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Abstract: The numerical simulation of several virtual scenarios arising in cardiac mechanics poses a
computational challenge that can be alleviated if traditional full-order models (FOMs) are replaced by
reduced order models (ROMs). For example, in the case of problems involving a vector of input
parameters related, e.g., to material coefficients, projection-based ROMs provide mathematically
rigorous physics-driven surrogate ROMs. In this work we demonstrate how, once trained, ROMs
yield extremely accurate predictions (according to a prescribed tolerance) – yet cheaper than the ones
provided by FOMs – of the structural deformation of the left ventricular tissue over an entire
heartbeat, and of related output quantities of interest, such as the pressure-volume loop, for any desired
input parameter values within a prescribed parameter range. However, the construction of ROM
approximations for time-dependent cardiac mechanics is not straightforward, because of the highly
nonlinear and multiscale nature of the problem, and almost never addressed. Our approach relies on
the reduced basis method for parameterized partial differential equations. This technique performs a
Galerkin projection onto a low-dimensional space for the displacement variable; the reduced space
is built from a set of solution snapshots – obtained for different input parameter values and time
instances – of the high-fidelity FOM, through the proper orthogonal decomposition technique. Then,
suitable hyper-reduction techniques, such as the Discrete Empirical Interpolation Method, are exploited
to efficiently handle nonlinear and parameter-dependent terms. In this work we show how a fast
and reliable approximation of the time-dependent cardiac mechanical model can be achieved by a
projection-based ROM, taking into account both passive and active mechanics for the left ventricle
providing all the building blocks of the methodology, and highlighting those challenging aspects that
are still open.
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1. Introduction

The heart is a hollow, muscular organ that receives blood from the veins and pumps it out through
the arteries, back into the circulatory system. Its activity between two consecutive heartbeats is referred
to as the cardiac cycle, which consists of a sequence of alternating contraction (systole) and relaxation
(diastole) of the cardiac chambers. The active left ventricular systole is the main agent of blood
ejection in the circulatory system and results, at the macroscopic level, in a longitudinal shortening,
a wall thickening and a torsion around the longitudinal axis. This latter is due to the particular fiber
distribution of the cardiac muscle cells, the cardiomyocytes, which highly influences the mechanical
response of the heart. Although different physical phenomena occur in the cardiac function - namely,
the propagation of the electrical potential, ion dynamics, active contraction of cardiomyocytes, tissue
mechanics and blood circulation, see, e.g., [1,2] - in this article we focus on the mechanical activity of
the cardiac tissue. In particular, we take into account both the passive response of the tissue, and the
active shortening of the muscular fibers, by adopting the finite elasticity models to describe the heart
contraction and relaxation.

Describing the mechanics of the cardiac tissue requires complex constitutive laws, characterized
by an exponential strain energy function and the presence of muscular fibers and sheets. For this
reason, the passive myocardium is modeled as an hyperelastic orthotropic material, ultimately yielding
highly nonlinear mechanical problems to be solved. The numerical approximation of these problems
through high-fidelity, full order models (FOMs) such as those built on the finite element method entails
severe computational costs, because of the need to account for complex geometrical configurations,
and suitable spatial and temporal discretizations. Computational complexity is even more exacerbated
if one is interested in going beyond a single, direct simulation. Indeed, when simulating cardiac
mechanics, several input data – ultimately depending on a set of parameters – affect the problem under
investigation, often varying within a broad range, and possibly hampered by uncertainty.

