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Towards a comprehensive framework for V2G
optimal operation in presence of uncertainty

Riccardo Vignali, Alessandro Falsone, Member, IEEE , Fredy Ruiz, Giambattista Gruosso

Abstract— As the global fleet of Electric Vehicles keeps
increasing in number, the Vehicle To Grid (V2G) paradigm
is gaining more and more attention. From the grid point of
view an aggregate of electric vehicles can act as a flexible
load, thus able to provide balancing services. The problem
of computing the optimal day-ahead charging schedule for
all vehicles in the fleet is a challenging one, especially
because it is affected by many sources of uncertainty. In
this paper we consider the uncertainty deriving from arrival
and departure times, arrival energy and services market
outcomes. We propose a general optimization framework
to deal with the day ahead planning that encompasses
different kind of use-cases. We adopt a robust paradigm
to enforce the constraints and an expectation paradigm for
the cost function. For all constraints and cost terms we
propose an exact formulation or a very tight approximation,
even in the case of piece-wise linear battery dynamics.
Numerical results corroborates the theoretical findings.

Index Terms— Vehicle to grid; Ancillary services; Uncer-
tain optimization

I. INTRODUCTION

THE global fleet of Electric Vehicles (EV) has expanded
exponentially during the last decade, arriving to more

than 7.2 millions by 2019, [1]. For the electric grid, EVs
are flexible loads that can be exploited to improve the ef-
ficiency of network operation. However, the impact of a
single EV on the grid is marginal and a large population is
required to offer adequate services to the system operator,
[2]. Aggregators are new market participants, whose aim is
to properly coordinate the actions of costumers to participate
in electricity markets, [3]. An aggregation of energy users can
support the grid operation, for example alleviating technical
constraints, reducing peak-load or acting as a virtual power
plant. Within the electrical market, the integration of vehicle
charging systems offers new opportunities but also new issues
[4]–[8]. It will be possible to plan vehicle recharges so that
production overloads can be managed or vehicles can be used
as synthetic inertia, but at the same time there are instabilities
due to simultaneous and unpredictable access to infrastructure
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in supply points that may already be critical. The use of
vehicle aggregators can be a solution for many of these issues.
A central coordinator that gathers the needs of vehicles and
the network and schedules both charging and discharging in
accordance with pricing policies. Two aggregation approaches
can be distinguished in literature. Incentive-based methods use
price or incentive signals to influence the consumers behavior.
These are unidirectional solutions with reduced infrastructure
requirements. However, they can suffer from reliability issues
because the consumption decision is taken by final users,
that can be influenced by external phenomena [9], [10]. On
the other hand, direct control approaches, assume that the
aggregator can directly manage the loads operation, guaran-
teeing robustness in the actuation of consumption plans, while
requiring bidirectional communication infrastructure [11].

One of the main challenges when designing an aggregation
strategy coping with EV needs is handling uncertainty in the
fleet behavior. Arrival and departure times of each vehicle,
and also the initial State Of Charge (SOC) are fundamental
parameters that the aggregator requires from each vehicle
to properly schedule the power flows. When participating
in wholesale markets, the aggregator must also deal with
uncertainty in the outcomes of ancillary services, [12].

In the context of electrified transportation, different ap-
proaches for the aggregation of EV fleets using direct control
have been proposed. They differ in the objective function to be
optimized, the timeline of the operation and the approach to
deal with uncertainty. For example, in [13] the authors describe
a model for the day-ahead optimization of energy provision
for a fleet of EVs in a deterministic setting, considering
also regulation services. The study concludes that the optimal
bidding strategies exhibit high sensitivity to input parameters
that are uncertain during the actual operation of the system.

Most of the existing solutions to face uncertainty in the
aggregation operation use stochastic optimization to maximize
the expected profit of the aggregator, imposing some limit to
the probability of noncompliance of the imposed constraints.
In [11], the authors use stochastic programming to solve the
scheduling of a fleet of EVs maximizing the profit of the ag-
gregator by charging the vehicles and participating in ancillary
services markets. The model considers uncertainty in market
prices, vehicles availability and reserves activation. A proper
scenario generation and a conditional value at risk formulation
is followed. [14] formulates a stochastic linear program to
minimize the recharging cost of the fleet, facing uncertainty
in energy prices, renewable sources generation and inflexible
loads served by the aggregator. No uncertainty is considered
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about availability of EVs. [12] formulates a stochastic opti-
mization problem, considering market prices uncertainty only.
The authors use stochastic p-robust optimization to trade-
off expected profit and maximum related regret. [15] applies
game theory to represent the decision process of EV owners
and use the resulting models to derive an optimal strategy
to participate in energy markets for the aggregator. Recharg-
ing level constraints are imposed in probability, limiting the
noncompliance risk. [16] presents a model to schedule the
over-night charging of EV in residential context. Uncertainty
in arrival time and SOC are considered. Detailed information
about the probability distribution of uncertain information is
required to minimize the risk of constraint violation, including
network overloading, voltage deviation, and low recharging
level. [17] uses a scenario approach to solve a stochastic day-
ahead dispatch problem for a EVs aggregator, considering
also participation in the reserves market. The model considers
uncertainty in market prices only and deals with it using a risk-
constrained formulation. [18] proposes a scenario approach to
solve a two-stage stochastic EV charging scheduling problem.
The model handles uncertainty in EVs availability (arrival
and departure time) and arrival SOC. A receding horizon ap-
proach is applied for real-time operation and EVs with similar
availability patterns are aggregated to reduce the number of
scenarios considered in the optimization.

A second research line to solve the EVs recharging schedul-
ing is the use of robust optimization, where the uncertainty
is formulated in a worst-case scenario. [19] combines robust
and stochastic programming techniques to solve the day-ahead
bidding problem of an EV fleet aggregator. The model con-
siders scenarios to represent market prices, while aggregated
power and energy limits, described by confidence bounds, are
employed instead of arrival and departure times, to represent
vehicles behavior. [2] formulates a multi-objective optimiza-
tion problem minimizing the operational costs and maximizing
the flexibility of the fleet. The model considers the uncertainty
in the arrival time and SOC for each vehicle, while the
departure time is assumed known. A receding horizon strategy
is employed to compensate the deviation caused by the uncer-
tainty, guaranteeing feasibility in the worst-case. [20] uses a
hierarchical model to solve the day-ahead energy provision
problem of an aggregator of EVs with V2G capability. The
model uses a robust formulation considering the uncertainty in
vehicles availability and energy requirements. The upper level
problem maximizes the profit of the operation while two low
level problems determine the worst-case scenarios of battery
draining and power exchange deviations with the grid. [21]
proposes a robust solution to the day-ahead scheduling of an
aggregator that integrates wind power and manages a fleet
of EVs with V2G capabilities. The framework considers the
uncertainty in wind power generation and arrival SOC of the
vehicles. EVs availability is assumed known.

From the previous review it can be noticed that existing
formulations based on stochastic optimization require detailed
information about the probability distributions of uncertain
variables and in most cases result in computationally demand-
ing solutions, while the obtained strategies cannot guarantee to
satisfy the requests from the TSO for all the possible scenarios.

On the other hand, robust formulations mostly focus in the day
ahead planning of the charging/discharging profiles, without
incorporating ancillary services in the aggregator operation.

In this work we propose a general framework to formulate
a day-ahead EVs recharging scheduling problem for an aggre-
gator that operates a parking lot of a company, coping with
most of the limitation of existing solutions. The aggregator
participates in the energy and ancillary services markets.
In the formulation we consider different types of cost and
constraints which can be selected depending on the specific
application. The model uses a robust formulation to deal with
uncertainties in vehicles availability, arrival SOC and TSO
service activation signal in the constraints. The formulation
guarantees that the optimal schedule is feasible for the worst-
case realization of the uncertain variables (which in turn guar-
antees that the TSO requests can always be satisfied), while
the aggregator maximizes its expected revenue for energy
provision and participation in ancillary services provision. We
propose a detailed derivation of the robust counterpart of all
constraints and show how they can be approximated to reduce
the computational complexity in obtaining the solution. We
also provide the analytic expression of the expected value
of the cost function (or an approximation of it) for simple
distributions of the uncertainty parameters. We pay particular
attention to deriving tight approximations so as not to make
the formulation overly conservative. Numerical simulations
show that the proposed robust scheduling framework allows
to maximize the profit of the aggregator while satisfying all
the requests from the TSO and the energy demand of the EV
fleet, in front of a large amount of realizations of the uncertain
variables. Moreover, the computational cost of the algorithm is
low, allowing to handle a large amount of EVs in the operation
of the V2G service.

Notation: For any scalar v ∈ R, we denote its positive part
with [v]

+
= max{v, 0} and its negative part with [v]

−
=

max{−v, 0}, so that we can always express v = [v]
+ − [v]

−

with [v]
+ and [v]

− both non-negative. The indicator function
over a set V ⊂ Rn is denoted as 1V (v) and for any v ∈ Rn
we have 1V (v) = 1 if v ∈ V and 1V (v) = 0 otherwise. For
a generic random variable X , we denote as PX its associated
probability measure, with PX{X ∈ X} the probability of the
event X ∈ X , and with EX [ · ] the expectation (when clear
from the context we will use P and E without subscript).

II. PROPOSED FRAMEWORK

Consider the electric vehicle (EV) parking lot of a company.
Assume the company has N employee with an EV, each of
which has one charging station assigned1. Since for most of
the day the vehicles are parked, the company would like to
leverage their internal batteries to provide ancillary services to
the main grid. To this end, the company has to estimate the
power exchange profile and the maximum amount of upward
and downward power variations it will be able to provide for
the next day and communicate them to the main grid. In this
section we formulate a mathematical program to optimally

1This assumption admittedly restrict the applicability of the framework, but
it enable us to simplify some derivations.
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plan such profiles, the company’s goal being to minimize the
EVs charging costs and maximize the revenues associated with
the ancillary service provision. To formulate the finite horizon
optimal control problem we consider a one-day time horizon
discretized into T time intervals (referred to as time-slots)
indexed by k = 0, . . . , T − 1.

