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An algorithm to engineer autonomous ballistic capture at Mars

Gianmario Merisio1, and Francesco Topputo2.

Current deep-space missions heavily count on ground-based operations. Although reliable, ground slots will sat-
urate soon, so hampering the current momentum in space exploration. EXTREMA, a project awarded an ERC
Consolidator Grant in 2019, enables self-driving spacecraft, challenging the current paradigm and aiming, among
others, at autonomously engineering ballistic capture. This work presents an autonomous ballistic capture algo-
rithm suitable for spacecraft with limited control authority and onboard resources. The algorithm is applied to
construct BC corridors at Mars, time-varying manifolds supporting capture that can be targeted far away from the
planet. The algorithm envisaged a novel methodology to generate families of ballistic capture orbits characterized
by succeeding capture epochs. The families are built by correcting in sequence the initial conditions of ballistic
capture orbits provided that they are enough regular. New orbits are obtained solving a well-posed three-point
boundary value problem exhibiting 8 boundary conditions. The conditions are linearized, and the problem is
solved for a finite set of variables with the multiple shooting technique. The computationally demanding problem
of finding ballistic capture orbits through stable sets manipulation is unburdened by just solving a linear system,
making the algorithm compatible with CubeSats onboard resources. An overview of the autonomous BC algorithm
and the details of the correction procedure are provided. The methodology is applied to generate families of orbits
belonging to capture sets C1

−1 and C6
−1 starting from the same baseline capture orbit. In both cases, the method

constructs sequences of initial conditions spanning more than 100 days. The algorithm performance is assessed
and its limitations are discussed. Results are inspected against the solar gravity gradient field to get insight about
how the methodology acts when it corrects a reference solution into a new capture orbit.

1 Introduction

The space sector is experiencing flourishing growth and
evidence is mounting that the near future will be charac-
terized by a large amount of deep-space missions [1–3].
In the last decade, CubeSats have granted affordable ac-
cess to space due to their reduced manufacturing costs
compared to traditional missions. At the present-day,
most miniaturized spacecraft has thus far been deployed
into near-Earth orbits, but soon a multitude of interplan-
etary CubeSats will be employed for deep-space missions
as well. However, the current paradigm for deep-space
missions strongly relies on ground-based operations. Al-
though reliable, this approach will rapidly cause satura-
tion of ground slots, hampering the current momentum
in space exploration.

EXTREMA (short for Engineering Extremely Rare
Events in Astrodynamics for Deep-Space Missions in Au-
tonomy) enables self-driving spacecraft, challenging the
current paradigm under which spacecraft are piloted in
the interplanetary space [4, 5]. Deep-space guidance,
navigation, and control (GNC) applied in a complex sce-
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nario is the subject of EXTREMA, which aims, among
others, to engineer ballistic capture (BC) in a totally
autonomous fashion [6, 7]. EXTREMA is erected on
three pillars. Pillar 1 is about autonomous navigation
[8–10]. Pillar 2 involves autonomous guidance and con-
trol [11, 12]. Pillar 3 deals with autonomous ballistic
capture (ABC), the focus of this work. The project has
been awarded a European Research Council (ERC) Con-
solidator Grant in 2019.

BC orbits are low-energy transfers that allow tem-
porary capture about a planet exploiting the natural
dynamics, thus without requiring maneuvers [13]. Com-
pared to Keplerian solutions, they are cheaper, safer, and
more versatile from the operational perspective at the
expense of longer transfer times. BC orbits are bounded
by the weak stability boundary (WSB) [13–16]. After
being initially conceived as a fuzzy boundary region in
the Sun–Earth–Moon system [17, 18], the WSB was al-
gorithmically defined in [19]. The definition was later
extended in [20–22]. A formal definition and a tech-
nique for its derivation were proposed in [23]. To date,
despite the effort put in numerous works [20, 24–27],
both WSB and BC are still not completely understood.
Nonetheless, a connection between celestial and quan-
tum mechanics was recently found exploiting the WSB
[28], providing a fresh perspective to tackle the problem.

Currently, two approaches are known for designing
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BC orbits: the technique stemmed from invariant man-
ifolds [26, 29], and the method based on stable sets ma-
nipulation [23, 30]. The former gives insights into the
dynamics but its application is limited to autonomous
systems (e. g., the circular restricted 3-body problem),
while the latter can be applied to more representative,
non-autonomous models, although being computation-
ally expensive [21, 31]. Lately, the variational theory for
Lagrangian coherent structures [32, 33], and the Taylor
differential algebra [34] were applied to derive BC orbits
and the WSB more efficiently [35, 36].

An overview of the ABC algorithm is provided. How-
ever, the primary goal of this work is to present a
novel methodology devised to generate families of BC
orbits characterized by succeeding capture epochs. The
problem of finding a new capture orbit at the desired
capture epoch correcting a known reference solution is
stated. Effort is put in making the method suitable for
autonomous spacecraft with limited onboard resources
(e. g., CubeSats). The flow expansion applied to tackle
the problem is discussed. The necessary boundary con-
ditions are explained individually. To compute new or-
bits, a three-point boundary value problem (3PBVP)
with linearized boundary conditions is solved with the
multiple shooting technique. Expanding the flow and
linearizing boundary conditions reduce the problem to
the solution of a linear system. Applying the multi-
ple shooting technique decreases the problem sensitivity.
Families are computed correcting in sequence the ini-
tial conditions of enough regular ballistic capture orbits.
The algorithm is applied to generate families of capture
orbits belonging to C1

−1 and C6
−1. Sequences of BC orbits

are computed starting from a baseline orbit selected for
its remarkable regularity. Performance and limitations
of the algorithm are discussed too. Finally, results are
inspected against streamlines of the solar gravity gradi-
ent in an effort to reveal the nature of the corrections
applied on the reference capture orbits.

The remainder of the paper is organized as follows.
In Section 2, the BC mechanism and the dynamical
model are introduced. Then, the methodology follows in
Section 3. Results are presented and discussed in Sec-
tion 4. Eventually, conclusions are drawn in Section 5.

2 Background

2.1 Ballistic capture mechanism

BC orbits are characterized by initial conditions (ICs)
escaping the target when integrated backward and per-
forming n revolutions about it when propagated forward,
neither impacting nor escaping the target. In forward
time, particles flying on BC orbits approach the target

coming from outside its sphere of influence (SOI) and
remain temporarily captured about it. After a certain
time, the particle escapes if an energy dissipation mecha-
nism does not take place to make the capture permanent.
To dissipate energy either a breaking maneuver or the
target’s atmosphere (if available) could be used [37, 38].

When searching for BC opportunities, most of the
trajectories found are spurious solutions which are typi-
cally not useful for mission design purposes [30]. Useful
solutions are detected exploiting the regularity index1

S and regularity coefficient ∆S% [40]. The aim is seek-
ing for ideal orbits that presents regular post-capture
legs resulting in n revolutions about the target which
are similar in orientation and shape. Numerical ex-
periments showed that high-quality post-capture orbits
are identified by small regularity index and coefficient
[30, 31, 39, 40]. If the regularity index and coefficient are
indicators used to qualitatively judge post-capture legs,
capture occurrence is quantitatively measured through
the capture ratio RC [31]. Typically, search spaces char-
acterized by larger capture ratio are desirable when look-
ing for BC orbits.

A particle stability is inferred using a plane in the
three-dimensional physical space [14], according to the
spatial stability definition provided in [30]. Based on its
dynamical behavior, a trajectory is classified as:

i) weakly stable (sub-setWi) if the particle performs i
complete revolutions around the target neither es-
caping nor impacting with it or its moons;

ii) unstable (sub-set Xi) if the particle escapes from
the target before completing the i-th revolution;

iii) crash (sub-set Ki) if the particle impacts the with
target before completing the i-th revolution;

iv) moon–crash (sub-set Mi) if the particle impacts
with one of the target’s moons before completing
the i-th revolution;

v) acrobatic (sub-set Di) if none of the previous con-
ditions occurs within the integration time span.