Addressing the impact of input parameters variation on mechanical outputs of clinical interest thus
plays a key role in order to explore the tissue response in many different conditions [3, 4], to calibrate
the numerical solver and, ultimately, to obtain personalized models taking into account inter-patient
variability [5]. From a numerical perspective, those tasks yield the solution of parameter estimation,
sensitivity analysis, and uncertainty quantification problems; all these tasks share the need of multiple
queries of the parameter-to-solution map, in accurate (and possibly very fast) way. However, the
construction of a surrogate model for the input-output map, which directly approximates the quantity
of interest as a function of the input (possibly, random) parameters, is often preferred to a reduced order
approximation of the field variables. For instance, the effect of uncertainty of both global myocardial
material properties and the local variability of the microstructure orientation on the left ventricular
function has been considered in [6] using meta-models built through a polynomial chaos expansion;
similarly, in [4] both sensitivity analysis and forward UQ methods have been applied to investigate the
left ventricular function during the full cardiac cycle also involving a circulatory model, to assess the
effect of regional wall thickness, fiber orientation, passive material parameters, active stress and the
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circulatory model, again using polynomial chaos expansion surrogate models. However, despite being
more intrusive to implement, ROMs obtained through a projection process on the equations governing
the FOM yield more accurate approximations than data fits and usually generate more significant
computational gains than lower-fidelity models, requiring less training data [7].

In this paper we adapt ROMs developed in the last decade [8, 9] for parameterized PDEs to the
case of time-dependent nonlinear problems arising in cardiac mechanics. We consider projection-
based ROMs built through the reduced basis method, suitably equipped with hyper-reduction strategies
to assemble nonlinear terms efficiently. Exploiting proper orthogonal decomposition (POD) for the
construction of the reduced spaces, we can rely on completely physics-based ROMs, rather than on
data-driven strategies such as the ones recently proposed and exploiting, e.g., a fully-automatic deep
learning (DL) workflow to generate both volumetric parameters and strain measures from cine-MRI
data [10], Gaussian process interpolations [11–13], or physics-informed neural networks [14]. Indeed,
despite their nonlinear nature, parameterized problems in elastodynamics such as those arising from
cardiac modeling do not pose serious issues regarding the dimensionality of the reduced spaces, the
slow decay of singular values when considering POD, or the assumption stated by the reduced basis
(RB) method entailing a linear superimposition of modes.

The construction of projection-based reduced order models addressing nonlinear unsteady problems
related with cardiac mechanics has been considered in very few contributions so far. A quasi-static
model was employed in [15] to describe the contraction of an idealized left ventricle geometry with
few degrees of freedom, where a POD-Galerkin ROM was used at each time step, also exploiting
further hyper-reduction techniques such as the discrete empirical interpolation (DEIM) and its matrix
version (MDEIM) to efficiently assemble the residual vectors and the Jacobian matrices, respectively,
required by Newton iterations at the ROM level. In this case, the activation of the heart contraction
was given by the solution of a high-fidelity electrophysiology model, whilst the pressure caused by the
presence of blood in the ventricular chamber was neglected. An extension to quasi-Newton methods
can be found in [16]. A POD-Galerkin ROM for a patient-specific biventricular cardiac model has
been introduced and analyzed in [17], for the sake of parameter estimation based on medical images.
More recently, the inverse analysis of large nonlinear cardiac simulations has been considered in [18],
where POD-Galerkin ROMs have been built for the contraction of a four-chambers cardiac model built
over a patient-specific cardiac geometry, involving a monolithic coupling between a POD-reduced
three-dimensional structural model – however treating the passive myocardium as isotropic – and a
zero-dimensional Windkessel model for the blood circulation. In this latter case, a speedup ranging
from 5 to 13 times compared to the FOM is achieved by the ROM, when dealing with the evaluation
of cardiac outputs as functions of the contractility, the myofiber activation/deactivation rate, the onset
of ventricular systole/diastole. No hyper-reduction strategies are considered, in this latter examples, to
enhance the construction of the ROM.