A. Electric Vehicles Modeling

Let us denote by ai (arrival) and di (departure) the first and
last full time-slots in which EV i is plugged into its charging
station, meaning that vehicle i arrives during time-slot ai − 1
and departs during time-slot di + 1. Even though employees
and their EVs are the same from one day to the next, their
time of arrival/departure may change. Quantities ai and di are
thus considered to be uncertain, but limited to some intervals
ai ∈ [ai, ai] and di ∈ [di, di], with ai, ai, ai, di, di, di ∈
{0, . . . , T − 1} and ai ≤ di.

Each EV is equipped with a battery, whose State Of Charge
(SOC) at the beginning of time-slot k is denoted by ek,i and,
for k ∈ [ai, di], obeys the following dynamics

ek+1,i = αi ek,i + τ ηk,i pk,i, (1)

where τ represents the time-slot duration, pk,i denotes the
average power used to charge (pk,i > 0) or discharge (pk,i <
0) the battery during time-slot k, αi ∈ (0, 1] models self-
discharging losses, and

ηk,i =

{
η+
i pk,i ≥ 0
1
η−i

pk,i < 0
(2)

models charging/discharging losses, η+
i , η

−
i ∈ (0, 1] being

the charging/discharging efficiencies. Note that, since pk,i
cannot be positive and negative at the same time, charging
and discharging are mutually exclusive.

The battery SOC always stays within a minimum emin
i > 0

and a maximum emax
i > 0 value and therefore

emin
i ≤ ek,i ≤ emax

i k ∈ [ai, di] (3)

must hold for any EV i. By noticing that (1), with ηk,i as
in (2), can be equivalently expressed as

ek+1,i = αi ek,i + τ min
{
η+
i pk,i,

1
η−i
pk,i

}
, (4)

we can explicitly compute ek,i in (3) as

ek,i = αk−aii eai,i + τ

k−1∑
t=ai

αk−1−t
i min

{
η+
i pt,i,

1
η−i
pt,i

}
,

(5)
as a function of pt,i, t ∈ [ai, k − 1], for all k ∈ [ai, di + 1].

To ease the notation, we use the symbol e0
i in place of eai,i

(i.e., e0
i ≡ eai,i) to denote the SOC at arrival. Note that if

ai > 0, then e0
i 6= e0,i. The arrival SOC e0

i is also considered
to be uncertain, with e0

i ∈ [eµi − e∆
i , e

µ
i + e∆

i ] ⊂ [emin
i , emax

i ],
eµi , e

∆
i > 0 being the midpoint and the half-width of the

uncertainty interval, respectively.
The power exchange pk,i between any charging station and

its connected EV is limited by a maximum amount pmax
i > 0

when the vehicle is present and is zero otherwise. Thus it must
hold

pk,i ∈ [−pmax
i , pmax

i ] k ∈ [ai, di] (6a)
pk,i = 0 k 6∈ [ai, di] (6b)

for any EV i. Moreover, the overall power that the parking lot
can exchange with the grid is also limited by pmax > 0, and
hence

−pmax ≤
N∑
i=1

pk,i ≤ pmax. (7)

Power limits are assumed to be symmetric, but all derivations
can be readily extended to asymmetric power upper and lower
bounds as, e.g., in V1G scenarios.

At any time-slot k, if an EV is charging its owner pays cv+
k

per energy unit to the company, otherwise if the vehicle is
discharging the company pays cv−k > cv+

k per energy unit to
the owner. The cost incurred by the company for vehicle i is
thus given by

cveh
k,i = cv−k [τpk,i]

− − cv+
k [τpk,i]

+
, (8)

and the overall cost for vehicles charging/discharging over the
entire horizon is

cveh =

T−1∑
k=0

N∑
i=1

cveh
k,i . (9)

B. Vehicles Residual Energy

Depending on the considered application, one may want
to handle the residual SOC edi+1,i of EV i at departure
differently. If we know that vehicle i will return to the parking
lot the next day (like in the company parking lot considered
here), then part of the energy edi+1,i stored in EV i will be
available the next day. To monetize such residual energy we
can consider a (negative) cost given by

csoc = −cavg
N∑
i=1

edi+1,i, (10)

where cavg is an average energy unit price over the considered
time horizon.

Another aspect that can be easily incorporated into the
framework is a minimum requirement on the SOC at departure,
which can be taken into account enforcing the constraint

edi+1,i ≥ e◦i , (11)

where e◦i ∈ [emin
i , emax

i ] is EV i desired SOC at departure,
which can be an absolute value, or it can be expressed as a
desired increase γi with respect to the SOC at arrival e0

i , i.e.,
e◦i = e0

i + γi.

C. Day Ahead and Ancillary Services Markets

Since the company has to establish a baseline power ex-
change profile with the main grid and the offered capacity for
the ancillary services, it is convenient to express pk,i as

pk,i = pdam
k,i + pasm

k,i , (12)
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where pdam
k,i is the portion of pk,i purchased on the day-ahead

market, while pasm
k,i is the portion of pk,i used to dispatch

ancillary services.
At any time-slot k, buying an energy unit on the day-ahead

market costs ce+k < cv+
k , while the grid pays ce−k < ce+k

for energy unit sold. The company buys energy whenever the
net power requested by all EVs is positive, and sells energy
otherwise. The cost incurred by the company for the day-ahead
market over the entire horizon is thus given by

cdam =

T−1∑
k=0

ce+k

[
N∑
i=1

τpdam
k,i

]+

− ce−k

[
N∑
i=1

τpdam
k,i

]−
. (13)

As for the ancillary services, since they are typically divided
into upward and downward services (see Remark 1) , it is
convenient to further express pasm

k,i as

pasm
k,i = s+

k,i [ωk]
+ − s−k,i [ωk]

−
, (14)

where s+
k,i ≥ 0 and s−k,i ≥ 0 is the maximum power variation

offered by EV i in time-slot k for the downward and upward
services respectively, while ωk ∈ [−1, 1] is the actual service
signal provided by the Transmission System Operator (TSO)
for time-slot k: ωk = 1 if the TSO requests all the offered
downward power variation; ωk = −1 if the TSO requests
all the offered upward power variation; ωk = 0 if the TSO
does not request any variation with respect to the baseline
power profile; or any fractional value in case a fraction of the
offered flexibility is requested. The overall capacity offered by
the company for time-slot k is simply given by

∑N
i=1 s

+
k,i for

upward variations and
∑N
i=1 s

−
k,i for downward variations.

An energy unit bought on the ancillary service market costs
cs+k < ce+k , while an energy unit sold pays cs−k ∈ (ce−k , cv−k ).
The company buys energy on the ancillary service market
whenever ωk > 0 and sells it when ωk < 0. The total cost
incurred by the company for the ancillary service market over
the entire horizon is thus given by

casm =

T−1∑
k=0

cs+k

N∑
i=1

τs+
k,i [ωk]

+ − cs−k
N∑
i=1

τs−k,i [ωk]
−
. (15)

Clearly, the signal ωk is not known at the time when the
company has to define the baseline profile and the offered
service capacity, as it refers to the next day, and therefore ωk
is also considered to be uncertain.

Finally, the ancillary service market may require to provide
upwards and downwards services for a certain number of
consecutive time slots T asm (e.g., for 2 hours in Italy). In
this cases we need to impose the additional constraints

N∑
i=1

s+
(r−1)T asm,i = · · · =

N∑
i=1

s+
rT asm−1,i r ∈ [1, T

T asm ],

(16a)
N∑
i=1

s−(r−1)T asm,i = · · · =
N∑
i=1

s−rT asm−1,i r ∈ [1, T
T asm ].

(16b)

Remark 1: Note that we here assumed the presence of a
single service market with costs cs+k and cs−k and service signal

ωk. However, if multiple bidding markets are considered,
then different costs csj+k and c

sj−
k , different signals ωjk, and

different allotted capacities sj+k,i and sj−k,i for each ancillary
service j could be easily introduced in the proposed framework
without any conceptual leap. The same formulation applies
also to capacity services, where the aggregator offers a given
capacity and is remunerated independently on how much
of the total capacity is actually requested. In this case the
uncertain signal is either 0 or 1 with a distribution given by
the probability of acceptance.

D. Optimal Planning
We are now in a position to formulate the mathematical

program the company has to solve to optimally plan its
baseline profile and the amount of ancillary services offered
to the grid, which reads as

min
pdam
k,i ,s

+
k,i,s

−
k,i

(9) + (10) + (13) + (15) (Pδ)

subject to: (7) ∀k
(3), (6), (11) ∀i
(16)

s+
k,i, s

−
k,i ≥ 0 ∀i, ∀k

where pdam
k,i , s+

k,i, s
−
k,i, for all i = 1, . . . , N and k = 0, . . . , T−

1 are the decision variables, ek,i and edi,i in (3), (10), and (11)
are given by (4), (9) can be computed using (8), and pk,i in (7),
(6), (4), and (8) is expressed as pk,i = pdam

k,i + s+
k,i [ωk]

+ −
s−k,i [ωk]

− combining (12) and (14).
Unfortunately, the cost and the constraints of Pδ depend

on the uncertain parameters ai, di, e0
i , for all i = 1, . . . , N

and ωk for all k = 0, . . . , T − 1, which we will collectively
refer to as the uncertainty δ taking values in a set ∆. This
renders problem Pδ ill-posed as δ is not known at the time a
solution to Pδ has to be computed. This issue is tackled in the
next section, where we show how to handle δ and compute an
uncertainty-aware solution to the optimal planning problem.