Conditions ii)-v) apply after the particle performs (i−1)
revolutions around the target. The sub-sets are defined
for i ∈ Z\{0}, where the sign of i informs on the prop-
agation direction. If i > 0 (i < 0), then the IC is prop-
agated forward (backward) in time. A capture set is
defined as Cn−1 := Wn ∩ X−1. Therefore, it is the in-
tersection between the weakly stable (also referred to as
stable throughout the manuscript) set in forward time
Wn and the unstable set in backward time X−1 [30].

1In previous works this was referred to as stability index
[30, 31, 39]. However, in [40], the adjustment from stability
to regularity index was proposed to avoid misunderstandings
with the periodic orbit stability index. The same nomencla-
ture introduced in [40] is used in this work.
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2.2 Dynamical model
According to the nomenclature introduced in [30], a tar-
get (also referred to as central body) and a primary are
defined. The target being the body around which the
motion of the spacecraft is studied (Mars in this work),
and the primary being the body around which the target
revolves (the Sun). Target and primary masses are mt

and mp, respectively.

2.2.1 Reference frames

In this work, the following reference frames are used:
J2000, ECLIPJ2000, and RTN.

J2000. Defined on the Earth’s mean equator and
equinox, the J2000 is an inertial frame determined from
observations of planetary motions that was realized to
coincide almost exactly with the International Celes-
tial Reference Frame (ICRF) [41]. Equations of motion
(EoM) are integrated in this reference frame.

ECLIPJ2000. This is an inertial frame built-in in
SPICE that is defined on the ecliptic coordinates and
based on the J2000 inertial frame. The origin of the
ECLIPJ2000 frame can be chosen arbitrarily.

RTN@ti. The radial-tangential-normal of date frame
(RTN) is an inertial frame frozen at a prescribed epoch
ti. The frame is centered at the target. The x-axis is
aligned with the primary–secondary direction, the z-axis
is normal to the primary–secondary plane in the direc-
tion of their angular momentum, and the y-axis com-
pletes the dextral orthonormal triad. ICs are defined in
this frame [31].

2.2.2 Ephemerides

Precise states of the Sun and major planets are retrieved
from the Jet Propulsion Laboratory (JPL)’s planetary
ephemerides de440s.bsp1 (or DE440s) [42]. Addition-
ally, the ephemerides mars097.bsp of Mars (the tar-
get) and its moons are employed2. The following generic
leap seconds kernel (LSK) and planetary constants ker-
nel (PCK) are used: naif0012.tls, pck00010.tpc,
and gm_de432.tpc3.

1Data publicly available at: https://naif.jpl.nasa.
gov/pub/naif/generic_kernels/spk/planets/de440s.bsp
[retrieved Sep 2, 2022].

2~/spk/satellites/mars097.bsp [retrieved Sep 2, 2022].
3Data publicly available at: https://naif.jpl.nasa.
gov/pub/naif/generic_kernels/lsk/naif0012.tls, and ~/
generic_kernels/pck/pck00010.tpc [retrieved Sep 2, 2022].
The gm_de440.tpc PCK kernel was written from scratch,
courtesy of Dr. C. Giordano, because the new version con-

Table 1: Assumed spacecraft specifications.

Specification Symbol Value

Mass m 24 kg
SRP area A 0.32 m2

Coefficient of reflectivity Cr 1.3

2.2.3 Equations of motion

The equations of motion (EoM) used are those of the re-
stricted N -body problem. The gravitational attractions
of the Sun, Mercury, Venus, Earth (B4), Mars (central
body), Jupiter (B), and Saturn (B) are considered. Ad-
ditionally, solar radiation pressure (SRP) is also included
and implemented as a cannonball (or spherical) model
[43]. The assumed spacecraft specifications needed to
evaluate the SRP perturbation are collected in Table 1.
They are compatible with the specifications of a 12U
deep-space CubeSat [44].

The EoM, written in a non-rotating Mars-centered
reference frame, are [6, 30]

r̈=−µt
r3 r−

∑
i∈P

µi

(
ri
r3
i

+ r−ri
‖r−ri‖3

)
+QA

m

r−r�
‖r−r�‖3 (1)

where µt is the gravitational parameter of the target
body; r is the position vector of the spacecraft with re-
spect to the target and r is its magnitude; P is a set
of N − 2 indexes each referring to a perturbing body;
µi and ri are the gravitational parameter and position
vector with respect to the target of the ith body, re-
spectively; A is the Sun-projected area on the space-
craft for SRP evaluation; m is the spacecraft mass;
r� is the position vector of the Sun with respect to
the target. Lastly, Q = LCr

4πc , where Cr is the space-
craft reflectivity coefficient, c = 299 792 458 m s−1 is the
speed of light in vacuum from SPICE [45, 46], and
L = S�4πd2

AU is the Sun luminosity computed from
the solar constant5 S� = 1367.5 W m−2 evaluated at
dAU = 149 597 870 613.6889 m = 1 AU.

2.2.4 Numerical integration of the EoM

[30]. Nondimensionalization units are reported in Ta-
ble 2. For point-wise simulations, the numerical inte-
gration is carried with the DOPRI8 propagation scheme
[47]. It is an adaptive step, 8th-order Runge–Kutta inte-
grator with 7th-order error control, the coefficients were
derived by Prince and Dormand [48]. The dynamics are
propagated setting the relative tolerance to 10−12 [30].

sistent with ephemerides DE440s has not been released yet.
4Here B stands for barycenter.
5https://extapps.ksc.nasa.gov/Reliability/Documents/
Preferred_Practices/2301.pdf [last accessed Sep 2, 2022].
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Table 2: Nondimensionalization units.

Unit Symbol Value Comment

Gravity parameter MU 42 828.376 km3 s−2 Mars’ gravity parameter µt
Length LU 3396.0000 km Mars’ radius R

�

Time TU 956.281 42 s (LU3/MU)0.5

Velocity VU 3.551 255 8 km s−1 LU/TU

Figure 1: ABC algorithm flowchart.

3 Methodology

Present-day approaches to search for BC orbits are com-
putationally demanding. They are not suitable for on-
board implementation, this applies especially to the case
of autonomous spacecraft with limited resources. In this
work, we introduce an ABC algorithm tailored for space-
craft with reduced computational capability and that
could potentially see the implementation onboard of in-
terplanetary autonomous CubeSat. An overview about
the ABC algorithm and the details on how to tackle the
problem of generating new capture orbits directly on-
board of CubeSats are provided in what follows.

3.1 ABC algorithm

The flowchart in Figure 1 gives and overview of the ABC
algorithm. The algorithm is composed by two major
segments. The first is carried out on ground and aims to
prepare a ballistic capture corridor (BCC) database [6]
that is necessary for the second part of the procedure.
The second segment is carried out on board and foresees
the CubeSat (or a spacecraft in general) computing new
BC sets from which desired BCCs are developed [6]. The
onboard computation of new capture sets at succeeding
capture epochs is made possible by solving a sequence
of 3PBVPs. Starting from the IC of a known BC orbit,
the state is sequentially corrected both in forward and
backward times to derive the ICs of new orbits at the
desired capture epochs. The new solutions exhibit the
same qualitative dynamical behavior and are similar in
shape to the original capture orbit but they are shifted in
time. To be successful, the method requires as starting
point an enough regular baseline capture orbit.