In this paper we build POD-Galerkin-DEIM reduced order models, relying on (i) POD for finding
a low-dimensional trial subspace, (ii) Galerkin projection to generate, in a physically consistent
way, a reduced order model, and (iii) hyper-reduction techniques, through the discrete empirical
interpolation method (DEIM), to accelerate the assembling of nonlinear (with respect to the solution,
input parameters, or both) terms. Such hyper-reduced ROMs are thus exploited for the efficient and
accurate solution to the time-dependent cardiac mechanics problem, on idealized and patient-specific
left ventricle geometries, albeit using a relative low number of degrees of freedom for practical reasons.
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Our mechanical problem is uncoupled from both cardiac electrophysiology and blood dynamics.
However, we employ suitable analytical time-dependent functions to mimic the influence of both
the active stress and the blood circulation, to assess the performance of the proposed methodology
when the whole cardiac cycle is taken into account. Treating the passive myocardium as transversely
orthotropic makes the problem much more challenging compared to the case where the material is
treated as isotropic, concerning the efficiency of the hyper-reduction stage. Indeed, if the construction
of a reduced subspace to approximate the problem solution does not pose serious issues, resulting in
extremely low dimensional spaces even for complex material laws, the bottleneck is represented by the
assembling of reduced operators, and the projection of the approximated operators through DEIM.

The structure of this paper is as follows. After a brief recall (Section 2) on the mathematical
modeling of cardiac mechanics, we describe the high-fidelity finite element (FE) approximation we
start from (Section 3). We then introduce the key tools of the proposed ROM technique (Section 4):
the POD-Galerkin method and suitable hyper-reduction strategies, to tackle nonlinear time-dependent
problems. Numerical results dealing with a benchmark prolate spheroid geometry – concerning the
passive inflation without and with the active contraction – and the full cardiac cycle of a patient-specific
left ventricle geometry are then shown (Section 5). Finally, open critical issues and future perspectives
are outlined (Section 6).

2. Mathematical models for cardiac mechanics

After introducing a basic setting for solid mechanics, in this section we provide the formulation
of the mathematical problems we are interested in. Given a continuum body B embedded in a three-
dimensional Euclidean space, let us denote by Ω0 ⊂ R

3 its reference configuration at time t = 0 and by
Ωt ⊂ R

3 its current configuration at time t > 0. The motion of the body χ : Ω0 × R
+ → R3 is defined

as a function which takes a generic material point X ∈ Ω0 and maps it onto the corresponding spatial
point x = χ(X, t) ∈ Ω, for all times t > 0. The displacement field is defined as

u(X, t) = x(X, t) − X,

for all times t ≥ 0, and represents the unknown of the problem we are interested in. A central quantity
in finite deformations theory is the so-called deformation gradient,

F(X, t) = ∇0χ(X, t) =
∂x(X, t)
∂X

, Fi j =
∂xi(X, t)
∂X j

,

which describes the relationship between quantities in the undeformed and the deformed configurations
of the body, and can be expressed in terms of the displacement field as

F(X, t) = I + ∇0u(X, t),

where I is the identity matrix and ∇0 denotes the material gradient. The change in volume between the
reference and the current configurations at time t > 0 is given by the determinant of the deformation
tensor,

J(X, t) = det F(X, t),

also known as volume ratio. If there is no motion, i.e., x = X, we obtain the consistency condition
J = 1. In general, a motion for which this condition holds is said to be isochoric.
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Another measure of deformation is the right Cauchy-Green deformation tensor C = FT F, whilst a
common measure of the strain is the Green-Lagrange strain tensor

E =
1
2

(C − I),

which is defined in the reference configuration and is zero in absence of motion. All these kinematic
quantities are commonly used to express constitutive equations describing the relationship between
mechanical forces and the material motion. We will restrict ourselves to the case of hyperelastic
materials, for which we can assume that there exists a strain energy density functionW such that

P(F) =
∂W(F)
∂F

gives the functional stress-strain relationships, where P is the first Piola-Kirchhoff stress tensor.

2.1. Passive and active mechanics

We assume the myocardium to be hyperelastic, orthotropic, with nonlinear passive behavior, as
experiments have shown higher material stiffness and mechanical response along the cardiac fibers.
Many constitutive laws have been derived for both its passive and active description – see, e.g., [19–24]
– taking into account varying material symmetries. In this work, we adopt the relation proposed in [19]
and commonly referred to as the Guccione law, which assumes the material to be transversely isotropic,
with its primary material axis oriented along the local fiber direction. The corresponding strain-energy
density function is given by

W(F) =
C
2

(eQ(F) − 1), (2.1)

where the three-dimensional transverse isotropy with respect to the fiber coordinate system is
accounted by choosing

Q(F) = b f E2
f f + bsE2

ss + bnE2
nn + b f s(E2

f s + E2
s f ) + b f n(E2

f n + E2
n f ) + bsn(E2

sn + E2
ns).