III. TAMING UNCERTAINTY

We propose to handle the uncertainty differently based on
whether it appears in the cost function or in the constraints and
based on the type of constraint. Since constraints (3) and (6)
represents physical limitations on EVs battery operations, we
propose a robust paradigm, enforcing those constraints for all
possible values of δ ∈ ∆. As for constraint (11), which is not
a hard constraint, we can either pursue a robust approach, or
impose the weaker requirement that

E[edi+1,i] ≥ E[e◦i ], (17)

for all i = 1, . . . , N , so that the employees are “on average”
satisfied with their SOC at departure. Finally, for the cost
function, we propose to minimize the expected cost.

To reduce the conservatism resulting from adopting a robust
paradigm, we also propose to parametrize component pdam

k,i of
the power exchanged by EV i during time-slot k in the day-
ahead market as

pdam
k,i = p̄k,i − ϑk,i(e0

i − e
µ
i ), (18)
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where p̄k,i is the baseline control policy for EV i while
ϑk,i(e

0
i−e

µ
i ), with ϑk,i ≥ 0, is introduced to adapt the optimal

control policy given the actual arrival SOC EV i will have
the next day. Given the uncertainty interval of e0

i , we have
(e0
i − e

µ
i ) ∈ [−e∆

i , e
∆
i ].

Finally, the resulting (deterministic) optimal control prob-
lem reads as

min
p̄k,i,ϑk,i,s

+
k,i,s

−
k,i

E[(9) + (10) + (13) + (15)] (P)

subject to: (7) δ ∈ ∆ ∀k
(3), (6) δ ∈ ∆ ∀i
(11) δ ∈ ∆, or (17) ∀i
(16)

s+
k,i, s

−
k,i, ϑk,i ≥ 0 ∀i, ∀k

where the decision variables are now p̄k,i, ϑk,i, s+
k,i, s

−
k,i, for

all i = 1, . . . , N and k = 0, . . . , T − 1 and the cost and
constraints depends on those variables similarly to Pδ given
that now pk,i = p̄k,i − ϑk,i(e0

i − e
µ
i ) + s+

k,i [ωk]
+ − s−k,i [ωk]

−

owing to (18).
Next, we shall show how to compute the robust version of

the constraints and the expected values appearing in P .

A. Assumptions on Uncertainty
For the subsequent derivations, we make the following

assumptions.
Assumption 1 (Independence): The random variables e0

i ,
ai, di for all i = 1, . . . , N , and ωk for all k = 0, . . . , T − 1,
are all independent from each other.
This assumption ensures that most of the subsequent estimates
for the constraints in P are tight and eases the computation of
the expected values in the cost function. In case Assumption 1
is not satisfied, constraints estimates are still valid, but are not
tight anymore. Unfortunately, the expected values in the cost
function has to be recomputed.

Assumption 2 (Non-zero Stopover): Arrival and departure
time windows overlap is at most equal to a single time-slot,
i.e., ai ≤ di.
Assumption 2 ensures that we are certain that each EV stays
attached to its charging station for at least one (full) time-
slot. Relaxing this assumption requires a modification of the
approach. In those time-slots when the vehicle is possibly not
plugged, the company can still buy energy from the DAM but
it will not be guaranteed that that power will be absorbed. In
such a case the company will incur in an unbalancing cost as
it will absorb less quantity than the quantity expected. These
additional costs have to be properly minimized together with
the rest. This extension is left as a future improvement of the
proposed framework.

Assumption 3 (Minimum SOC at Arrival): We assume that
eµi − e∆

i ≥ emin
i /α

ai−ai
i to ensure that EV i does not arrive

with a critically low SOC.
Note that when αi is close to 1, as is typically the case,
emin
i /α

ai−ai
i in Assumption 3 is slightly above emin

i meaning
that, in practice, we are only requiring the vehicle to arrive
with a non-empty battery.

Assumption 4 (Distribution): The random variables e0
i , ai,

di for all i = 1, . . . , N , all have a uniform distribution over
their support. The random variable ωk, for all k = 0, . . . , T−1,
is defined as follows: with probability π+, ωk is drawn from
a uniform distribution over the interval [0, 1], with probability
π−, ωk is drawn from a uniform distribution over the interval
[−1, 0], and with probability π0 = 1−π+−π−, we have that
ωk = 0.
Assumption 4 is only required to compute the expected values
in P analytically. In the data-based solution strategy proposed
in Section III-E this assumption is not necessary.

B. Power Constraints

Let us consider the robust counterpart of constraint (6).
From (6b), pk,i = 0 whenever k 6∈ [ai, di]. Since this has
to be true for every possible combination of ai ∈ [ai, ai] and
di ∈ [di, di] we need to enforce pk,i = 0 whenever k 6∈ [ai, di],
which is to say that in all those time-slots in which we are
not certain that EV i is attached to the charging station, we
do not plan charge/discharge the vehicle. Instead, by (6a), for
any k ∈ [ai, di] we need to enforce −pmax

i ≤ pk,i ≤ pmax
i .

Clearly

pk,i = p̄k,i − ϑk,i(e0
i − e

µ
i ) + s+

k,i [ωk]
+ − s−k,i [ωk]

−

≤ p̄k,i − ϑk,i(e0
i − e

µ
i ) + s+

k,i

≤ p̄k,i + ϑk,ie
∆
i + s+

k,i,

where the first inequality is due to ωk ∈ [−1, 1] together with
s+
k,i, s

−
k,i, [ωk]

+, and [ωk]
− all being non-negative, and the

second inequality is due to (e0
i − e

µ
i ) ∈ [−e∆

i , e
∆
i ] together

with ϑk,i ≥ 0. Note that, under Assumption 1, the bound is
tight. Similarly,

pk,i = p̄k,i − ϑk,i(e0
i − e

µ
i ) + s+

k,i [ωk]
+ − s−k,i [ωk]

−

≥ p̄k,i − ϑk,i(e0
i − e

µ
i )− s−k,i

≥ p̄k,i − ϑk,ie∆
i − s−k,i.

The robust counterpart of constraint (6) is thus equivalent to

p̄k,i + ϑk,ie
∆
i + s+

k,i ≤ p
max
i k ∈ [ai, di], (19a)

p̄k,i − ϑk,ie∆
i − s−k,i ≥ −p

max
i k ∈ [ai, di], (19b)

pk,i = 0 k 6∈ [ai, di], (19c)

where the interval [ai, di] is non-empty under Assumption 2,
meaning that we allow pk,i 6= 0 for at least one time-slot.

Given the (tight) upper and lower bounds found for pk,i,
we can also construct upper and lower bounds for

∑N
i=1 pk,i

(which are also tight due to independence across vehicles) and
derive the robust counterpart of constraint (7) as

N∑
i=1

p̄k,i + ϑk,ie
∆
i + s+

k,i ≤ p
max, (20a)

N∑
i=1

p̄k,i − ϑk,ie∆
i − s−k,i ≥ −p

max. (20b)
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C. State of Charge Constraints

Let us now consider constraint (3) with ek,i expressed as
in (5). We have the following result

Theorem 1: Under Assumptions 1, 2, and 3 the robust
counterpart of constraint (3) for EV i is given by

αk−aii eµi + min
{ηt,i∈Hi}t

gk,i({ηt,i}t) ≤ emax
i (21)

and

α
k−ai
i eµi + hi,k ≥ emin

i (k) (22a)

hk,i ≤ gk,i({ηt,i}t)
{
ηt,i ∈ {η+

i ,
1
η−i
}
}k−1

t=ai
(22b)

for each k ∈ [ai + 1, di + 1], with Hi = [η+
i ,

1
η−i

],

emin
i (k) =

e
min
i k ∈ [ai + 1, di]
emin
i

α
di−di
i

k = di + 1

gk,i({ηt,i}t) = τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i + s+

t,i)

+

∣∣∣∣∣αk−aii − τ
k−1∑
t=ai

αk−1−t
i ηt,iϑt,i

∣∣∣∣∣ e∆
i

g
k,i

({ηt,i}t) = τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i − s−t,i)

−

∣∣∣∣∣αk−aii − τ
k−1∑
t=ai

αk−1−t
i ηt,iϑt,i

∣∣∣∣∣ e∆
i ,

and hk,i being auxiliary continuous decision variables.
While constraint (22) is convex, constraint (21) is non-

convex and can be either dealt with a dedicated solver, or ap-
proximated. Moreover, even though (22) is convex, the number
of inequalities required to define it grows exponentially with k.
We next discuss an interesting case in which constraints (22)
and (21) can be greatly simplified.

Let us consider the case in which the compensator param-
eters ϑk,i satisfy the following linear constraint

τ
η−i

di∑
t=ai

α
di−t
i ϑt,i ≤ α

di−ai+1
i , (23)

then we have the following result.
Proposition 1: Under Assumptions 1, 2, and 3, if we

enforce the additional constraint (23), then constraints (21)
and (22) can be equivalently enforced as

αk−aii (eµi + e∆
i ) + τ

k−1∑
t=ai

αk−1−t
i ht,i ≤ emax

i (24a)

ht,i ≥ η+
i (p̄t,i + s+

t,i − ϑt,ie
∆
i )− pmax

i (1− bt,i) (24b)

ht,i ≥ 1
η−i

(p̄t,i + s+
t,i − ϑt,ie

∆
i )− pmax

i bt,i (24c)

and

α
k−ai
i (eµi − e

∆
i ) + τ

k−1∑
t=ai

αk−1−t
i ht,i ≥ emin

i (k) (25a)

ht,i ≤ η+
i (p̄t,i − s−t,i + ϑt,ie

∆
i ) t ∈ [ai, di] (25b)

ht,i ≤ 1
η−i

(p̄t,i − s−t,i + ϑt,ie
∆
i ) t ∈ [ai, di] (25c)

for each k ∈ [ai + 1, di + 1], with emin
i (k) defined as in The-

orem 1, ht,i and ht,i additional continuous decision variables,
and bt,i ∈ {0, 1} additional binary decision variables.