3.2 Problem statement
Provided that an enough regular BC orbit is known, then
the primary goal of the ABC algorithm is to derive a
modified IC at a desired capture epoch that retains the
dynamical behavior of the original BC orbit. This means
that the known reference IC (x̂0, t̂0) ∈ Cn−1 is corrected
into a new IC (x0, t0) ∈ Cn−1. The related orbits are
defined as follows:

Definition. Let (x0, t0) ∈ R6×R and ϕ(x0, t0; t) be the
starting point and the solution at time t, respectively, of
the Cauchy problem{

ẋ = f(x, t)
x(t0) = x0

, (2)

then the related trajectory γ is defined as

γ(x0, t0) := {ϕ(x0, t0; t) ∀ t ∈ R}. (3)

In Equation (2), the first relation is the state space
representation of the EoM in Equation (1). Under such
dynamics, the orbits γ(x̂0, t̂0) and γ(x0, t0) are necessar-
ily different because the problem is non-autonomous and
δt0 = t0 − t̂0 6= 0. Throughout the manuscript, γ(x̂0, t̂0)
and (x̂0, t̂0) are also referred to as reference BC orbit
and IC, respectively. On the other hand, γ(x0, t0) and
(x0, t0) are indicated as corrected or new BC orbit and
IC, respectively. In mathematical terms, our problem
can be thus stated as follows:

Problem. Find a modified initial condition x0 at a
given time t0 such that γ(x0, t0) retains the dynamical
behavior of γ(x̂0, t̂0). In particular, if (x̂0, t̂0) ∈ Cn−1 and
γ(x̂0, t̂0) is a ballistic capture orbit, then x̂0 shall be cor-
rected into x0 such that (x0, t0) ∈ Cn−1 and γ(x0, t0) is a
ballistic capture orbit.

The methodology devised to tackle this problem en-
visages five steps:

1. expansion of the flow ϕ(x0, t0; tf ) about the refer-
ence solution γ(x̂0, t̂0) at final forward time tf > t0,
after the particle has performed n revolutions about
the target, so satisfying condition (x0, t0) ∈ Wn;

2. expansion of the flow ϕ(x0, t0; tb) about the ref-
erence solution γ(x̂0, t̂0) at final backward time
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Figure 2: Representation of flow expansion.

tb < t0, when the particle escapes from the target,
so satisfying condition (x0, t0) ∈ X−1;

3. specification of enough boundary conditions to well-
pose the 3PBVP [49];

4. linearization of nonlinear boundary conditions;
5. solution of the 3PBVP through multiple shooting.

This is the core part of a larger algorithm where a num-
ber Np of 3PBVPs are solved in sequence to compute a
new family of BC orbits at subsequent capture epochs.
Provided that the time step δt0 is small enough, the new
BC orbit γ(x0, t0) is expected to be similar to the refer-
ence one. Consequently, the boundary conditions can be
linearized about the reference BC orbit γ(x̂0, t̂0). This
linearization is beneficial for two reasons: i) it makes
boundary conditions consistent with the flow expansion;
ii) the problem becomes completely linear, so solving the
3PBVP requires just a matrix inversion.

The notation used throughout the manuscript is
herewith introduced. A 3-dimensional vector is indi-
cated as a = [a b c]>, its magnitude as a = ‖a‖. Ref-
erence quantities are written with a hat as â, and the
following relation holds a = â + δa. The position vec-
tor is r = [x y z]>, the velocity vector is v = [ẋ ẏ ż]> =
[vx vy vz]>, the state space vector is x =

[
r> v>

]>, and
the angular momentum is h = r× v = [r∧] v, where the
skew-symmetric matrix [a∧] is defined as

[
a∧
]

:=

 0 −c b

c −0 −a
−b a 0

 . (4)

According to previous remarks, r0 = r̂0 + δr0, v0 =
v̂0 + δv0, and h0 = ĥ0 + δh0. In first approxima-

tion, δh = r × δv − v × δr = [r∧] δv − [v∧] δr. Fi-
nally, the 20-dimensional vector z is defined as z =[
x>0 x>f x>b tf tb

]>.
3.3 Flow expansion
The Taylor expansion truncated at the first order of the
flow ϕ(x0, t0; tf ) is

ϕ(x0, t0; tf ) = ϕ(x̂0 + δx0, t̂0 + δt0; t̂f + δtf ) ≈

≈ ϕ(x̂0, t̂0; t̂f ) + ∂ϕ

∂x0
δx0 + ∂ϕ

∂t0
δt0 + ∂ϕ

∂tf
δtf

(5)

where the partial derivatives are

∂ϕ

∂x0
= Φ(x0, t0; tf ) = Φ

tf
t0 ,

∂ϕ

∂t0
= −Φtf

t0 f(xf , tf ),

∂ϕ

∂tf
= f(xf , tf ).

(6)

(7)

(8)

They are evaluated at (x̂0, t̂0; t̂f ). Φ is the state transi-
tion matrix [50]. The derivative in Equation (7) is com-
puted according to [51]. Hence, the expansion becomes

δϕf ≈ Φ
t̂f

t̂0
δx0 −Φ

t̂f

t̂0
f(x̂f , t̂f )δt0 + f(x̂f , t̂f )δtf (9)

where δϕf = ϕf − ϕ̂f = ϕ(x0, t0; tf ) − ϕ(x̂0, t̂0; t̂f ).
Similarly, the Taylor expansion truncated at the first
order of the flow ϕ(x0, t0; tb) is

δϕb ≈ Φ
t̂b
t̂0
δx0 −Φ

t̂b
t̂0

f(x̂b, t̂b)δt0 + f(x̂b, t̂b)δtb (10)

where δϕb = ϕb−ϕ̂b = ϕ(x0, t0; tb)−ϕ(x̂0, t̂0; t̂b). Over-
all, Equations (9) and (10) provide 12 relations. Given
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δt0 = t0 − t̂0, 20 terms still remain unknown. They are
δx0, δϕf = δxf , δtf , δϕb = δxb, and δtb. Therefore, 8
boundary conditions must be specified to well-pose the
problem. To better clarify, Figure 2 proposes a repre-
sentation of the flow expansion on the tx-plane. For
the sake of simplicity, the 6-dimensional state space x is
represented as 1-dimensional in Figure 2.

3.4 Boundary conditions

The necessary 8 boundary conditions are obtained as
follows. Firstly, 3 relations (1 vector and 2 scalar equa-
tions) are enforced at capture epoch (at initial time t0).
Then, other 3 are imposed after n revolution about the
target (at final forward time tf ). Finally, 1 condition
is prescribed at the escape (at final backward time tb).
They are individually discussed in the next paragraphs.

Boundary condition i0) The IC x0 belongs to a cer-
tain orbital plane at t0 (defined in the RTN@t0 frame).
It is required that the new IC belongs to the same plane
but defined at time t0 + δt0. This is to follow Mars in
its orbital revolution. In mathematical terms

hRTN@(t0+δt0)
0 = ĥRTN@t0

0 . (11)

Linearizing Equation (11), a more compact expression is
obtained

M1z + b1 = 0 (12)

where only the first 2 rows in Equation (11) are retained
because the last relation is not linearly independent.

