from the input
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dimensionality of the model (input layer), we build an AE with the next layer as bottleneck

and we train it to reconstruct the input; then, we retain the parameters from input layer to first

layer to build and train the next AE from input to second layer of our Survival NN, and we

progress until we have included all available layers in the encoder as bottlenecks.

At the end of this process, the parameters of the encoder are retained as initialization for

the Survival NN.

While pretraining is known to aid network regularization, the set of parameters from sec-

ond-last to output node are initialized at random, therefore we foster their regularization add-

ing a Drop-out layer in between.

This pretraining procedure is meant to aid the extraction of stable effects profile, by biasing

the initial parameters towards similar and beneficial for learning values. This would in turn

improve both models’ performance and stability of the derived Shapley values, computed by

predicting with the parametrized models, as described in the following section. To validate this

hypothesis, as mentioned in the Results section, we run an experiment comparing the perfor-

mance of the model with and without pretraining (cf. Supporting Information S1 Table).

CpG Islands effects profile estimation through SHAP. To estimate the effect of the CpG

Island-derived features on the prediction of the log-risk function we exploit a post-hoc expla-

nation method applied to the deep survival NN. Among the existing methods, SHapley Addi-

tive exPlanation (SHAP), by [19], an algorithm that aims at explaining the prediction of an

instance by computing the contribution of each feature to the prediction. This contribution is

estimated in terms of Shapley regression values, an additive feature attribution method

inspired by the coalitional game theory [45]. In the original Shapley formulation, feature

impact is defined as the change in the expected value of the model’s output when a feature is

observed versus unknown. Given a specific prediction f(x), we can compute the Shapley values

φi(f, x) using a weighted sum that represents the impact of each feature being added to the

model averaged over all possible orders of features being introduced:

φi f ; xð Þ ¼
X

S�Sallnfig

jSj!ðM � jSj � 1Þ!

M!
½fxðS [ figÞ � fxðSÞ�

where S is a subset of all the features (Sall) used in the model, M is the number of features and

fx(S) is the prediction for feature values in set S that are marginalized over features that are not

included in that set. This computation is prohibitive, therefore SHAP’s authors proposed sev-

eral sampling-based alternatives to estimate these values. Among them, we chose KernelSHAP

[19], that is model agnostic. Of note, model-specific gradient-based implementations exist for

Deep Neural Networks, such as DeepSHAP [19]. However, we decided to exploit KernelSHAP

to allow for future evolutions of our algorithm, that might include a different survival predic-

tion model within the proposed framework. However, for the sake of completeness, in Sup-

porting Information S6 Fig we include the comparison of feature importance ranking

extracted with the two algorithms, to demonstrate their interchangeability. Nevertheless, to

improve computational time for NN models, we would suggest to exploit DeepSHAP’s effi-

cient implementation.

In KernelSHAP, “Missing features” in a sampled feature coalition are simulated by averag-

ing the model’s prediction over bootstrapped samples with values for these features sampled

from the so called background dataset. This makes the estimation dependent on the choice of

such reference, an aspect that we exploited to gather different biological insights by changing

the BC cases composition of the background dataset supplied to the method (cf. Results

Section).
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In general, in our algorithm, to derive the importance weights that constitute the global

effects profile, for each of the K splits, we trained the model on the training data and we com-

puted SHAP values of test data w.r.t. the background control group. As SHAP values are com-

puted locally for each observation, we estimate the features’ impact (w(k)) as the mean of the

absolute value of local estimates.

Moreover, to reduce computational time of the nested sampling to estimate SHAP values,

as suggested by the authors [20], we supplied to the algorithm the background data grouped

into 20 centroids, i.e. a sample of 20 representative observations derived from the application

of k-means algorithm (with k = 20) to the reference sample.

Performance measures

Time-to-event prediction performance. To evaluate the modeling performance of both

our Deep Survival NN model and CoxPH we exploited the traditional Harrel’s Concordance

Index (CI) [46]. The Harrel CI is a measure of rank correlation between the models’ predicted

risk scores and the observed time points. It quantifies how well a model predicts the ordering

of patients’ diagnosis times. It can be computed by the following formula:

CI ¼

P
i;j1Tj<Ti � 1Zj>Zi � Ej
P

i;j1Tj<Ti � Ej

where ηi is the risk score of unit i.
Weights profiles robustness. To estimate the robustness of the effects profile estimated

across K iterations in our Deep Survival EWAS, we exploited the metric developed in [25].