Remark 2: Constraint in (23) has the following intuitive
explanation. For the sake of simplicity let us assume αi =

η+
i = η−i = 1. Then, (23) becomes τ

∑di
t=ai

ϑt,i ≤ 1,
implying ∣∣∣∣∣∣τ

di∑
t=ai

ϑt,i(e
0
i − e

µ
i )

∣∣∣∣∣∣ ≤ ∣∣e0
i − e

µ
i

∣∣
for any e0

i . This means that the amount of energy provided to
EV i over the time frame [ai, di] to compensate the uncertainty
in e0

i cannot exceed |e0
i−e

µ
i |. But this is not limiting at all as it

would not make sense to compensate for more than |e0
i − e

µ
i |.

Even though the result given by Proposition 1 greatly
simplifies imposing the robust counterpart of constraint (3),
constraint (24) requires us to solve a Mixed-Integer program,
whose complexity grows exponentially with the number of
binary decision variables. For those cases in which comput-
ing resources are limited, we propose the following convex
approximation of (24).

Corollary 1: Constraint (24) can be approximated as

αk−aii (eµi + e∆
i ) + τ

k−1∑
t=ai

αk−1−t
i

× η+
i (p̄t,i + s+

t,i − ϑt,ie
∆
i ) ≤ emax

i . (26)

If one is interested in enforcing the robust counterpart of
constraint (11), then, if the desired SOC at departure e◦i is
given in absolute terms, this would simply entail changing the
definition of emin

i (k) in (22a) or (25a) to

emin
i (k) =

e
min
i k ∈ [ai + 1, di]
e◦i

α
di−di
i

k = di + 1
. (27)

Otherwise, if the desired SOC at departure is given as e◦i =
e0
i + γi, we have the following robust counterpart of (11),

which holds irrespectively of whether (23) is enforced or not.
Proposition 2: Under Assumptions 1, and 2 the robust

counterpart of constraint (11) for EV i when e◦i = e0
i + γi

is given by(
α
di−ai+1
i − 1

)
(eµi + e∆

i ) + τ

di∑
t=ai

αdi−ti h̄t,i ≥ γi (28a)

h̄t,i ≤ η+
i (p̄t,i − s−t,i − ϑt,ie

∆
i ) t ∈ [ai, di] (28b)

h̄t,i ≤ 1
η−i

(p̄t,i − s−t,i − ϑt,ie
∆
i ) t ∈ [ai, di] (28c)
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where h̄t,i are additional continuous decision variables.
Finally, note that the alternative constraint (17) need not

to be robustified, as it is already deterministic. Since the term
E[edi+1,i] on the left hand side of (17) also appears in the cost
function, its exact computation is deferred to the next section.
As for the right hand side of (11), E[e◦i ] is either equal to e◦i ,
if e◦i is given in absolute terms, or is equal to E[e0

i ] + γi if
the desired SOC is given as e◦i = e0

i + γi.

D. Cost Function

Lastly, we focus on the cost function of P . Since it is
composed by four terms and, by linearity of the expected value
operator it holds

E[(9)+(10)+(13)+(15)] = E[(9)]+E[(10)]+E[(13)]+E[(15)],

we can focus on each term separately. In the following, we
will compute all expected values under Assumption 4 and we
will make use of the following result.

Lemma 1: Let J(x, δ) be a convex function of x for any
value of an uncertain parameter δ ∈ ∆ with probability
measure Pδ . Then

J̃(x) = E[J(x, δ)] =

∫
∆

J(x, δ) dPδ

is a convex function of x.
1) Vehicles Charging/Discharging: Let us start by observing

that, since cv+
k < cv−k , cveh

k,i in (8) can equivalently be
expressed as cveh

k,i = max{−cv+
k τpk,i,−cv−k τpk,i}, which is a

convex function of the decision variables, since pk,i is linear in
the decision variables, for any fixed value of the uncertainty
parameters e0

i and ωk. By (9), also cveh is convex and, as
a consequence of Lemma 1, E[cveh] will also be a convex
function of the decision variables. By linearity of expectation,
from (9) and (8), we have

E[cveh] =

T−1∑
k=0

N∑
i=1

E[cveh
k,i ],

and we can thus focus on the computation of E[cveh
k,i ].

Clearly, cveh
k,i is a function of pk,i which, in turn, is a

function of the uncertain quantities ωk and e0
i . By definition

of expectation

E[cveh
k,i ] =

∫
ωk∈[−1,1]

∫
e0i∈[eµi −e∆i ,e

µ
i +e∆i ]

cveh
k,i dPe0i dPωk

=

∫
ωk∈(0,1]

∫
e0i∈[eµi −e∆i ,e

µ
i +e∆i ]

cveh
k,i dPe0i dPωk

+

∫
ωk=0

∫
e0i∈[eµi −e∆i ,e

µ
i +e∆i ]

cveh
k,i dPe0i dPωk

+

∫
ωk∈[−1,0)

∫
e0i∈[eµi −e∆i ,e

µ
i +e∆i ]

cveh
k,i dPe0i dPωk ,

where in the second equality we split the integral over the ωk
domain [−1, 1] in the three intervals [−1, 0), [0, 0], and (0, 1],
to deal with the distinct probability measure in each case (cf.
Assumption 4). Using Mathematica [22], we can analytically

compute the three integrals and, from the result2, we can also
see how each term is a piece-wise convex function defined
over a polyhedral partition of the p̄k,i, ϑk,i, s+

k,i, and s−k,i
domain. Following a reasoning similar to the one in [24], we
can construct a piece-wise affine upper bound of each term
and then recombine them together. The resulting expression is
reported in (29). Note that the upper bound is tight because it
ensures, by construction, that equality holds at any two region
border of the polyhedral partition.

2) Vehicles Residual Energy: Taking the expectation of (10)
and using the linearity property of expectation we obtain

E[csoc] = E

[
−cavg

N∑
i=1

edi+1,i

]
= −cavg

N∑
i=1

E[edi+1,i],

and we only need to compute E[edi+1,i], whose expression is
given in the following proposition and can also be used for
the constraint in (17).

Proposition 3: Under Assumptions 1 and 2 we have

E[edi+1,i] = αd̃i−ãi+1
i E[e0

i ]

+ τ

di∑
t=ai

αd̃i−ti E
[
min

{
η+
i pt,i,

1
η−i
pt,i

}]
where ãi = − logαi E[α−aii ] and d̃i = logαi E[αdii ].
Note that min{η+

i pt,i,
1
η−i
pt,i} is a concave function of the

optimization variables (as pt,i is linear in the decision variables
for any fixed value of e0

i and ωt) and thus, owing to Lemma 1,
also E[min{η+

i pt,i,
1
η−i
pt,i}] is concave. Since τ, αi > 0, also

E[edi+1,i] is concave, implying that constraint (17) is convex
and, since we have a minus sign inside the expression of csoc,
than also E[csoc] is convex in the decision variables. Moreover,

E
[
min

{
η+
i pt,i,

1
η−i
pt,i

}]
= −E

[
max

{
−η+

i pt,i,− 1
η−i
pt,i

}]
,

which is similar to E[cveh
k,i ] except that there is no τ , cv+

k and
cv−k are replaced by η+

i and 1
η−i

, and pk,i by pt,i. Therefore,
under the additional Assumption 4, we can compute the
right hand side of the previous relation using (29) with said
substitutions.

3) Day-Ahead Market: First, let us notice that since τ > 0
and ce+k > ce−k , (13) can be equivalently expressed as

cdam = τ

T−1∑
k=0

max

{
ce+k

N∑
i=1

pdam
k,i , c

e−
k

N∑
i=1

pdam
k,i

}
,

which is a convex function of the decision variable for any
fixed value of the uncertainty, as an effect of pk,i being linear
in the decision variables for any fixed value of the uncertainty.
Owing to Lemma 1, we know that also E[cdam] is convex in
the decision variables. Unfortunately, even though E[cdam] is
convex, computing its analytic expression under Assumption 4
is too involved and is left as a future research effort.