Boundary condition ii0) The new IC shall be a peri-
center. This is translated into

r0 · v0 = 0, (13)

a scalar equation that once linearized gives

m>2 z + b2 = 0. (14)

Boundary condition iii0) The new IC is enforced to
have osculating orbital elements with eccentricity e0 =
ê0, so meaning δe0 = 0. Since θ0 = 0, that is done
exploiting the two-body problem orbit equation

‖r0‖ = h0 · h0

µt(1 + e0) = h0 · h0

µt(1 + ê0) . (15)

Once linearized, it provides the following scalar relation

m>3 z + b3 = 0. (16)

Boundary condition if) The final state shall per-
form the nth revolution about the central body. Math-
ematically, that is translated into

rf · v0 = 0. (17)

As it is written, the boundary condition only enforces
that a revolution is completed at epoch tf . Conse-
quently, the boundary condition cannot assure that ex-
actly n revolutions are performed. However, the correct
number of revolutions is achieved because the new so-
lution is expected to be similar to the reference one for
small enough δt0. After linearization, the boundary con-
dition becomes

m>4 z + b4 = 0. (18)

Boundary condition iif) The Keplerian energy at fi-
nal forward time of the new ballistic capture orbit shall
be equal to the final Keplerian energy of the reference
final state. This is enforced to preserve capture in for-
ward time, that is (x0, t0) ∈ Wn. The scalar condition
reads

vf · vf
2 − µt

‖rf‖
= v̂f · v̂f

2 − µt
‖r̂f‖

, (19)

then linearized as

m>5 z + b5 = 0. (20)

Boundary condition iiif) The variation on the final
eccentricity magnitude ef = êf + δef shall be null, then
δef = 0. Hence, the condition can be written as

ef · ef = êf · êf . (21)

Substituting e = v× h
µt
−r
r
and linearizing, the following

expression is derived

m>7 z + b7 = 0. (22)

Boundary condition ib) The Keplerian energy at
the final backward time of the new ballistic capture or-
bit shall be equal to the final Keplerian energy of refer-
ence final state. This is enforced to preserve escape in
backward time, which means (x0, t0) ∈ X−1. Similarly
to Equation (19), the condition is expressed as

vb · vb
2 − µt

‖rb‖
= v̂b · v̂b

2 − µt
‖r̂b‖

, (23)

and once linearized reads

m>6 z + b6 = 0. (24)
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3.5 3PBVP solved through multiple shooting
A 3PBVP [53, 54] consists in finding x0, t ∈ [tb, tf ] with
tb ≤ t0 ≤ tf , such that

ẋ = f(x, t), g(x(tb),x(t0),x(tf )) = 0. (25)

The first equation is the state space representation of
Equation (1), while function g specifies eight boundary
conditions needed to well-pose the problem [49]. Ac-
cording to the multiple shooting approach, the problem
presented in Equation (25) can be solved for a finite set
of variables [54, 55].

In multiple shooting, the solution is discretized over
m and l grid points in forward and backward time, re-
spectively. In forward time, the discretization is t0 <

t1 < · · · < tm−1 = tf , so meaning sj = x(tj) = xj
with j = 1, 2, . . . ,m − 1. In backward time, it is
tb = t1−l < · · · < t−1 < t0, that is sk = x(tk) = xk
with k = −1,−2, . . . , 1 − l. The discretized solution at
initial time is s0 = x(t0) = x0, the one at final forward
time is sm−1 = x(tf ) = xf , and that at final back-
ward time is s1−l = x(tb) = xb. Consequently, m − 1
and l− 1 segments are defined in forward and backward
time, respectively, in which a 3PBVP is solved by en-
forcing continuity of the solutions at both ends. The
advantage of the multiple shooting is to reduce sensitiv-
ity by shortening the duration of the original problem.
The defect vectors are

ζj =ϕ(sj−1, tj−1; tj)−sj , tj = t0+j tm−1 − t0
m− 1 ,

ζk=ϕ(sk+1, tk+1; tk)−sk, tk= t0−k
t1−l − t0
l − 1 ,

(26)

with j = 1, . . . ,m − 1 and k = −1, . . . , 1 − l. The de-
fects ζj = ζj(sj−1, sj , tm−1) and ζk = ζk(sk+1, sk, t1−l)
depend on tm−1 and t1−l through the relations in Equa-
tion (26) [51]. The new problem is to determine sj , sk,
s0, tm−1, and t1−l such that

g(s0, sm−1, s1−l, tm−1, t1−l) = 0,
ζj = 0, j = 1, . . . ,m− 1,
ζk = 0, k = −1, . . . , 1− l.

(27)

In Equation (27), there are 6(m + l − 1) + 2 unknowns
and 6(m + l − 2) + 8 equations (8 boundary conditions
and 6(m+ l − 2) defect constraints).

The complete set of 8 linearized boundary conditions
form a linear system that in matrix form reads

ḡ(z) = Mz + bm = 0 (28)

where z is the variable matrix previously defined in Sec-
tion 3.2. The coefficient matrix M and constant matrix
bm are constructed as follows

M =
[
M>

1 m2 m3 m3 m4 m5 m6 m7
]>
,

bm =
[
b>1 b2 b3 b4 b5 b6 b7

]>
.

(29)

(30)

Defects ζj and ζk can be expressed in matrix form as

ζ = D s + bd = 0. (31)

Eventually, the full system of 6(m+l-2)+8 equations is
built by combining Equations (31), and (28). It reads

As = b (32)

where the coefficient, variable, and constant matrices are

A =
[

D
M(:,1:6) 0 M(:,7:12) 0 M(:,13:20)

]
,

s =
[
s>0 s>1 · · · s>m−1 s>−1 · · · s>1−l tm−1 t1−l

]>
,

b = −
[
b>d b>m

]>
.

(33)

(34)

(35)

3.6 Generation of BC orbit family

The algorithm to generate a family of BC orbits is here-
with discussed. First of all, an enough regular BC orbit
γ(x∗0, t∗0) ∈ Cn−1 is chosen. Such orbit is referred to as
baseline and it is used as seed to generate the whole
family of new BC orbits. Then, the desired number of
revolutions n, the desired capture epoch increment δt0,
and the desired sequence length in terms of steps num-
ber Np are defined. If δt0 > 0 (< 0), then the family
is built in forward (backward) time. Before solving the
sequence of 3PBVPs, the baseline starting point (x∗0, t∗0)
is checked to grant capture and belong to Cn−1.

Next, the sequence of 3PBVPs is solved. The num-
ber of forward points m is set equal to the number of
revolutions n about the target plus 1. In this way, the
number of forward segments equals the revolutions. The
number of backward points l is set equal to 2, such that
the escape leg is fully covered in one segment. Later, a
loop iterating from 1 to Np is performed. In the first
iteration, the reference solution is set equal to the base-
line one. For each iteration, the new capture epoch is
updated to t0 = t̂0 + δt0, and the coefficient matrix A
and constant matrix b are computed from the current
reference solution γ(x̂0, t̂0). The linear system in Equa-
tion (32) is solved, and the new BC IC (x0, t0) is ex-
tracted from the variable s. The set of nonlinear bound-
ary conditions i0), ii0), ii0) are enforced on (x0, t0). This
is suggested because boundary conditions may not be ex-
actly satisfied due to linearization and numerical noise.

If a new BC orbit is found, then results are stored,
the current solution becomes the reference one, and the
loop proceeds to the next iteration. Conversely, if the
methodology fails and the current solution is not a cap-
ture orbit, then the loop is stopped. Eventually, results
are saved for post-processing. The detailed procedure to
generate a family of BC orbits is found in Algorithm 1.
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Algorithm 1: Generation of BC orbit family.