Specifically, for each split k, with k = 1, . . ., K, we get a different wðkÞj and we rank order features

based on these importance scores. To measure weights robustness we measure the dispersion

of these K SHAP-derived importance rankings r1, . . ., rK. To do that, for each pair of ranked

vectors ri and rj we compute their dissimilarity as the Kendall Tau Distance between two

rank vectors [47]. This distance can be expressed as the minimum number of bubble swaps

needed to convert one rank vector to the other, divided by the total number of pairs in the vec-

tor. Additionally, we impose a 1/j penalty on any comparison involving the j-th rank as it is

more relevant to identify the top predictors of a model, rather than accurately rank all features.

Finally, we truncate the rank vectors after the top 10 ranks to reduce computation time. The

mean of these
K

2

 !

pairwise distances represent the stability of our measurements, that we

define Kendall Tau Stability (KT-stability).

Algorithm design and optimization

To optimize the design of the overall pipeline of the algorithm we needed to make several

architectural and hyperparameter choices. In particular, we had to optimize jointly the

dimensionality of the input to the Survival NN model (i.e. the number of features clusters) and

the architecture of the NN itself. To do that, we tested a set of combinations and compared

their performances on CI and KT-stability, with the ultimate goal of achieving a reliable set of

weights for the effects profile. In particular, we defined a set of input dimensions J 2 [128, 256,

512, 1024], and for each of those dimensions we tested two alternative NN architecture, reduc-

ing the number of nodes in half at each subsequent layer down to a final embedding layer of

either 16 or 32 nodes. Therefore, in total, we tested 8 NN configurations. The dimensions of

NN layers were defined as mentioned in order to aid memory efficiency in model training,

and to make these modular architectures more comparable. In total, we tested 8 NN

PLOS COMPUTATIONAL BIOLOGY A Deep Survival EWAS approach for pre-diagnostic DNA methylation data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009959 September 26, 2022 21 / 28

https://doi.org/10.1371/journal.pcbi.1009959


configurations, as reported in S2 Table in Supporting Information. For pre-training, model

parameters were initialized randomly following the approach in Glorot et al. The MSE loss

function was optimized by mini-batch stochastic gradient descent with momentum with a

learning rate of 0.1 and a momentum parameter of 0.9, in accordance with the most common

hyperparameters definition for this optimizer. The mini-batch size was set to 32, counting for

around 15% of the training set. We trained the model for 150 epochs. After pre-training, the

resulting parameters were exploited as initialization parameters for the overall survival NN,

fine-tuned through gradient descent of the previously defined survival loss function, while the

last layer was initialized randomly. The optimization was performed with adaptive moment

estimation, inspired by DeepSurv, with a learning rate of 0.0001, a mini-batch size of 32 sam-

ples and a drop-out probability of the last fully connected layer of 0.1. We fine-tuned the

whole network for 150 epochs leaving all other hyperparameters to default. To identify the

best combination of input dimensionality and survival model, we first defined the 4 grouped

input datasets by varying J in feature agglomeration, then we run the entire pipeline from NN

pretraining to SHAP weights estimation (using all BC controls as background data) repeated

on 10 random data splits, comparing the average results (cf. S2 Table). As an additional deci-

sion support resource, we compared the distributions of CpG Islands grouped in each aggre-

gated feature for the different K values (S7 Fig). As none of the alternative showed significantly

superior performances on the two metrics together, we opted for the smaller model (i.e. 128

nodes in the input and 16 nodes in the last fully connected layer before output) that granted

comparable results to the others with significantly less parameters to train. Moreover, the size

distribution with input granularity of 128 features (cf. S7 Fig) shows an average of features’

size between 19 and 35 CpG Islands per feature, which seemed a balanced and reasonable clus-

tering considering the input of almost 4,000 Islands.

Cox Proportional Hazards model implementation

As mentioned, to validate the need for a complex non-linear model such as a DSNN as predic-

tor in the framework of our algorithm, we compared its performance with that of a simpler

CoxPH model trained on the aggregated feature sets.