2In the interest of space, we do not report here the resulting expression,
but the Mathematica notebook used is available in [23].
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(29)

E[cveh
k,i ]≤ τ π0

2 max{−2cv+
k pk,i, −2cv−k pk,i, (cv−k −c

v+
k )ϑk,ie

∆
i −(cv−k +cv+

k )pk,i}+τ π+

6 max{−6cv+
k pk,i−3cv+

k s+k,i, −6cv−k pk,i

−3cv−k s+k,i, (cv+
k −c

v−
k )ϑk,ie

∆
i −3(cv+

k +cv−k )pk,i−3cv+
k s+k,i, (cv−k −c

v+
k )ϑk,ie

∆
i −(5cv+

k +cv−k )pk,i−3cv+
k s+k,i, (cv−k −c

v+
k )ϑk,ie

∆
i

−(cv+
k +5cv−k )pk,i−(cv+

k +2cv−k )s+k,i, 3(cv−k −c
v+
k )ϑk,ie

∆
i −3(cv+

k +cv−k )pk,i−(cv+
k +2cv−k )s+k,i}+τ π

−
6 max{3cv+

k s−k,i

−6cv+
k pk,i, 3cv−k s−k,i−6cv−k pk,i, (cv+

k −c
v−
k )ϑk,ie

∆
i −3(cv+

k +cv−k )pk,i+3cv−k s−k,i, (cv−k −c
v+
k )ϑk,ie

∆
i −(cv+

k +5cv−k )pk,i

+3cv−k s−k,i, (cv−k −c
v+
k )ϑk,ie

∆
i −(5cv+

k +cv−k )pk,i+(cv−k +2cv+
k )s−k,i, 3(cv−k −c

v+
k )ϑk,ie

∆
i −3(cv+

k +cv−k )pk,i+(cv−k +2cv+
k )s−k,i}

In this work, we propose to upper bound it as follows.
Taking the expectation on both sides of the previous expression
and using the linearity property yields

E[cdam] = τ

T−1∑
k=0

E

[
max

{
ce+k

N∑
i=1

pdam
k,i , c

e−
k

N∑
i=1

pdam
k,i

}]

≤ τ
T−1∑
k=0

N∑
i=1

E
[
max

{
ce+k pdam

k,i , c
e−
k pdam

k,i

}]
,

where the inequality is due to the monotonicity property
of expectation and we recall that pdam

k,i is defined in (18).
Similarly to Section III-D.1, we can compute the expected
value of the (k, i)-th term exactly using Mathematica [22] and
then upper bound it with a piece-wise affine function, yielding

E
[
max

{
ce+k pdam

k,i , c
e−
k pdam

k,i

}]
≤ max

{
ce+k p̄k,i, c

e−
k p̄k,i,

(ce+k +ce−k )p̄k,i+(ce+k −c
e−
k )ϑk,ie

∆
i

2

}
.

4) Ancillary Services Market: Taking the expectation of (15)
and using the linearity property of expectation yields

E[casm] = E

[
T−1∑
k=0

cs+k

N∑
i=1

τs+
k,i [ωk]

+ − cs−k
N∑
i=1

τs−k,i [ωk]
−

]

=

T−1∑
k=0

cs+k

N∑
i=1

τs+
k,iE[[ωk]

+
]− cs−k

N∑
i=1

τs−k,iE[[ωk]
−

],

and we thus only need to compute E[[ωk]
+

] and E[[ωk]
−

]. By
definition of expectation,

E[[ωk]
+

] = E[max{ωk, 0}] =

∫
ωk∈[−1,1]

max{ωk, 0} dPωk

=

∫
ωk∈(0,1]

ωk dPωk =

∫
ωk∈(0,1]

ωk
1
4 dωk = 1

8

and, with similar derivations, E[[ωk]
−

] = 1
8 . Thus the ancillary

services part of the expected cost is given by

E[casm] = 1
8

T−1∑
k=0

(
cs+k

N∑
i=1

τs+
k,i − c

s−
k

N∑
i=1

τs−k,i

)
(30)

and is linear in s+
k,i and s−k,i.

E. Data-based Solution
Suppose now that the (possibly joint) probability measure

of ai, di, e0
i , and ωk is unknown, and thus Assumption 4 is

not necessarily satisfied. If we have access to historical data
we can approximate the expression of the cost function of P
using those data. While computing the expected values for

discrete random variables like ai and di is easy, computing
expectations with respect to e0

i and ωk is not. However, owing
to the independence granted by Assumption 1, we can turn e0

i

and ωk into discrete random variables by gridding. This way,
we can approximate the expectation of any function ϕ(ξ, e0

i )
as

Ee0i [ϕ(ξ, e0
i )] ≈

∑
j

P{e0
i ∈ I

j
i }ϕ(ξ, Eji ),

where Iji is the j-th bin of the interval [eµi − e∆
i , e

µ
i + e∆

i ],
Eji is the center of Iji , and P{e0

i ∈ I
j
i } is estimated from the

available data. Clearly, such approximation preserves convex-
ity, thus the resulting data-based problem still has a convex
cost function.

IV. NUMERICAL EXAMPLE

We consider the case of a company parking lot composed
of N = 100 slots, each assigned to a single user indexed with
i. The 24 hours time horizon is discretized into T = 96 time
slots of τ = 15 minutes each. Vehicle i arrives uniformly at
random between 6:00 AM and 7:45 AM and leaves uniformly
at random between 4:00 PM and 8:00 PM. For each vehicle
i, we set η+

i = η−i = 0.97, pmax
i = −pmin

i = 22 kW, emax
i ∈

[40, 70] kWh, emin
i = 0 kWh, e0

i ∈ [0.1, 0.5]emax
i kWh

is extracted according to a uniform distribution, and e◦i =
0.7emax

i . The maximum power that can be exchanged with
the grid is set to pmax = −pmin = 600 kW. The energy prices
are shown in Figure 1. As for the ancillary service market, we
set the acceptance probabilities to π+

k = 0.3 and π−k = 0.1
based on real Italian market data (see [25]), and we set a time
constraint of 2 hours (i.e., T asm = 8 time slots) in (16).

A. Analytic Solution

We solve problem P with the expected value of the
recharge cost term (8) expressed analytically as in (29), and
the expected values of (13) and (15) expressed analytically
as described in Sections III-D.3 and III-D.4, respectively.
Maxima appearing in analytic expressions are dealt with by
means of epigraphic reformulation so as to make the overall
problem linear. The robust counterpart of (6) and (7) are
imposed using (19) and (20), respectively. After imposing
the additional constraint (23), we use (25) and (26), from
Corollary 1 and Proposition 1 respectively, to approximate
the robust counterpart of (3). Similarly, we use (25) with the
modification in (27) to impose the robust counterpart of (11).
We do not impose constraint (17) and we ignore term (10) in
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Fig. 1. Day-ahead market, ancillary service market, and vehicle
charging/discharging prices.

the cost function. The resulting optimization problem

min
p̄k,i,ϑk,i,s

+
k,i,s

−
k,i

E[(9) + (13) + (15)] (31)

subject to: (20) ∀k
(19), (26) ∀i
(25) with emin

i (k) as in (27) ∀i
(16)

s+
k,i, s

−
k,i, ϑk,i ≥ 0 ∀i, ∀k

is modeled via YALMIP [26] in MATLAB 2021a and solved
using CPLEX [27] on a laptop with i5-9400H processor and
32GB of RAM. The computation time is less than 4 seconds.

In Figure 2 the resulting power profile at the point of
connection with the main grid is shown. The optimal strategy
consists in offering two downward services at 8:00 AM and
at 10:00 AM, essentially to buy a non deterministic amount
of energy at a discounted price (cf. Figure 1 where cs+k <
ce+k ). The market bids are all concentrated between 8:00 AM
and 4:00 PM because in those time intervals the vehicles
availability is guaranteed.

Figure 3 shows the results of 1000 different scenarios
(extracted according to the distributions described at the begin-
ning of this section) for the behavior of vehicle 1, where each
scenario is obtained by sampling the uncertain variables. In
the top plot the profile of the power bought on the energy and
ancillary services markets is shown. The vehicle contributes
to the aggregate downward service with the red profile. The
second plot from above shows 1000 profiles of the percentage
state of charge of the vehicle (different colors) along with their
worst cases (dashed lines) and state of charge constraints (ma-
genta). It can be noted that different profiles may have different
lengths: this is due to the fact that besides the SOC at arrival,
also arrival and departure times are random. Note also that the
largest portion of realizations is close to the minimum value
because the probability of having high requests of downward
services is low. This plot highlights the conservativity of the
robust solutions that is limited by worst-case realizations even
if they are very unlikely. Possible countermeasures to reduce
conservativism are briefly discussed in the conclusions. The
third plot shows the value of the compensator parameter along
the considered time horizon: as can be noted by comparing
it with the second plot, a non-zero value of the compensator
reduces the span of possible values for the vehicle’s energy. On
the contrary, offering a service increases the span of possible
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Fig. 2. Power exchange profile with the main grid. Analytical solution.

0

10

20

Po
w

er
 [k

W
] p

s+

s-

0

50

100

SO
C

 [%
]

00:00 06:00 12:00 18:00 00:00
Time [hh:mm]

0

0.5

1

C
om

pe
ns

at
or

70 75 80 85 90 95 100
Final SOC [%]

0

20

40

60

R
ea

liz
at

io
ns

Fig. 3. Simulation results for a vehicle (capacity emax
i = 59 kWh) with

1000 uncertainty realizations. Top to bottom: 1) market bids, 2) SOC
percentage profiles, 3) compensator action, 4) final SOC percentage
histogram. Top three plots share the same x-axis.
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Fig. 4. Simulation results for another vehicle (capacity emax
i = 51

kWh) with 1000 uncertainty realizations. Top to bottom: 1) market
bids, 2) SOC percentage profiles, 3) compensator action, 4) final SOC
percentage histogram. Top three plots share the same x-axis.

values for the vehicle’s energy because the energy exchanged
with the grid is uncertain. In fact, on the one hand the optimal
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solution aims at maximizing downward services so as to buy
more energy at a cheaper price, but this leads to an increase
in the span of possible values for the vehicle’s energy content,
which has to be counteracted using the compensator action,
which reduces the span of possible values for the vehicle’s
energy so as it can fit into the gap between the minimum and
maximum energy constraints before departure. Without such
compensating action, the problem might even be unfeasible if
the energy span at arrival is bigger than the allowed energy gap
before departure. Finally, the last plot shows the distribution
of the SOC percentage at the time of departure: in all cases
the energy is contained in the limits (red and black vertical
lines), as enforced by the robust paradigm.

Figure 4 shows the results for a different car: as can
be noted, these are very similar to the ones in Figure 3,
as the car is charged with a downward bid saturating the
maximum power in some time intervals. The compensator
term is necessary also for this second car to ensure feasibility:
the span of possible energy realizations is indeed reduced from
an initial SOC variability of 40% (from 10% to 50% at 7:00
AM) to a final SOC variability of 30% (from 70% to 100%
at 5:00 PM), cf. second panel of Figure 4.