Procedure Initialization
Define baseline capture epoch t∗0;
Define baseline BC orbit IC x∗0;
Define revolutions number n of capture set Cn−1;
Define capture epoch increment δt0; . if δt0 > 0 (< 0) then forward (backward) generation
Define 3PBVPs sequence number of steps Np;

Procedure Compute first BC orbit
Solve BC problem for (x∗0, t∗0) based on WSB algorithmic definition [30]; . done with GRATIS [52]
If (x∗0, t∗0) /∈ Cn−1 . baseline IC (x∗0, t∗0) not suitable, not a BC orbit

Return;
End

Procedure Solve sequence of 3PBVPs
Set number of forward points m = n+ 1; . a segment for each revolution
Set number of backward points l = 2; . only 1 segment for escape leg
Set reference starting point (x̂0, t̂0) = (x∗0, t∗0);
While i ≤ Np

Update new capture epoch t0 = t̂0 + δt0;
Build matrix M and vector bm of linearized boundary conditions ḡ(z) = 0; . see Equation (28)
Build matrix D and vector bd of defects constraints ζ(s) = 0; . see Equation (31)
Build matrix A and vector b of multiple shooting; . see Equation (32)
Solve linear system As = b for variable s;
Extract (x0, t0) from variable vector s;
Enforce boundary conditions i0), ii0), ii0) on (x0, t0); . see Equations (11), (13), and (15)
Solve BC problem for (x0, t0) based on WSB algorithmic definition [30]; . done with GRATIS [52]
If (x0, t0) ∈ Cn−1 . found new BC orbit, 3PBVP solved successfully

Store results (x(i)
0 , t

(i)
0 ) = (x0, t0);

Update reference capture epoch t̂0 = t0;
Update reference BC orbit IC x̂0 = x0;
Increment loop counter i = i+ 1;

Else . failed to solve current 3PBVP
Save number of new orbits computed NBC = i− 1;
Break the loop;

End
End
Save results;

Exit
Result: Family of new BC orbits having ICs (x(i)

0 , t
(i)
0 ) ∀ i = 1, 2, . . . , NBC.

4 Results

The methodology presented in Section 3 is now applied
to build two families of BC orbits. The first is a family
of orbits belonging to C1

−1 while the second to C6
−1. The

families have been built starting from the same baseline
capture orbit. The procedure in Algorithm 1 is carried
out twice per family, firstly in forward and then in back-
ward direction. The two resulting families have been uni-
fied to make a unique, larger family with two branches
stemming from the baseline capture orbit γ(x∗0, t∗0).

4.1 Baseline BC orbit
The baseline BC sets C1

−1 and C6
−1 are defined in the

Mars-centered RTN frame at baseline capture epoch

t∗0 = 0 days set to 09 DEC 2023 12:00:00.00 (UTC).
At that epoch, Mars’s true anomaly with respect to
the Sun is approximately equal to 270 deg, maximiz-
ing Rc [31]. The selected plane is defined by incli-
nation i∗0 = 0 deg, and right ascension of the ascend-
ing node Ω∗0 = 0 deg. Sought trajectories have oscu-
lating eccentricity e∗0 = 0.99 [13], and true anomaly
θ∗0 = 0 deg at the initial epoch t∗0. If R

�
is the ra-

dius of Mars in km, then the search space on the plane
defined above is a circular crown centered at Mars,
from radius R

�
+ 100 km up to radius 10R

�
. Hence,

(r∗p0, ω
∗
0) ∈

[
R
�

+ 100 km, 10R
�

]
× (0, 360] deg with r∗p0

the pericenter radius, ω∗0 the argument of the pericenter,
and grid size set to [339× 360].

The baseline BC orbit has been chosen based on
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Figure 3: Capture sets at epoch t∗0 = 0 days set to 09 DEC 2023 12:00:00.00 (UTC). Regularity index S of branches
developing the interior BCC. In gray, branches developing the exterior BCC. Nondimensional coordinates on the
orbital plane i∗0 = Ω∗0 = 0 deg defined in the Mars-centered RTN@t∗0 frame. Selected baseline capture orbit marked
with red triangle. Left: Capture set C1
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−1.
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Figure 4: Baseline BC orbit at capture epoch t∗0 = 0 days set to 09 DEC 2023 12:00:00.00 (UTC). Pre-capture
and post-capture legs represented as purple dotted and blue solid lines, respectively. Nondimensional coordinates
in the Mars-centered ECLIPJ2000 frame, xy-plane views. Out of plane motion small but not null. Left: Capture
orbit C1

−1. Right: Capture orbit C6
−1.

its regularity. By visual inspection of capture sets C1
−1

and C6
−1 plots, a regular orbit (small regularity index S)

present in both sets has been selected. Such plots are
shown in Figure 3, where interior and exterior corridor
branches are highlighted too [6]. The baseline BC or-
bit is marked with a red triangle and has coordinates
(r∗p0, ω

∗
0) = (2.35R

�
, 288 deg). The baseline capture or-

bit is presented in Figure 4. The two orbits shown are
propagated starting from the same IC, however their
number of revolutions is different. In the chart on the
left, the post-capture leg is limited to the 1st revolu-
tion. Differently, the post-capture leg of the orbit rep-
resented on the right goes on up to the 6th revolution.
EoM are written in the 3-dimensional space, however
only the xy-plane is shown in Figure 3 and no clues are

provided about the out of plane motion. This is done for
visualization purposes. Indeed, the out of plane motion
is small (but not null) in the ECLIPJ2000 frame and
top-views allow a better understanding of the particle
motion. The remark applies also to the next plots.

4.2 Families of BC orbits

The family of BC orbits belonging to C1
−1 has been con-

structed setting n = 1, δt0 = ±5 days, and Np = 30. On
the other hand, the family of orbits belonging to C6

−1

has been constructed setting n = 6, δt0 = ±2 days, and
Np = 75. The time step of family C6

−1 is smaller com-
pared to family C6

−1 because of the greater difficulty for
the algorithm in completing the sequences of 3PBVPs
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Figure 5: Families of BC orbits generated with Algorithm 1. The black solid and dotted lines represents the forward
and backward sequences, respectively. Families overlapped on a collection of capture set branches developing the
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capture sets C6
−1. Bottom-right: Magnification C6

−1.

as the number of revolutions n increases. In the best
case, the algorithm would return two families covering
300 days, from t∗0−150 to t∗0 +150 days. Algorithm 1 has
been applied two times per family, once in forward and
once in backward direction. In doing so, two sequences
of orbits have been obtained for each distinct family that
have been later combined.

Results are shown in Figure 5, where the families of
BC orbits are drawn. Forward and backward sequences
are represented with black solid and dotted lines, respec-
tively. They are overlapped on a collection of capture set
branches developing the interior BCC. The plotted sets
span capture epoch from t∗0 − 150 days up to t∗0 + 150
days. Information about the regularity of solutions is
expressed through color shading. A color code is used to
highlight the generated orbits (marked with triangles)
having the same capture epochs of the reported cap-

ture sets. To enhance visualization of the region close to
Mars, two magnifications are shown on the right hand
side of Figure 5.

About family C1
−1 (plots on the top of Figure 5), the

methodology successfully completed 27 steps in the for-
ward direction, so reaching +135 days after the baseline
capture epoch t∗0. In backward direction, the algorithm
never failed and completed all 30 steps, so providing so-
lutions up to −150 days, before t∗0. Overall, the baseline
solution has been extended for 285 days. The forward
sequence failed in correspondence of the discontinuity
located on the edge of the capture set branches charac-
terized by larger regularity indexes (lighter branches).

Regarding family C6
−1 (plots on the bottom of Fig-

ure 5), 47 and 16 steps have been successfully completed
in the forward and backward directions, respectively. As
a result, the algorithm provided solutions for 126 days,
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up to +94 days in the forward direction and −32 days
in the backward one.

The algorithm performed better for family C1
−1 than

for family C6
−1, even though a smaller time step δt0 has

been used for the second one. The reason could be found
in the shape and size of capture sets. Indeed, sets C1

−1 are
wide and dense, while sets C6

−1 are small and sparse. In
particular, the sparsity of sets C6

−1 represents and harsh
obstacle to vercome for the algorithm, so preventing the
successful completion of the full sequence.

Selected BC orbits are plotted in Figure 6. They are
the members of the families corresponding to the sets
shown in Figure 5. The same color code of Figure 5 ap-
plies to Figure 6. As expected, orbits of the same family
are really similar in shape. They are rotated about the

target due to the revolution of central body about the
Sun. The baseline BC orbit is colored in purple and is
the same of Figure 4. Mars SOI is also represented for
reference, its radius is RSOI = 170R

�
.