We trained one CoxPH model for all feature aggregation values (J) tested when optimizing

our approach. Models were implemented in Python 3 using scikit-learn library. In order to

make a fair comparison with the DSNN, we wanted to find a common set of hyperparameters

for all input dimensions, as we did for the nonlinear model. The fitting of CoxPH models and

the hyperparameters we defined, as detailed in the following, were determined mostly by con-

vergence issues and extremely long running times (over 4 hours), especially at higher dimen-

sionalities. In particular, we set the number of iterations to 100, and a learning rate of 0.1.

Additionally, we set the initialization to all zeros, since that was the only initialization avoiding

gradient explosion after a few iterations. For what concerns penalties, we kept the default value

of the python CoxPH implementation, which is a light L2 penalty of 1e-4, to avoid excessively

strong shrinking of models’ parameters. Indeed, as we had to evaluate the models’ applicability

as a building block for EWAS, we needed an effect magnitude associated to each input dimen-

sion. Nevertheless, we still allowed some regularization to aid the model convergence and

reduce the variability of its estimates.

Supporting information

S1 Appendix. Detailed data description. Supporting information on cohort description and

DNA methylation data extraction and preprocessing.

(PDF)
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S1 File. Latent space PCA plots. PCA plots in 2D of the embedded points (i.e. each data point

is a patient) in the 16-dimensional latent spaces defined by the best model exploited for Deep

Survival EWAS (i.e. input 128 nodes, bottleneck 16 nodes). Each row of plots represents one of

the K = 10 splits, i.e. one of the trained Deep Survival models. The plots on the left represent

the latent space after pre-training, the plots on the right represent the latent space after super-

vised fine-tuning of the model to predict the survival outcome. Patients are grouped and col-

ored according to 4 time-to-event classes.

(PDF)

S2 File. Kaplan-Meyer plots of F120 CpG Islands. Entire set of Kaplan-Meyer curves for all

CpG Islands grouped in feature F120.

(PDF)

S1 Table. Performance comparison with and without pretraining. Performance comparison

of Deep Survival EWAS algorithm with and without pretraining each of the K survival models.

Each row reports results (in terms of KT stability and Concordance Index) for one of the tested

model architectures.

(PDF)

S2 Table. Optimization results. Performance in terms of Kendall-Tau Stability (robustness)

and Harrell C-Index (survival prediction performance) for all the Deep Survival Network

architecture trained in optimization. Performance is averaged across K splits; 95% confidence

intervals are reported in parentheses. In the first column (Input) the input shape (J), referring

to the granularity of the CpG Island agglomeration. In the second column (Latent) the

dimensionality of the Survival NN layer before output. In the second column (Architecture),

the list of layers with respective number of nodes, up until before output layer (one single out-

put node for all architectures).

(PDF)

S3 Table. Deep Survival EWAS effects profile estimation w.r.t. reference groups. Estimated

CpG islands effects profiles. Each sheet in the file contains the results for one reference group

(respectively: (1) BC controls, (2) Matching Controls, (3) All controls, (4) All controls with

cases). The first column reports the CpG Island name, the second reports the Feature they are

agglomerated into. Third column reports the effect weight (w), while last column reports the

ranking of the feature in terms of importance (i.e. ordered by descending magnitude of effect

weight associated to the feature).

(XLSX)

S4 Table. Deep Survival EWAS Gene Set enrichment analyses results. Deep Survival EWAS

GSEA results for all four reference groups. Each sheet in the file contains the results for one

reference group (respectively: (a) BC controls, (b) Matching Controls, (c) All controls, (d) All

controls with cases). The first column reports the KEGG pathway, followed by pathway code

and empirical p-value (last column).

(XLSX)

S5 Table. Standard EWAS association results. Results of independent modeling of CpG

Islands w.r.t. TTD. The table reports p-values and test statistics obtained by modeling one uni-

variate CoxPH for each island.

(XLSX)
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S6 Table. Standard EWAS Gene Set enrichment analysis results. Results of wighted GSEA

for Standard EWAS approach, where weights were determined by the test statistics in the uni-

variate CoxPH performed independently for each CpG Island. The first column reports the

KEGG pathway, followed by pathway code and empirical p-value (last column).