B. Data-based Solution
In order to test the efficacy of the data-based solution ex-

plained in Section III-E, we also solve the sampled counterpart
of (31). The expected value in the cost function are approxi-
mated gridding each e0

i and ωk into 5 bins and estimating their
probability extracting 1000 realization of the uncertain param-
eters, drawn from the same uniform distributions described at
the beginning of Section IV, so as to produce comparable
results with the analytical solution presented before.

Figure 5 shows the result obtained for the power exchange
profile with the grid. As can be noted, the power absorption
profile is very similar to the analytical one shown in Figure 2
and the corresponding optimal costs differ by 4% only. The ap-
proximation quality of the data-based solution clearly depends
on the number of samples: the higher the number of samples,
the better the accuracy, but the higher the computation cost.
In general, the data-based solution should be used in those
cases when the distribution of the uncertainty is not known
and only samples are available, or when the distribution is
known but the analytical formulation of the expected value is
too complicated to derive. If the support of the distributions
is known, the data-based formulation only affects the cost
function, and not the robust formulation of the constraints. In
Figure 6 we report the solution for one vehicle, which shows
that constraints on power and energy are satisfied. Please note
that the 1000 uncertainty realizations in Figure 6 are different
from those used to estimate the bin probabilities.

V. CONCLUSION

In this paper we proposed a framework for optimizing
the operation of a fleet of electric vehicles while providing
ancillary services to the electric grid. We discussed different
types of constraint and cost functions to make the approach
versatile and suitable for different contexts. We considered
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Fig. 6. Simulation results for a vehicle (capacity emax
i = 60 kWh) with

1000 uncertainty realizations. Top to bottom: 1) market bids, 2) SOC
percentage profiles, 3) compensator action, 4) final SOC percentage
histogram. Top three plots share the same x-axis.

different sources of uncertainties and provided either a robust
formulation for the constraints or an explicit formulation
for expectations of the different terms composing the cost
function. We derived very tight approximations, if not exact
formulations, of each constraint and cost terms even in pres-
ence of a piece-wise linear model of the vehicles battery. In
future works we will further enrich the framework allowing
for imbalances in the power bought from the energy market
through a disturbance feedback-like scheme: this will allow to
reduce the conservativism of the robust approach, to guarantee
a more flexible and profitable operation of the fleet, and to
consider scenarios other than the company parking lot. We
will also investigate the extension of the approach to the
aggregation of domestic users, each equipped with a battery,
and an uncertain photovoltaic generation and load.

APPENDIX I
PROOF OF THEOREM 1

Given that, by (19c), pk,i = 0 for all k 6∈ [ai, di] (which is
non-empty under Assumption 2) and recalling that eai,i = e0

i ,
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the SOC ek,i in (5) can be equivalently expressed as

ek,i = αk−aii e0
i + τ

min{k−1,di}∑
t=ai

αk−1−t
i min

{
η+
i pt,i,

1
η−i
pt,i

}

=


αk−aii e0

i k ∈ [ai, ai]

ẽk,i k ∈ [ai + 1, di + 1]

α
k−(di+1)
i edi+1,i k ∈ [di + 2, di + 1]

(32)

with

ẽk,i = αk−aii e0
i + τ

k−1∑
t=ai

αk−1−t
i min

{
η+
i pt,i,

1
η−i
pt,i

}
since k− 1 ≤ di for all k ∈ [ai + 1, di + 1]. We now consider
the three cases in (32) separately.

A. Case k ∈ [ai, ai]

By (32), if k ∈ [ai, ai], then

ek,i = αk−aii e0
i ≤ e0

i ≤ emax
i ,

where the first inequality is due to αi ∈ (0, 1] and k ≥ ai and
the second inequality is due to e0

i ∈ [emin
i , emax

i ]. Similarly,

ek,i = αk−aii e0
i ≥ α

ai−ai
i e0

i ≥ α
ai−ai
i (eµi − e

∆
i ) ≥ emin

i ,

where the first inequality is due to αi ∈ (0, 1] and k ≤ ai, the
second inequality is due to ai ≥ ai and e0

i ≥ eµi − e∆
i , and

the last inequality is due to Assumption 3.
For k ∈ [ai, ai], constraint (3) is thus automatically satisfied

for all possible values of the uncertain parameters without
imposing any constraint.

B. Case k ∈ [ai + 1, di + 1]

Let us first focus on the upper bound in (3). Since we want
ek,i ≤ emax

i for all possible values of ai, e0
i , and ωt, with

t = ai, . . . , k − 1, it is sufficient to enforce that

max
ai,e0i ,{ωt}t

ek,i ≤ emax
i .

To this end, we shall derive the left hand side as a function of
the decision variables. To start, we notice that, for any fixed
pt,i,

min
ηt,i∈Hi

ηi pt,i = min
{
η+
i pt,i,

1
η−i
pt,i

}
(33)

where Hi is the continuous interval [η+
i ,

1
η−i

]. Indeed the left
hand side is a linear program and its optimal solution is
obtained setting ηt,i = η+

i or ηt,i = 1
η−i

. Then, if k ∈
[ai + 1, di + 1], by (32) and (33),

max
ai

ek,i = max
ai

{
αk−aii e0

i

}
+ τ

k−1∑
t=ai

αk−1−t
i min

ηt,i∈Hi
ηt,i pt,i

= αk−aii e0
i + τ

k−1∑
t=ai

αk−1−t
i min

ηt,i∈Hi
ηt,i pt,i,

where the first equality is due to ai appearing only in the
term outside the summation and the second equality is due to
e0
i ≥ 0, αi ∈ (0, 1], and ai ≤ ai. Then,

max
ai

ek,i = αk−aii e0
i + τ

k−1∑
t=ai

αk−1−t
i min

ηt,i∈Hi
ηt,i pt,i

= αk−aii e0
i + min

{ηt,i∈Hi}t
τ

k−1∑
t=ai

αk−1−t
i ηt,i pt,i

= min
{ηt,i∈Hi}t

{
αk−aii e0

i + τ

k−1∑
t=ai

αk−1−t
i ηt,i pt,i

}
,

(34)

where in the second equality we brought the minimum over
ηt,i for each t outside the summation using the fact that τ and
αi are both positive and the minima are independent across t
under Assumption 1, and in the third equality we brought the
e0
i term inside the minimum since it does not depend on any
ηt,i. If we now expand pt,i as

pt,i = p̄t,i + ϑt,ie
µ
i + s+

t,i [ωt]
+ − s−t,i [ωt]

−︸ ︷︷ ︸
qt,i(ωt)

−ϑt,ie0
i , (35)

we get

max
ai

ek,i = min
{ηt,i∈Hi}t

{(
αk−aii − τ

k−1∑
t=ai

αk−1−t
i ηt,iϑt,i

)
︸ ︷︷ ︸

f
0
k,i({ηt,i}t)

e0
i

+ τ

k−1∑
t=ai

αk−1−t
i ηt,i qt,i(ωt)︸ ︷︷ ︸

fωk,i({ωt}t,{ηt,i}t)

}

= min
{ηt,i∈Hi}t

f
0

k,i({ηt,i}t)e0
i + fωk,i({ωt}t, {ηt,i}t)︸ ︷︷ ︸

fk,i(e
0
i ,{ωt}t,{ηt,i}t)

(36)

and consequently

max
ai,e0i ,{ωt}t

ek,i = max
e0i ,{ωt}t

max
ai

ek,i

= max
e0i ,{ωt}t

min
{ηt,i∈Hi}t

fk,i(e
0
i , {ωt}t, {ηt,i}t)

= min
{ηt,i∈Hi}t

max
e0i ,{ωt}t

fk,i(e
0
i , {ωt}t, {ηt,i}t)

(37)

where the second equality is due to (34) with (36), and the last
equality is due to Sion’s minimax theorem, [28], which holds
since e0

i , {ωt}t, and {ηt,i}t all lies in convex compact sets,
and for any fixed e0

i and {ωt}t the function fk,i(e
0
i , {ωt}t, ·)

is linear and for any fixed {ηt,i}t the function fk,i(·, ·, {ηt,i}t)
is continuous and quasi-concave, as a consequence of being
linear in e0

i and qt,i(ωt), with qt,i(ωt) monotonically non-
decreasing in ωt. Then,

max
e0i ,{ωt}t

fk,i(e
0
i , {ωt}t, {ηt,i}t) =

max
e0i

f
0

k,i({ηt,i}t)e0
i + max

{ωt}t
fωk,i({ωt}t, {ηt,i}t) (38)
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and we can focus on the two maxima separately. As for the
first term,

max
e0i

f
0

k,i({ηt,i}t)e0
i

= f
0

k,i({ηt,i}t)e
µ
i + max

e0i−e
µ
i

f
0

k,i({ηt,i}t)(e0
i − e

µ
i )

= f
0

k,i({ηt,i}t)e
µ
i + |f0

k,i({ηt,i}t)|e∆
i , (39)

where the first equality we added and subtracted the term in
eµi and the second equality is due to (e0

i − e
µ
i ) ∈ [−e∆

i , e
∆
i ].