Here, Ei j, i, j ∈ { f , s, n} are the components of the Green-Lagrange strain tensor E, the material constant
C scales the stresses and the coefficients b f , bs, bn are related to the material stiffness in the fiber, sheet
and cross-fiber directions, respectively.

Since biological tissues are mostly composed of water, the material density ρ0 is often taken constant
in time [23] so that the conservation of mass implies J = 1 and an incompressible formulation is
adopted. However, as often done in cardiac mechanics [25, 26], incompressibility is weakly imposed,
and an isochoric-volumetric decoupling of the strain energy function is employed, yielding

W(F) =
C
2

(eQ(F) − 1) +Wvol(J).

The volumetric termWvol(J) is chosen to penalize large volume variations, so that it is usually a convex
function with global minimum in J = 1, e.g.,

Wvol(J) =
K
2

(J − 1) ln(J).
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Another crucial aspect is the inclusion of the active contractile forces in the constitutive equation.
Active properties are time-dependent and anisotropic, with more active stress generated along the local
muscle fiber direction [27]. Active tension can be integrated into the passive stress tensor in different
ways, among which the active stress and the active strain represent the most common approaches [28].
Here, we adopt the former, and add to the passive first Piola-Kirchhoff stress tensor a time-dependent
active tension Ta(t;µ), which is assumed to act only in the fiber direction,

P(F) =
∂

∂F

(C
2

(eQ − 1) +
K
2

(J − 1)log(J)
)

+ Ta(t;µ)(Ff0 ⊗ f0), (2.2)

where f0 ∈ R
3 denotes the reference unit vector in the fiber direction. Since F can be written in terms

of the displacement field u, in the following we will write P = P(u).

2.2. Parameterized problems in cardiac mechanics

We have now all the ingredients required to formulate the mathematical model to describe the
motion of a body, specifically the cardiac left ventricle, in terms of an initial boundary-value problem
(IBVP) for the elastodynamics equation, that is, the equation of motion for continuum mechanics.

To account for inter-patient variability, different scenarios can be described by assuming the
dependence of the mechanical displacement on a set of input parameters, collectively denoted as
µ ∈ P ⊂ RP, where P is a suitable compact set. For the application at hand, possible parameters
of interest are the coefficients of the constitutive law, such as those related to the stiffness of the cardiac
muscle in different direction or the bulk modulus K related to the material incompressibility; fibers
orientation is highly patient-specific and have a crucial impact on the torsion and shortening of the
ventricle; moreover, the pressure exerting on the endocardium or the active tension greatly affects the
mechanical behavior; see Section 5.

The parameterized IBVPs of interest in cardiac mechanics can be stated in general form as follows:
given µ ∈ P, a body force field b0 = b0(X, t;µ), a prescribed displacement ū = ū(X, t;µ) and surface
traction T = T(X, t,N;µ), find the displacement field u(µ) : Ω0 × [0,T )→ R3 such that

ρ0∂
2
t u(X, t;µ) − ∇0 · P(u(X, t;µ)) = b0(X, t;µ) in Ω0 × (0,T )

u(X, t;µ) = ū(X, t;µ) on ΓD
0 × (0,T )

P(u(X, t;µ))N = T(X, t,N;µ) on ΓN
0 × (0,T )

P(u(X, t;µ))N + αu(X, t;µ) + β∂tu(X, t;µ) = 0 on ΓR
0 × (0,T )

u(X, 0;µ) = u0(X;µ), ∂tu(X, 0;µ) = u̇0(X;µ) in Ω0 × {0},

(2.3)

where α, β ∈ R, ΓD
0 ∪ΓN

0 ∪ΓR
0 = ∂Ω0 and Γi

0∩Γ
j
0 = ∅ for i, j ∈ {D,N,R}. These equations are inherently

nonlinear and an additional source of (exponential) nonlinearity is introduced in the material law (2.2).
Hence, suitable discretization techniques are required for the solution of the IBVP.