(XLSX)

S7 Table. Standard EWAS CpG site-specific association results. Results of independent

modeling of single CpG sites w.r.t. TTD. The table reports p-values and test statistics obtained

by modeling one univariate CoxPH for each CpG site.

(CSV)

S8 Table. Standard EWAS CpG site-specific Gene Set enrichment analysis results. Results

of wighted GSEA for Standard EWAS approach, where weights were determined by the test

statistics in the univariate CoxPH performed independently for each CpG site. The first col-

umn reports the KEGG pathway, followed by pathway code and empirical p-value (last col-

umn).

(CSV)

S9 Table. Multivariate Cox Proportional Hazards results. Performance in terms of Kendall-

Tau Stability (robustness) and Harrell C-Index (survival prediction performance) for all Multi-

variate CoxPH models with different input dimensions. Performance is averaged across K

splits; 95% confidence intervals are reported in parentheses. In the first column (Input) the

input shape (J), referring to the granularity of the CpG Island agglomeration.

(PDF)

S10 Table. XGBoost algorithm results. Performance in terms of Kendall-Tau Stability

(robustness) and Harrell C-Index (survival prediction performance) for all XGBoost algo-

rithms with different input dimensions. Performance is averaged across K splits; 95% confi-

dence intervals are reported in parentheses. In the first column (Input) the input shape (J),
referring to the granularity of the CpG Island agglomeration.

(PDF)

S1 Fig. Standard EWAS weights profile. Weights profile for Standard EWAS approach,

where each CpG Island is associated with the p-value of the test statistic in an independent

CoxPH model. Panel A reports the p-values without Bonferroni adjustment, panel B reports

the same p-values after Bonferroni adjustment. The red line denotes the p-value threshold of

0.05.

(PNG)

S2 Fig. Predictive Performance comparison. Predictive Performance (Harrel CI) of all the

tested Deep Survival NN architectures (blue) and all multivariate CoxPH models fitted. The

values in parenthesis for Deep Survival NNs represent the number of input nodes (i.e. the

granularity of features’ clusters) and the number of nodes in the last layer before the output.

Whereas the parenthesis for CoxPH models report the granularity of the input features’ clus-

ters. Dots represent the average performance value, while bands report the confidence intervals

around the mean computed on the K = 10 splits.

(PNG)

S3 Fig. Weights stability comparison. Importance weights stability performance (KT-stabil-

ity) of all the tested Deep Survival NN architectures (blue) and all multivariate CoxPH models

fitted. The values in parenthesis for Deep Survival NNs represent the number of input nodes

(i.e. the granularity of features’ clusters) and the number of nodes in the last layer before the
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output. Whereas the parenthesis for CoxPH models report the granularity of the input fea-

tures’ clusters. Dots represent the average performance value, while bands report the confi-

dence intervals around the mean computed on the K = 10 splits.

(PNG)

S4 Fig. Enrichment analysis on XGBoost weights profile. Results for the enrichment analysis

performed on weights’ profile estimated via TreeSHAP from XGBoost classifier.

(JPG)

S5 Fig. Analysis of CpG sites and their correlation. (a) Pie chart: frequencies of the Inter-

genic (red) and Intragenic (green and blue) CpG Islands. Most (48% of the total) intragenic

islands intersect one gene element (gene body or gene promoter), whereas 14% of CpG Islands

are intragenic and overlap gene body and promoter of the same gene. (b) Histogram: distribu-

tion of the pairwise Pearson correlations of CpGs pairs in the same island for the ‘blue’ cate-

gory. Only 2% of pairwise comparisons have a negative Pearson correlation coefficient.

(JPG)

S6 Fig. Comparison of DeepSHAP and Kernel SHAP. Top ten features in terms of highest

estimated weights from Deep Survival EWAS algorithm: on the left, the weights were esti-

mated exploiting the model-agnostic Kernel SHAP: on the right, the weights were estimated

with the model-specific DeepSHAP algorithm.

(PNG)

S7 Fig. Features’ dimension distributions for varying J. Distribution of dimensions of the

features for each input granularity J (i.e. 128, 256, 512, 1024), in terms of number of CpG

Island they group.

(PNG)
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