As for the second term, since by Assumption 1 all ωt are
independent, and since τ, αi, ηt,i > 0, then

max
{ωt}t

fωk,i({ωt}t, {ηt,i}t) = τ

k−1∑
t=ai

αk−1−t
i ηt,i max

ωt
qt,i(ωt)

= τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i + ϑt,ie

µ
i + s+

t,i), (40)

where the latter equality holds by (35) together with the fact
that ωt ∈ [−1, 1] and both s+

t,i and s−t,i are non-negative.
Using (39) and (40) in (38) and recalling the definition of
f

0

k,i({ηt,i}t), we obtain

max
e0i ,{ωt}t

fk,i(e
0
i , {ωt}t, {ηt,i}t) =

αk−aii eµi + |f0

k,i({ηt,i}t)|e∆
i + τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i + s+

t,i),

which can be used in (37) to get

max
ai,e0i ,{ωt}t

ek,i = αk−aii eµi + min
{ηt,i∈Hi}t

{
|f0

k,i({ηt,i}t)|e∆
i

+ τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i + s+

t,i)

}
.

The robust counterpart of the upper bound in (3) in case k ∈
[ai + 1, di + 1] can be obtained requiring the right hand side
of the previous relation to be no-greater than emax

i , which is
exactly (21).

As for the lower bound in (3). Since we want ek,i ≥ emin
i

for all possible values of ai, e0
i , and ωt, with t = ai, . . . , k−1,

it is sufficient to enforce that

min
ai,{ωt}t,e0i

ek,i ≥ emin
i .

Similarly to the upper limit above, we shall express the left
hand side as a function of the decision variables. Using
equivalence (33), we have

min
ai

ek,i = min
ai

{
αk−aii e0

i

}
+ τ

k−1∑
t=ai

αk−1−t
i min

ηt,i∈Hi
ηt,i pt,i

= α
k−ai
i e0

i + τ

k−1∑
t=ai

αk−1−t
i min

ηt,i∈Hi
ηt,i pt,i,

where the first equality is due to ai appearing only in the
term outside the summation and the second equality is due

to e0
i ≥ 0, αi ∈ (0, 1], and ai ≥ ai. Then, similarly to (34)

and (36),

min
ai

ek,i = α
k−ai
i e0

i + τ

k−1∑
t=ai

αk−1−t
i min

ηt,i∈Hi
ηt,i pt,i

= α
k−ai
i e0

i + min
{ηt,i∈Hi}t

τ

k−1∑
t=ai

αk−1−t
i ηt,i pt,i

= min
{ηt,i∈Hi}t

{
α
k−ai
i e0

i + τ

k−1∑
t=ai

αk−1−t
i ηt,i pt,i

}
= min
{ηt,i∈Hi}t

f0

k,i
({ηt,i}t)e0

i + fωk,i({ωt}t, {ηt,i}t)︸ ︷︷ ︸
f
k,i

(e0i ,{ωt}t,{ηt,i}t)

,

(41)

where in the second equality we brought the minimum over
ηt,i for each t outside the summation using the fact that τ
and αi are both positive and the minima are independent
across t, in the third equality we brought the e0

i term inside
the minimum since it does not depend on any ηt,i, and in
the last equality we used (35) together with the definition of
fωk,i({ωt}t, {ηt,i}t) and f0

k,i
({ηt,i}t), the latter being identical

to f
0

k,i({ηt,i}t) except for αk−aii in place of αk−aii . Then,

min
ai,e0i ,{ωt}t

ek,i = min
e0i ,{ωt}t

min
ai

ek,i

= min
e0i ,{ωt}t

min
{ηt,i∈Hi}t

f
k,i

(e0
i , {ωt}t, {ηt,i}t)

= min
{ηt,i∈Hi}t

min
e0i ,{ωt}t

f
k,i

(e0
i , {ωt}t, {ηt,i}t),

(42)

where the second equality is due to (41) and in the second
equality we swapped the two minima. Similarly to the upper
limit case,

min
e0i ,{ωt}t

f
k,i

(e0
i , {ωt}t, {ηt,i}t) =

min
e0i

f0

k,i
({ηt,i}t)e0

i + min
{ωt}t

fωk,i({ωt}t, {ηt,i}t) (43)

and we can focus on the two minima separately. As for the
first term,

min
e0i

f0

k,i
({ηt,i}t)e0

i

= f0

k,i
({ηt,i}t)eµi + min

e0i−e
µ
i

f0

k,i
({ηt,i}t)(e0

i − e
µ
i )

= f0

k,i
({ηt,i}t)eµi − |f

0

k,i
({ηt,i}t)|e∆

i , (44)

where the first equality we added and subtracted the term in
eµi and the second equality is due to (e0

i − e
µ
i ) ∈ [−e∆

i , e
∆
i ].

As for the second term, since by Assumption 1 all ωt are
independent, and since τ, αi, ηt,i > 0, then

min
{ωt}t

fωk,i({ωt}t, {ηt,i}t) = τ

k−1∑
t=ai

αk−1−t
i ηt,i min

ωt
qt,i(ωt)

= τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i + ϑt,ie

µ
i − s

−
t,i), (45)
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where the latter equality holds by (35) together with the fact
that ωt ∈ [−1, 1] and both s+

t,i and s−t,i are non-negative.
Using (44) and (45) in (43) and recalling the definition of
f0

k,i
({ηt,i}t), we obtain

min
e0i ,{ωt}t

f
k,i

(e0
i , {ωt}t, {ηt,i}t) =

α
k−ai
i eµi − |f

0

k,i
({ηt,i}t)|e∆

i + τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i − s−t,i),

which can be used in (42) to get

min
ai,e0i ,{ωt}t

ek,i = α
k−ai
i eµi + min

{ηt,i∈Hi}t

{
−|f0

k,i
({ηt,i}t)|e∆

i

+ τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i − s−t,i)

}
.

The robust counterpart of the lower bound in (3) in case k ∈
[ai + 1, di + 1] can be obtained requiring the right hand side
of the previous relation to be no-smaller than emin

i . Since the
argument of the minimization over {ηt,i ∈ Hi}t is concave,
the minimum is achieved at {ηt,i ∈ {η+

i ,
1
η−i
}}t and therefore

the desired robust constraint can be expressed as in (22) by
means of an epigraphic reformulation.

C. Case k ∈ [di + 2, di + 1]

If di = di, the interval [di + 2, di + 1] is empty and we
can safely neglect this case, so let us consider di ≥ di + 1.
Similarly to the first case, by (32), if k ∈ [di + 2, di + 1], then

ek,i = α
k−(di+1)
i edi+1,i ≤ edi+1,i ≤ emax

i ,

where the first inequality is due to αi ∈ (0, 1] and k ≥ di + 1
and the second inequality is due to (21). As for the minimum
SOC constraint,

ek,i = α
k−(di+1)
i edi+1,i ≥ α

di−di
i edi+1,i,

where the inequality is due to αi ∈ (0, 1] and k ≤ di+1. Since
the right hand side of the previous relation is not guaranteed
to be greater than emin

i , we need to tweak the right hand side
of (22a) when k = di + 1 to make sure

edi+1,i ≥ emin
i

α
di−di
i

.

This last consideration concludes the proof.

APPENDIX II
PROOF OF PROPOSITION 1

Let us start by noticing that, for all k ∈ [ai + 1, di + 1],

τ

k−1∑
t=ai

αk−1−t
i ηt,iϑt,i ≤ τ

η−i

k−1∑
t=ai

αk−1−t
i ϑt,i, (46)

since τ, αi > 0, ϑt,i ≥ 0 for all t, and ηt,i ≤ 1
η−i

for all

ηt,i ∈ Hi. Moreover, for any k̄ ∈ [ai, di],

τ
η−i

k̄∑
t=ai

αk̄−ti ϑt,i ≤ α
k̄+1−ai
i =⇒ τ

η−i

k̄−1∑
t=ai

αk̄−1−t
i ϑt,i ≤ α

k̄−ai
i

since

τ
η−i

k̄−1∑
t=ai

αk̄−1−t
i ϑt,i = 1

αi
τ
η−i

k̄−1∑
t=ai

αk̄−ti ϑt,i

≤ 1
αi

τ
η−i

 k̄−1∑
t=ai

αk̄−ti ϑt,i + ϑk̄,i


= 1

αi
τ
η−i

k̄∑
t=ai

αk̄−ti ϑt,i

≤ 1
αi
α
k̄+1−ai
i

= α
k̄−ai
i ,

where the first equality is obtained multiplying and dividing by
αi, the first inequality is due to 1

αi
τ
η−i
ϑk̄,i ≥ 0, in the second

equality we included ϑk̄,i inside the summation, the second
inequality is due to the left hand side of the implication above,
and the last equality is trivial. Iterating the above implication
we have that

τ
η−i

di∑
t=ai

α
di−t
i ϑt,i ≤ α

di−ai+1
i

=⇒ τ
η−i

k−1∑
t=ai

αk−1−t
i ϑt,i ≤ α

k−ai
i

=⇒ τ

k−1∑
t=ai

αk−1−t
i ηt,iϑt,i ≤ α

k−ai
i (47a)

=⇒ τ

k−1∑
t=ai

αk−1−t
i ηt,iϑt,i ≤ αk−aii , (47b)

for all k ∈ [ai + 1, di + 1] and all ηt,i ∈ {η+
i ,

1
η−i
}, where the

second implication is due to (46) and the latter implication is
due to α

k−ai
i ≤ αk−aii as a consequence of αi ∈ (0, 1] and

ai ≤ ai.
Under Assumptions 1-3, Theorem 1 holds. Moreover,

by (47a) and (47b), the argument of the absolute values in the
expressions of g

k,i
({ηt,i}t) and gk,i({ηt,i}t) respectively are

always non-negative. We can thus remove the absolute values
and simplify the expressions to

gk,i(·) = αk−aii e∆
i + τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i + s+

t,i − ϑt,ie
∆
i )

g
k,i

(·) = −αk−aii e∆
i + τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i − s−t,i + ϑt,ie

∆
i ).