3. High-fidelity approximation

Before addressing the construction of ROMs for the mechanical problem (2.3), we introduce its full-
order approximation, upon which the ROMs will be built. In this work we rely on the finite element
method (FEM) for the space discretization, and on backward differentiation formula (BDF) schemes
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for time discretization. In particular, we neglect the external body forces b0, assume homogeneous
Dirichlet boundary conditions, i.e., ū = 0, and set α = β = 0, thus obtaining homogeneous Neumann
boundary conditions on ΓR

0 . Moreover, the boundaries ΓD
0 , ΓN

0 and ΓR
0 represent the base (representing

the artificial boundary resulting from truncation of the heart below the valves in a short axis plane), the
endocardium and the epicardium, respectively.

First of all, let us introduce the weak formulation for (2.3) in material description [29]. By setting

V(Ω0) := [H1
ΓD

0
(Ω0)]3 =

{
η ∈ [H1(Ω0)]3 : η = 0 on ΓD

0

}
,

multiplying the equation of motion (2.3)1 by a test function η ∈ V(Ω0) and integrating over Ω0, we
obtain the weak formulation of (2.3) as follows∫

Ω0

ρ0∂
2
t u(t;µ) · ηdΩ +

∫
Ω0

P(u(t;µ)) : ∇ηdΩ −

∫
ΓN

T(t,N;µ) · ηdΓ = 0 ∀η ∈ V(Ω0). (3.1)

From (3.1), we can set the finite element (FE) discretization of the problem. Let us denote by Th a
hexahedral mesh of Ω0 such that

⋃
τ∈Th

τ is an approximation of the domain Ω0, where h > 0 denotes
the grid size, and define the FE space of dimension r ≥ 1

Xr
h =

{
v ∈ C0(Ω̄0) : v|τ ∈ Qr(τ) ∀τ ∈ Th

}
,

where Qr(τ) is the set of polynomials of degree smaller than or equal to r on each element τ and
dim(Xr

h) = Ndo f
h,r denotes the total number of degrees of freedom (dofs). The FE space of vector-valued

functions is defined as
Vh = V(Ω0) ∩

[
Xr

h
]3

= span
{
ϕi

}Nh
i=1

whose dimension Nh = 3Ndo f
h,r corresponds to the total number of structural dofs, including those

associated with the Dirichlet boundary conditions, and ϕi : Ω0 → R
3, for i = 1, . . . ,Nh, are the vector-

valued basis functions. Given w(t) ∈ V(Ω0), its approximation w̃h(t) ≈ w(t) in Vh can be expressed as
a linear combination of the basis functions

{
ϕi

}Nh
i=1 as

w̃h(t) =

Nh∑
i=1

wh,i(t) ϕi,

where wh(t) = [wh,i(t)]
Nh
i=1 ∈ R

Nh denotes the corresponding vector of coefficients in the expansion with
respect to the FE basis, that is, the unknown of our high-fidelity FOM.

We can now introduce the semi-discrete Galerkin-FE approximation of the problem, which takes
the form of a second-order dynamical system: for each t ∈ (0,T ), find uh(t;µ) ∈ V(Ω0) such that{

ρ0M∂2
t uh(t;µ) + S(uh(t)) = F ext(t)

uh(0) = uh,0, ∂tuh(0) = u̇h,0
(3.2)

where uh,0 = [(u0,ϕi)[L2(Ω0)]3]Nh
i=1, ∂tuh,0 = [(u̇0,ϕi)[L2(Ω0)]3]Nh

i=1 and

[M]i j =

∫
Ω0

ϕ j · ϕidΩ, ∀i, j = 1, . . . ,Nh,

[S(uh(t;µ))]i =

∫
Ω0

P(uh(t;µ)) : ∇ϕidΩ, ∀i = 1, . . . ,Nh,

[F ext(t;µ)]i =

∫
ΓN

0

T(t,N;µ) · ϕidΓ, ∀i = 1, . . . ,Nh.
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For the time discretization of the dynamical system (3.2), we consider a uniform partition {tn =