The families of BC orbits are now studied in more
details. In particular, the distance from the central body
and the Keplerian energy are considered of interest. In
Figs. 7 and 8, pre-capture and post-capture legs are
drawn as dotted and solid lines, respectively. The curves
are colored as the corresponding capture orbits shown in
Figure 6. The color code is that of Figure 5.

The evolution of distances of the families is presented
in Figure 7. As clearly shown by the plots, orbits of both
families cross Mars SOI multiple times during the tem-
porary capture. Furthermore, at the escape point, all
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orbits have already crossed the SOI, therefore the escape
from Mars is always triggered by the zero crossing of the
Keplerian energy. Most orbits fly far from Mars surface
and all orbits shown in Figure 7 never cross the Exo-
sphere limit located at an altitude of 230 km. However,
some solutions fly very close to that limit. Specifically,
the ones generated after t∗0 + 100 days, which are those
succeeding the light blue curve in left plot of Figure 7.
These are orbits whose ICs are close to the previously
mentioned discontinuity located near the edge in the less
regular (ligther) branches of the capture sets shown in
Figure 5. The last orbit of the forward sequence is the
one that performs the closest passage to Mars. At the
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epochs spanning from t∗0−150 to t∗0 +150. Baseline cap-
ture epoch t∗0 = 0 days set to 09 DEC 2023 12:00:00.00
(UTC). ICs od BC orbits at peculiar epochs marked by
triangles. The color code is that of Figure 5. Nondi-
mensional coordinate in the Mars-centered ECLIPJ2000
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next step, the algorithm fails because the computed so-
lution falls in the crash set K1, thus impacting with the
target instead of preserving the weakly stable nature of
the current reference orbit γ(x̂0, t̂0).

The Keplerian energy trend is plotted in Figure 8.
As already observed while commenting Figure 7, it is
the Keplerian energy that triggers the escapes of all or-
bits. In fact, the Keplerian energy is always zero at the
beginning of all pre-capture legs. Except for some occa-
sional behaviors, the trend of Keplerian energy is quite
similar for all the orbits of the same family even though
shifted in time. This is akin the observation made on
orbit shapes and distances from the target.

4.3 Inspection against solar gravity gradient
To better understand why a reference solution is cor-
rected into a specific new capture orbit according to the
methodology described in Section 3, the family of orbits
are inspected against the solar gravity gradient. The so-
lar gravity gradient is computed according to [16, 38].
Specifically, the first order Taylor expansion about the
origin (corresponding to Mars center) of the Sun grav-
itational attraction have been evaluated on the domain
of interest. The goal of this analysis is to identify some
visible patterns or connections to shed some light on why
and how the method works.

Figure 9 shows an example of this analysis, where
streamlines of the solar gravity gradient are shown on
the background of the baseline capture sets C1

−1 and C6
−1.

Results are represented in the Mars-centered RTN@t∗0
frame. As a consequence, the Sun direction is aligned
with the −x direction. Results match those already re-
ported in the literature.

In Figure 10, the evolution of solar gravity gradi-
ent streamlines at peculiar capture epochs are compared
against the families of BC orbits. Results are plotted in
the Mars-centered ECLIPJ2000 frame. The color code
is akin that of Figure 5. Sun directions corresponding to
peculiar capture epochs are also reported near the origin
of the reference system. Easily recognizable patterns or
connections between orbit families and streamlines of the
solar gravity gradient are not identified. Consequently,
further investigation is necessary to reveal why BC orbit
families are constructed along distinctive paths.

5 Conclusion

This work provides and overview of the autonomous bal-
listic capture algorithm. Specifically, it focuses on the
method developed to generate families of ballistic cap-
ture orbits having succeeding capture epochs. The fun-
damental problem of correcting the initial condition of a

reference capture orbit, which solution is required for the
successful application of the algorithm, has been stated
and discussed. The approach to tackle the problem has
been explained. Attention has been given to steps in-
cluding the flow expansion, the definition of the 8 neces-
sary boundary conditions, and their linearization. Then,
a three-point boundary value problem has been formu-
lated and solved with the multiple shooting technique.
As a result, a linear system has been obtained. Once
solved, it provides the initial condition of a new BC or-
bits. Therefore, families of capture orbits can be easily
generated by solving a sequence of linear systems, so re-
ducing the computational burden typically required for
finding ballistic capture orbits via usual approaches.

The algorithm has been proven successful in the gen-
eration of two families of orbits belonging to capture sets
C1
−1 and C6

−1. Based on the results, the algorithm per-
forms better when the revolutions number n is small. For
n = 1, the method works smoothly and long sequences
of BC orbits are built even for large time steps δt0. Con-
versely, for many revolutions, the method finds difficult
to build long sequences of orbits due to the smallness and
sparsity typical of capture sets exhibiting many revolu-
tions about the target. The issue is mitigated by us-
ing a small time step δt0. Nevertheless, the algorithm
has been capable of constructing sequences of solutions
spanning more than 100 days for both families. Shape,
distance, and Keplerian energy of orbits have been stud-
ied, proving that the method effectively finds solutions
really close to each other, even over large time spans.

The effectiveness in generating wide families of cap-
ture orbits, both for few and many revolutions, and the
limited computational complexity opens the possibility
to the onboard implementation of the algorithm, even
for limited platforms like CubeSats. Future work will
be focused on developing the remaining parts of the au-
tonomous ballistic capture algorithm, and testing the al-
gorithm firstly in a processor-in-the-loop and then in a
hardware-in-the-loop simulation on relevant equipment.

Acknowledgments

G.M. would like to thank the Agenzia Spaziale Ital-
iana (ASI) and the Space Generation Advisory Council
(SGAC) for the financial support granted to attend the
20th Space Generation Congress (SGC) and the 73rd
International Astronautical Congress (IAC). This work
has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant Agreement
No. 864697).

IAC-22,C1,9,10,x73057 Page 13 of 16



73rd International Astronautical Congress (IAC), Paris, France, 18-22 Semptember 2022.
Copyright ©2022 by G. Merisio. Published by the IAF, with permission and released to the IAF to publish in all forms.

Bibliography

[1] S Bandyopadhyay, R Foust, G P Subramanian, S-J
Chung, and F Y Hadaegh. Review of formation fly-
ing and constellation missions using nanosatellites.
Journal of Spacecraft and Rockets, 53(3):567–578,
2016. DOI: 10.2514/1.a33291.

[2] H Kalita, E Asphaug, S Schwartz, and J Thangave-
lautham. Network of nano-landers for in-situ char-
acterization of asteroid impact studies. 2017. DOI:
arXiv:1709.02885.

[3] A M Hein, M Saidani, and H Tollu. Exploring po-
tential environmental benefits of asteroid mining.
In 69th International Astronautical Congress 2018,
2018. arXiv:1810.04749.

[4] G Di Domenico, E Andreis, A C Morelli, G Merisio,
et al. Toward self-driving interplanetary CubeSats:
The ERC-funded project EXTREMA. In 72nd In-
ternational Astronautical Congress, 2021.

[5] A Morselli, G Di Domenico, E Andreis, A CMorelli,
G Merisio, et al. The EXTREMA orbital simula-
tion hub: A facility for GNC testing of autonomous
interplanetary CubeSat. In 4S Symposium, pages
1–13, 2022.

[6] G Merisio and F Topputo. Characterization of bal-
listic capture corridors aiming at autonomous bal-
listic capture at Mars. In 2021 AIAA/AAS Astro-
dynamics Specialist Conference, pages 1–21, 2021.

[7] A C Morelli, G Merisio, et al. A convex guid-
ance approach to target ballistic capture corridors
at Mars. In 44th AAS Guidance, Navigation and
Control Conference, pages 1–24, 2022.