Recalling that (22) is equivalent to

α
k−ai
i eµi + min

{ηt,i∈Hi}t
g
k,i

({ηt,i}t) ≥ emin
i (k) (48)

and substituting the simplified expressions for gk,i({ηt,i}t)
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and g
k,i

({ηt,i}t) in (21) and (48) respectively, we have

αk−aii eµi + min
{ηt,i∈Hi}t

{
αk−aii e∆

i

+ τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i + s+

t,i − ϑt,ie
∆
i )

}
≤ emax

i

α
k−ai
i eµi + min

{ηt,i∈Hi}t

{
− αk−aii e∆

i

+ τ

k−1∑
t=ai

αk−1−t
i ηt,i(p̄t,i − s−t,i + ϑt,ie

∆
i )

}
≥ emin

i (k),

which can be further simplified to

αk−aii (eµi + e∆
i ) + τ

k−1∑
t=ai

αk−1−t
i

× min
ηt,i∈Hi

ηt,i(p̄t,i + s+
t,i − ϑt,ie

∆
i ) ≤ emax

i

α
k−ai
i (eµi − e

∆
i ) + τ

k−1∑
t=ai

αk−1−t
i

× min
ηt,i∈Hi

ηt,i(p̄t,i − s−t,i + ϑt,ie
∆
i ) ≥ emin

i (k),

since the minima over ηt,i are independent across different t’s.
For both cases, note that the minimum over each ηt,i ∈ Hi

is achieved either at ηt,i = η+
i or 1

η−i
. The bound involving

emin
i (k) is equivalent to its epigraphic reformulation in (25a),

while handling the bound involving emax
i requires further

efforts.
Since αi and τ are both positive, we can rewrite the bound

involving emax
i as

αk−aii (eµi + e∆
i ) + τ

k−1∑
t=ai

αk−1−t
i ht,i ≤ emax

i

ht,i ≥ min
ηt,i∈{η+

i ,
1
η−i
}
ηt,i(p̄t,i + s+

t,i − ϑt,ie
∆
i )

=

{
η+
i (p̄t,i + s+

t,i − ϑt,ie∆
i ) p̄t,i + s+

t,i − ϑt,ie∆
i ≥ 0

1
η−i

(p̄t,i + s+
t,i − ϑt,ie∆

i ) otherwise
,

where the first constraint is already (24a). The constraint on
ht,i can instead be interpreted as two alternative constraints,
with the sign of p̄t,i + s+

t,i − ϑt,ie∆
i determining which one

is active. Following the procedure described in [29], the in-
equality constraint involving ht,i can be equivalently enforced
using linear inequalities by introducing the additional binary
variable bt,i ∈ {0, 1} representing which of the two constraints
is enforced. If we choose bt,i = 1 to represent the positive
case, the constraint on ht,i can be imposed using the following
linear inequalities

ht,i ≥ η+
i (p̄t,i + s+

t,i − ϑt,ie
∆
i )−M (1− bt,i) (49a)

ht,i ≥ 1
η−i

(p̄t,i + s+
t,i − ϑt,ie

∆
i )−M bt,i (49b)

where M is a large constant which renders (49b) ineffective
when bt,i = 1 and renders (49a) ineffective when bt,i =
0. Since imposing (24a) implicitly requires ht,i, the solver

will automatically set bt,i to enforce the loosest constraints
between (49a) and (49b). When bt,i = 1, (49) simplifies to

ht,i ≥ η+
i (p̄t,i + s+

t,i − ϑt,ie
∆
i ) (50a)

ht,i ≥ 1
η−i

(p̄t,i + s+
t,i − ϑt,ie

∆
i )−M (50b)

and to make (50b) ineffective it is sufficient to impose

η+
i (p̄t,i + s+

t,i − ϑt,ie
∆
i ) ≥ 1

η−i
(p̄t,i + s+

t,i − ϑt,ie
∆
i )−M,

which is equivalent to

M ≥ ( 1
η−i
− η+

i )(p̄t,i + s+
t,i − ϑt,ie

∆
i ).

It is easy to see that M = ( 1
η−i
− η+

i )pmax
i satisfies this

requirement since

p̄t,i + s+
t,i − ϑt,ie

∆
i ≤ p̄t,i + s+

t,i + ϑt,ie
∆
i

≤ pmax
i ,

where the first inequality is due to ϑt,ie∆
i ≥ 0, and the second

inequality is due to (19a). A similar reasoning shows that the
same value of M is valid also the case bt,i = 0. Since, in
all practical cases, 1

η−i
− η+

i < 1, we can set M = pmax
i

in (49a) and (49b) to obtain (24b) and (24c), respectively,
thus concluding the proof.

APPENDIX III
PROOF OF COROLLARY 1

Since (24) is equivalent to

αk−aii (eµi + e∆
i ) + τ

k−1∑
t=ai

αk−1−t
i ht,i ≤ emax

i

ht,i = min
ηt,i∈{η+

i ,
1
η−i
}
ηt,i(p̄t,i + s+

t,i − ϑt,ie
∆
i )

≤ η+
i (p̄t,i + s+

t,i − ϑt,ie
∆
i )

the result trivially follows.

APPENDIX IV
PROOF OF PROPOSITION 2

Under Assumption 2, from (32) and (33) we can compute

edi+1,i = α
di−ai+1
i e0

i + τ

di∑
t=ai

α
di−t
i min

ηt,i∈Hi
ηt,ipt,i

and edi+1,i = α
di−di
i edi+1,i. To ensure edi+1,i ≥ e0

i + γi for
all possible values of the uncertain parameters, it is therefore
sufficient to require that

min
ai,di,e0i ,{ωt}t

{
α
di−di
i edi+1,i − e0

i

}
≥ γi.

Since the minimum over di ∈ [di, di] is achieved at di = di
due to edi+1,i > 0 and αi ∈ (0, 1] and edi+1,i and e0

i being
independent from di, the left hand side of the previous relation
is equal to

min
ai,e0i ,{ωt}t

{
α
di−di
i edi+1,i − e0

i

}
.
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Similarly to the proof of Theorem 1, under Assumption 1,
the left hand side of the previous relation is equivalent to

min
ai,e

0
i ,{ωt}t,

{ηt,i∈Hi}t

{(
αdi−ai+1
i − 1− τ

di∑
t=ai

αdi−ti ηt,iϑt,i

)
e0
i

+ τ

di∑
t=ai

αdi−ti ηt,i(p̄t,i + ϑt,ie
µ
i + s+

t,i [ωt]
+ − s−t,i [ωt]

−
)

}
.

(51)

Since αi ∈ (0, 1], di − ai + 1 > 0 as a consequence of
Assumption 2, and τ, ηt,i > 0, and ϑt,i ≥ 0, the coefficient
multiplying e0

i is always non-positive and hence the minimum
over e0

i is achieved at e0
i = eµi + e∆

i . Similarly, since
τ, ηt,i, αi > 0 and s+

t,i, s
−
t,i ≥ 0, the minimum over {ωt}t

is achieved at ωt = −1 for all t. Moreover, the minimum over
ai is achieved at ai since e0

i > 0 and αi ∈ (0, 1]. Substituting
the values of these minimizers in (51) yields

min
{ηt,i∈Hi}t

{(
α
di−ai+1
i − 1− τ

di∑
t=ai

αdi−ti ηt,iϑt,i

)
(eµi + e∆

i )

+ τ

di∑
t=ai

αdi−ti ηt,i(p̄t,i + ϑt,ie
µ
i − s

−
t,i)

}
,

which is equivalent to

(
α
di−ai+1
i − 1

)
(eµi + e∆

i ) + τ

di∑
t=ai

αdi−ti

× min
ηt,i∈Hi

ηt,i(p̄t,i − ϑt,ie∆
i − s−t,i), (52)

owing to independence of the minima across t. Since the
minimum over ηt,i is achieved at η+

i or 1
η−i

, then (28) is the
epigraphic reformulation of (52) ≥ γi and this observation
concludes the proof.

APPENDIX V
PROOF OF LEMMA 1

The function J̃(x) can be shown to be a convex function
of x as follows:

J̃(αx1 + (1− α)x2)

= E[J(αx1 + (1− α)x2, δ)]

=

∫
∆

J(αx1 + (1− α)x2, δ) dPδ

≤
∫

∆

(αJ(x1, δ) + (1− α)J(x2, δ)) dPδ

= α

∫
∆

J(x1, δ)dPδ + (1− α)

∫
∆

J(x2, δ)dPδ

= αE[J(x1, δ)] + (1− α)E[J(x2, δ)]

= αJ̃(x1) + (1− α)J̃(x2),

where the inequality is due to J(x, δ) being convex and
the monotonicity property of the integral with respect to the
measure Pδ .

APPENDIX VI
PROOF OF PROPOSITION 3

Given that, by (19c), pk,i = 0 for all k 6∈ [ai, di] (which
is non-empty under Assumption 2), recalling that eai,i = e0

i ,
and using (5), we can express edi+1,i as

edi+1,i = αdi−ai+1
i e0

i + τ

di∑
t=ai

α
di−t
i min

{
η+
i pt,i,

1
η−i
pt,i

}
.

Taking the expectation of the previous expression, using its
linearity property, and the independence between the random
variables granted by Assumption 1, we can compute

E[edi+1,i] = Edi [α
di
i ]Eai [α

−ai
i ]αEe0i [e

0
i ]

+ τ

di∑
t=ai

α
di−t
i Ee0,ωt

[
min

{
η+
i pt,i,

1
η−i
pt,i

}]
.

Defining ãi = − logαi E[α−aii ] and d̃i = logαi E[αdii ], we can
substitute E[α−aii ] = α−ãii and E[αdii ] = αd̃ii into the previous
expression and the desired result directly follows.
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