n∆t, n = 0, . . . ,Nt} of the interval (0,T ), where ∆t = T
Nt

is the time step length. To approximate the
first and the second derivative at time tn, we employ the following BDF schemes of order 1

u̇h(tn) ≈
un

h − un−1
h

∆t
, üh(tn) ≈

un
h − 2un−1

h + un−2
h

∆t2 ,

respectively, where the superscripts n, n − 1 and n − 2 denote the solution uh computed at time tn,
tn−1 and tn−2, e.g., uh(tn) = un

h. From now on, we indicate all the quantities computed at time tn with
the superscript n, for n = 0, . . . ,Nt. Note that we employ implicit time integration schemes in order
to avoid restrictions on the time step due to the highly nonlinear terms of the strain energy density
function considered in (2.2).

Finally, we obtain the following fully-discrete approximation of (2.3): for each n = 1, . . . ,Nt, find
un

h ∈ R
Nh such that

R(un
h(µ), tn;µ) = 0, (3.3)

where u−1
h and u0

h are given, and

R(un
h(µ), tn;µ) :=

ρ0

∆t2Mun
h(µ) + S(un

h(µ)) −
2ρ0

∆t2Mun−1
h (µ) +

ρ0

∆t2Mun−2
h (µ) − F ext,n(µ).

For the solution of the nonlinear problems arising at each time step, we use the Newton method,
turning the nonlinear problem (3.3) into a sequence of linear problems of the following form: given
µ ∈ P, for each n = 1, . . . ,Nt, given an initial guess un,(0)

h (µ), for k ≥ 0, find δu(k)
h (µ) ∈ RNh such that{

J(un,(k)
h (µ), tn;µ)δu(k)

h (µ) = −R(un,(k)
h (µ), tn;µ),

un,(k+1)
h (µ) = un,(k)

h (µ) + δu(k)
h (µ),

(3.4)

until ‖R(un,(k+1)
h (µ), tn;µ)‖2/‖R(un,(0)

h (µ), tn;µ)‖2 < ε, where ε > 0 is a prescribed tolerance. Here,
J ∈ RNh×Nh denotes the Jacobian matrix, whose components are given by

J(un,(k)
h (µ), tn;µ) =

∂

∂uh
R(un,(k)

h (µ), tn;µ).

The initial guess un,(0)
h (µ) is set equal to the initial guess uh,0(µ), when n = 1, and is equal to the solution

at previous time iteration un−1
h (µ), for n = 2, . . . ,Nt. From now on, we will refer to (3.4) as to the FOM

for our problem.

Remark 1. As an alternative to Newton iterative scheme is, e.g., Broyden’s quasi-Newton method [30],
as done, e.g., in [16,31] for the construction of ROMs in nonlinear elasticity problems. In this way we
can avoid the computation of the Jacobian matrix at each iteration k ≥ 0 by replacing it with rank-one
updates, based on residuals computed at previous iterations.

4. Projection-based model order reduction

To mitigate the computational cost associated with the FOM solution, we introduce a projection-
based ROM, by relying on the reduced basis (RB) method [8]. To make this paper self-contained, in
this section we describe the construction of a POD-Galerkin-DEIM ROM for nonlinear time-dependent
problems arising in cardiac mechanics, generalizing the strategies proposed in [15]. Details related to
both POD and DEIM methods are reported in the Appendix.
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4.1. POD-Galerkin method for solution-space reduction

The goal of the RB method for parameterized PDEs is to approximate the Nh-dimensional solution
manifold