[8] E Andreis, V Franzese, and F Topputo. Onboard
orbit determination for deep-space CubeSats. Jour-
nal of guidance, control, and dynamics, pages 1–14,
2022. DOI: 10.2514/1.G006294.

[9] E Andreis, P Panicucci, V Franzese, and F Top-
puto. A robust image processing pipeline for planets
line-of-sign extraction for deep-space autonomous
Cubesats navigation. In 44th AAS Guidance, Nav-
igation and Control Conference, pages 1–19, 2022.

[10] E Andreis, V Franzese, and F Topputo. An
overview of autonomous optical navigation for
deep-space CubeSats. In 72nd International Astro-
nautical Congress (IAC 2021), pages 1–11, 2021.

[11] A C Morelli, C Hofmann, and F Topputo. Ro-
bust low-thrust trajectory optimization using con-
vex programming and a homotopic approach. IEEE

Transactions on Aerospace and Electronic Systems,
2021. DOI: 10.1109/TAES.2021.3128869.

[12] A C Morelli, C Hofmann, and F Topputo. A ho-
motopic approach for robust low-thrust trajectory
design through convex optimization. In 72nd Inter-
national Astronautical Congress (IAC 2021), pages
1–11, 2021.

[13] F Topputo and E Belbruno. Earth–Mars transfers
with ballistic capture. Celestial Mechanics and Dy-
namical Astronomy, 121(4):329–346, 2015. DOI:
10.1007/s10569-015-9605-8.

[14] E A Belbruno and J KMiller. Sun-perturbed Earth-
to-moon transfers with ballistic capture. Journal of
Guidance, Control, and Dynamics, 16(4):770–775,
jul 1993. DOI: 10.2514/3.21079.

[15] E Belbruno and J Carrico. Calculation of weak sta-
bility boundary ballistic lunar transfer trajectories.
In Astrodynamics Specialist Conference, page 4142,
2000. DOI: 10.2514/6.2000-4142.

[16] C Circi and P Teofilatto. On the dynamics of
weak stability boundary lunar transfers. Celestial
Mechanics and Dynamical Astronomy, 79(1):41–72,
2001. DOI: 10.1023/A:1011153610564.

[17] E Belbruno. Lunar capture orbits, a method of
constructing earth moon trajectories and the lunar
GAS mission. In 19th International Electric Propul-
sion Conference. American Institute of Aeronautics
and Astronautics, may 1987. DOI: 10.2514/6.1987-
1054.

[18] E A Belbruno and J Miller. A ballistic lunar cap-
ture trajectory for the Japanese spacecraft hiten.
Technical report, 1990. IOM 312/904-1731-EAB.

[19] E Belbruno. Capture Dynamics and Chaotic Mo-
tions in Celestial Mechanics. Princeton University
Press, dec 2004. DOI: 10.1515/9780691186436.

[20] F García and G Gómez. A note on weak stability
boundaries. Celestial Mechanics and Dynamical As-
tronomy, 97(2):87–100, 2007. DOI: 10.1007/s10569-
006-9053-6.

[21] F Topputo and E Belbruno. Computation of weak
stability boundaries: Sun–Jupiter system. Celestial
Mechanics and Dynamical Astronomy, 105(1-3):3,
2009. DOI: 10.1007/s10569-009-9222-5.

[22] P A Sousa Silva and M O Terra. Applicability and
dynamical characterization of the associated sets of

IAC-22,C1,9,10,x73057 Page 14 of 16

https://www.doi.org/10.2514/1.a33291
https://arxiv.org/abs/1709.02885
https://arxiv.org/abs/1810.04749
https://www.doi.org/10.2514/1.G006294
https://www.doi.org/10.1109/TAES.2021.3128869
https://www.doi.org/10.1007/s10569-015-9605-8
https://www.doi.org/10.2514/3.21079
https://www.doi.org/10.2514/6.2000-4142
https://www.doi.org/10.1023/A:1011153610564
https://www.doi.org/10.2514/6.1987-1054
https://www.doi.org/10.2514/6.1987-1054
https://www.doi.org/10.1515/9780691186436
https://www.doi.org/10.1007/s10569-006-9053-6
https://www.doi.org/10.1007/s10569-006-9053-6
https://www.doi.org/10.1007/s10569-009-9222-5


73rd International Astronautical Congress (IAC), Paris, France, 18-22 Semptember 2022.
Copyright ©2022 by G. Merisio. Published by the IAF, with permission and released to the IAF to publish in all forms.

the algorithmic weak stability boundary in the lu-
nar sphere of influence. Celestial Mechanics and
Dynamical Astronomy, 113(2):141–168, 2012. DOI:
10.1007/s10569-012-9409-z.

[23] N Hyeraci and F Topputo. Method to design bal-
listic capture in the elliptic restricted three-body
problem. Journal of guidance, control, and dynam-
ics, 33(6):1814–1823, 2010. DOI: 10.2514/1.49263.

[24] F Topputo, E Belbruno, and M Gidea. Res-
onant motion, ballistic escape, and their ap-
plications in astrodynamics. Advances in
Space Research, 42(8):1318–1329, 2008. DOI:
10.1016/j.asr.2008.01.017.

[25] E Belbruno, F Topputo, and M Gidea. Reso-
nance transitions associated to weak capture in
the restricted three-body problem. Advances in
Space Research, 42(8):1330–1351, 2008. DOI:
10.1016/j.asr.2008.01.018.

[26] E Belbruno, M Gidea, and F Topputo. Weak stabil-
ity boundary and invariant manifolds. SIAM Jour-
nal on Applied Dynamical Systems, 9(3):1061–1089,
2010. DOI: 10.1137/090780638.

[27] E Belbruno, M Gidea, and F Topputo. Geome-
try of weak stability boundaries. Qualitative The-
ory of Dynamical Systems, 12(1):53–66, 2013. DOI:
10.1007/s12346-012-0069-x.

[28] E Belbruno. Relation between solutions of the
Schrödinger equation with transitioning resonance
solutions of the gravitational three-body problem.
Journal of Physics Communications, 4(1):015012,
jan 2020. DOI: 10.1088/2399-6528/ab693f.

[29] F Topputo, M Vasile, and F Bernelli-Zazzera. Low
energy interplanetary transfers exploiting invariant
manifolds of the restricted three-body problem. The
Journal of the Astronautical Sciences, 53(4):353–
372, 2005. DOI: 10.1007/BF03546358.

[30] Z-F Luo, F Topputo, F Bernelli Zazzera, and G J
Tang. Constructing ballistic capture orbits in the
real solar system model. Celestial Mechanics and
Dynamical Astronomy, 120(4):433–450, 2014. DOI:
10.1007/s10569-014-9580-5.

[31] Z-F Luo and F Topputo. Analysis of ballis-
tic capture in Sun–planet models. Advances in
Space Research, 56(6):1030–1041, 2015. DOI:
10.1016/j.asr.2015.05.042.

[32] G Haller. A variational theory of hyperbolic La-
grangian coherent structures. Physica D: Non-
linear Phenomena, 240(7):574–598, 2011. DOI:
10.1016/j.physd.2010.11.010.

[33] George Haller. Lagrangian coherent structures. An-
nual Review of Fluid Mechanics, 47:137–162, 2015.
DOI: 10.1146/annurev-fluid-010313-141322.

[34] A Wittig, P Di Lizia, R Armellin, K Makino,
F Bernelli-Zazzera, and M Berz. Propagation of
large uncertainty sets in orbital dynamics by au-
tomatic domain splitting. Celestial Mechanics and
Dynamical Astronomy, 122(3):239–261, 2015. DOI:
10.1007/s10569-015-9618-3.