Mh = {un
h(µ) ∈ RNh | µ ∈ P, n = 1, . . . ,Nt} ⊂ R

Nh

with a low number N (less than a few dozens, or hundreds at most) of basis functions, forming the
so-called reduced basis, whose nodal values are collected column-wise in the RB matrix V ∈ RNh×N .
This is usually done by performing a Galerkin projection of the high-fidelity problem onto the N-
dimensional subspace spanned by the reduced basis functions, obtaining a reduced problem facing
a much lower computational complexity, still respecting the structure of the underlying PDE and
retaining the essential features of the parameter-to-solution map. More precisely, the reduction
procedure consists of:

1) the construction of a reduced basis V =
[
ξ1| . . . |ξN

]
∈ RNh×N from FOM solution snapshots

Su =
[
u1

h(µ1) | . . . | uNt
h (µ1) | . . . | u1

h(µns
) | . . . | uNt

h (µns
)
]

(4.1)

obtained for different parameter values µ` ∈ P, ` = 1, . . . , ns, suitably sampled over P;
2) the definition of the ROM by forcing the high-fidelity residual vector R ∈ RNh computed over the

RB solution to be orthogonal to the subspace spanned by the columns of V, that is

VT R(Vun
N(µ), tn;µ) = 0, n = 1, . . . ,Nt; (4.2)

3) the solution of (4.2) for a given µ ∈ P, so that, at the end, un
h(µ) ≈ Vun

N(µ), n = 1, . . . ,Nt.

Two popular methods for the construction of the RB basis are the greedy algorithm [32], based on
an a posteriori error estimator, and the proper orthogonal decomposition (POD), based on a singular
value decomposition (SVD) of the snapshots matrix. Since for time-dependent, nonlinear problems
error bounds are usually extremely difficult to obtain, in this work we rely on the POD method, which
Section 4.2 is devoted to.

The solution to (4.2) can be found by employing Newton method, obtaining a sequence of N-
dimensional linear systems: given µ ∈ P and, for n = 1, . . . ,Nt, the initial guess un,(0)

N (µ) = un−1
N (µ),

find δun,(k)
N (µ) ∈ RN such that, for k ≥ 0,{

VT J(Vun,(k)
N (µ), tn;µ)Vδun,(k)

N (µ) = −VT R(Vun,(k)
N (µ), tn;µ),

un,(k+1)
N (µ) = un,(k)

N (µ) + δun,(k)
N (µ),

(4.3)

until ‖VT R(Vun,(k+1)
N (µ), tn;µ)‖2/‖VT R(Vun,(0)

N (µ), tn;µ)‖2 < εnwt, where εnwt > 0 is a chosen tolerance.
The efficiency of the RB method relies, mainly, on two assumptions. First, that the solution manifold

Mh has low-dimension; second, that the reduction procedure can be split into offline and online stages,
where the latter is completely independent of the high-fidelity dimension [33]. The first hypothesis
concerns the approximability of the solution set, and is verified in the case of the problems we are
focusing on, as shown in Section 5; the second assumption, unfortunately, does not hold for nonlinear
problems as the ones we are considering. In fact, since both the residual vector R and the Jacobian
matrix J in (4.3) depend on the solution at the previous iteration Vun,(k)

N (µ), they need to be assembled
at each Newton step. This means that, in order to set up the reduced system (4.3)1, we need to assemble

Mathematics in Engineering Volume 5, Issue 2, 1–38.



10

the high-dimensional arrays before projecting them onto the reduced space spanned by the columns of
V, entailing a computational complexity that still depends on (suitable powers of) Nh. To overcome this
issue, a further level of approximation, know as hyper-reduction, must be introduced, thus pursuing an
approximate-then-reduce strategy.

4.2. Reduced basis construction

For the construction of the reduced basis V ∈ RNh×N , introduced in Section 4.1, we use the POD.
Due to its ease of implementation, and its deep mathematical root (related to the analysis of compact
operators, to matrix SVD, and to dimensionality reduction in data analysis, just to mention a few links),
POD has been applied in a broad range of engineering fields to reduce the dimension of a given data set,
in an optimal sense. In this work, POD is used to build the RB basis V, as well as for the construction
of the DEIM basis ΦR for the nonlinear terms (see Section 4.3).