[35] M Manzi and F Topputo. A flow-informed strategy
for ballistic capture orbit generation. Celestial Me-
chanics and Dynamical Astronomy, 133(11):1–16,
2021. DOI: 10.1007/s10569-021-10048-2.

[36] T Caleb, G Merisio, P Di Lizia, and F Topputo.
Stable sets mapping with taylor differential algebra
with application to ballistic capture orbits around
Mars. Celestial Mechanics and Dynamical Astron-
omy, 134(5):1–22, 2022. DOI: 10.1007/s10569-022-
10090-8.

[37] Z F Luo and F Topputo. Mars orbit insertion via
ballistic capture and aerobraking. Astrodynamics,
5(2):167–181, 2021. DOI: 10.1007/s42064-020-0095-
4.

[38] C Giordano and F Topputo. Aeroballistic cap-
ture at Mars: Modeling, optimization, and assess-
ment. Journal of Spacecraft and Rockets, pages 1–
15, 2022. DOI: 10.2514/1.A35176.

[39] Z F Luo and F Topputo. Capability of satellite-
aided ballistic capture. Communications in Nonlin-
ear Science and Numerical Simulation, 48:211–223,
2017. DOI: 10.1016/j.cnsns.2016.12.021.

[40] D A Dei Tos, R P Russell, and F Topputo. Sur-
vey of Mars ballistic capture trajectories using pe-
riodic orbits as generating mechanisms. Journal
of Guidance, Control, and Dynamics, 41(6):1227–
1242, 2018. DOI: 10.2514/1.g003158.

[41] B A Archinal, M F A’Hearn, E Bowell, A Conrad,
G J Consolmagno, R Courtin, T Fukushima, D He-
stroffer, J L Hilton, G A Krasinsky, et al. Report of
the IAU working group on cartographic coordinates
and rotational elements: 2009. Celestial Mechanics
and Dynamical Astronomy, 109(2):101–135, 2011.
DOI: 10.1007/s10569-010-9320-4.

IAC-22,C1,9,10,x73057 Page 15 of 16

https://www.doi.org/10.1007/s10569-012-9409-z
https://www.doi.org/10.2514/1.49263
https://www.doi.org/10.1016/j.asr.2008.01.017
https://www.doi.org/10.1016/j.asr.2008.01.018
https://doi.org/10.1137/090780638
https://doi.org/10.1007/s12346-012-0069-x
https://www.doi.org/10.1088/2399-6528/ab693f
https://www.doi.org/10.1007/BF03546358
https://www.doi.org/10.1007/s10569-014-9580-5
https://www.doi.org/10.1016/j.asr.2015.05.042
https://www.doi.org/10.1016/j.physd.2010.11.010
https://www.doi.org/10.1146/annurev-fluid-010313-141322
https://www.doi.org/10.1007/s10569-015-9618-3
https://www.doi.org/10.1007/s10569-021-10048-2
https://www.doi.org/10.1007/s10569-022-10090-8
https://www.doi.org/10.1007/s10569-022-10090-8
https://www.doi.org/10.1007/s42064-020-0095-4
https://www.doi.org/10.1007/s42064-020-0095-4
https://www.doi.org/10.2514/1.A35176
https://www.doi.org/10.1016/j.cnsns.2016.12.021
https://www.doi.org/10.2514/1.g003158
https://www.doi.org/10.1007/s10569-010-9320-4


73rd International Astronautical Congress (IAC), Paris, France, 18-22 Semptember 2022.
Copyright ©2022 by G. Merisio. Published by the IAF, with permission and released to the IAF to publish in all forms.

[42] R S Park, W M Folkner, J G Williams, and D H
Boggs. The jpl planetary and lunar ephemerides
DE440 and DE441. The Astronomical Journal,
161(3):105, 2021. DOI: 10.3847/1538-3881/abd414.

[43] D Scheeres, A Rosengren, and J McMahon. The dy-
namics of high area-to-mass ratio objects in earth
orbit: The effect of solar radiation pressure. In Pro-
ceedings of the AAS/AIAA Space Flight Mechanics
Meeting, number AAS, pages 11–178, 2011.

[44] F Topputo, Y Wang, C Giordano, V Franzese,
H Goldberg, F Perez-Lissi, and R Walker. Envelop
of reachable asteroids by M-ARGO CubeSat. Ad-
vances in Space Research, 67(12):4193–4221, 2021.
DOI: 10.1016/j.asr.2021.02.031.

[45] C H Acton Jr. Ancillary data services of NASA’s
navigation and ancillary information facility. Plan-
etary and Space Science, 44(1):65–70, 1996. DOI:
10.1016/0032-0633(95)00107-7.

[46] C Acton, N Bachman, B Semenov, and E Wright.
A look towards the future in the handling
of space science mission geometry. Plane-
tary and Space Science, 150:9–12, 2018. DOI:
10.1016/j.pss.2017.02.013.

[47] O Montenbruck and E Gill. Satellite Orbits Models,
Methods and Applications. Springer, 2000. DOI:
10.1007/978-3-642-58351-3.

[48] P J Prince and J R Dormand. High order embedded
Runge–Kutta formulae. Journal of computational
and applied mathematics, 7(1):67–75, 1981. DOI:
10.1016/0771-050x(81)90010-3.

[49] A Bolle and C Circi. A hybrid, self-adjusting
search algorithm for optimal space trajectory de-
sign. Advances in Space Research, 50(4):471–488,
2012. DOI: 10.1016/j.asr.2012.04.026.

[50] F Topputo. Fast numerical approximation of invari-
ant manifolds in the circular restricted three-body
problem. Communications in Nonlinear Science
and Numerical Simulation, 32:89–98, 2016. DOI:
10.1016/j.cnsns.2015.08.004.

[51] D A Dei Tos and F Topputo. High-fidelity tra-
jectory optimization with application to saddle-
point transfers. Journal of Guidance, Control,
and Dynamics, 42(6):1343–1352, 2019. DOI:
10.2514/1.g003838.

[52] F Topputo, D A Dei Tos, K V Mani, S Ceccherini,
C Giordano, V Franzese, and Y Wang. Trajectory
design in high-fidelity models. In 7th International

Conference on Astrodynamics Tools and Techniques
(ICATT), pages 1–9, 2018.

[53] R Armellin and F Topputo. A sixth-order accurate
scheme for solving two-point boundary value prob-
lems in astrodynamics. Celestial Mechanics and
Dynamical Astronomy, 96(3):289–309, 2006. DOI:
10.1007/s10569-006-9047-4.

[54] D A Dei Tos and F Topputo. Trajectory refinement
of three-body orbits in the real solar system model.
Advances in Space Research, 59(8):2117–2132, 2017.
DOI: 10.1016/j.asr.2017.01.039.

[55] G Mingotti, F Topputo, and F Bernelli-Zazzera.
Transfers to distant periodic orbits around the
Moon via their invariant manifolds. Acta Astro-
nautica, 79:20–32, 2012.

IAC-22,C1,9,10,x73057 Page 16 of 16

https://www.doi.org/10.3847/1538-3881/abd414
https://www.doi.org/10.1016/j.asr.2021.02.031
https://www.doi.org/0.1016/0032-0633(95)00107-7
https://www.doi.org/10.1016/j.pss.2017.02.013
https://www.doi.org/10.1007/978-3-642-58351-3
https://www.doi.org/10.1016/0771-050x(81)90010-3
https://www.doi.org/10.1016/j.asr.2012.04.026
https://www.doi.org/10.1016/j.cnsns.2015.08.004
https://www.doi.org/10.2514/1.g003838
https://www.doi.org/10.1007/s10569-006-9047-4
https://www.doi.org/10.1016/j.asr.2017.01.039

	Introduction
	Background
	Methodology
	Results
	Conclusion
	Bibliography