Given the snapshot matrix Su defined in (4.1), with ns < Nh, POD aims at approximating the solution
manifold with a low-dimensional linear subspace, retaining as much as possible of the information
gathered in the snapshots. In particular, the N-dimensional POD basis is obtained by computing the
SVD Su = UΣZT of Su, and then collecting the first N columns of U ∈ RNh×Nh corresponding to the left
singular vectors, i.e.,

V =
[
ξ1 | . . . | ξN

]
.

The singular values σ1 ≥ · · · ≥ σr > 0, where r ≤ min(Nh, ns) is the rank of S, provide a heuristic
criteria for choosing the basis dimension N∑N

i=1 σ
2
i∑r

i=1 σ
2
i

≥ 1 − ε2
POD,

where εPOD > 0 is a given tolerance (see also Appendix A). A rapid decay of the singular values means
that a limited number of POD modes is potentially sufficient to represent the entire manifold, so that
the problem is reducible. This is exactly the kind of situation faced when dealing with the reduction of
the solution space related to a problem in nonlinear elastodynamics. Moreover, an efficient, non-
deterministic version of POD can be obtained by relying on the so called randomized-SVD (see
Appendix B), which offers a powerful tool for performing low-rank matrix approximation, especially
when dealing with massive data sets, as in the cases we have considered.

4.3. DEIM for hyper-reduction/system approximation

In the case of PDEs featuring nonaffine dependence on the parameters and/or nonlinear (high-order
polynomial, or non-polynomial) dependence on the field variable, a further level of reduction must be
introduced to guarantee the offline-online decoupling in the ROM construction [33]. To recover the
ROM efficiency, state-of-the-art methods, such as the empirical interpolation method (EIM) [34–36],
the discrete empirical interpolation method (DEIM) [37], its variant matrix DEIM [38–40], the missing
point estimation [41] and the Gauss-Newton with approximated tensors [42], aim at recover an affine
expansion of the nonlinear operators by computing only a few entries of the nonlinear terms.

Although originally developed in the context of nonaffine operators, DEIM represents a valid hyper-
reduction technique also for nonlinear parameterized PDEs (see, e.g., [15, 31, 43–46]), employing an
interpolation scheme for the approximation of the nonlinear function. The key idea of DEIM is to
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replace the nonlinear arrays in (4.3) with a collateral reduced-basis expansion, computed through
a (hopefully, inexpensive) interpolation procedure. In the case of DEIM, the construction of the
interpolation points, commonly referred to as magic points, is based on a greedy algorithm, while
the (prior) construction of the reduced basis is obtained by performing POD (or randomized-SVD) on
a set of proper snapshots; in the case of EIM, both tasks are performed at the same time, exploiting a
greedy algorithm. The DEIM algorithm, as originally proposed in [37], is outlined in Appendix C.

For the case at hand, the high-dimensional residual R is projected onto a reduced subspace of
dimension m < Nh spanned by a basis ΦR ∈ RNh×m

R(Vun,(k)
N (µ), tn;µ) ≈ ΦRc(Vun,(k)

N (µ), tn;µ),

where c ∈ Rm is the vector of the unknown amplitudes. The matrixΦR can be pre-computed offline by
performing POD on a set of high-fidelity residuals collected when solving (4.3) for n′s training input
parameters (different from the one used for the RB basis construction),

SR =
[
R(Vun,(k)

N (µ`′), t
n;µ`′)), k ≥ 0

]`′=1:n′s

n=1:Nt
. (4.4)

Remark 2. In addition to the set of snapshots (4.4), we can consider the FOM residuals collected
when solving (3.4) during the RB-basis construction, i.e.,

SR = SFOM
R ∪ SROM

R =
[
R(un,(k)

h (µ`), t
n;µ`)), k ≥ 0

]`=1:ns

n=1:Nt

⋃ [
R(Vun,(k)

N (µ`′), t
n;µ`′)), k ≥ 0

]`′=1:n′s

n=1:Nt
.

Taking into account both FOM and ROM residuals entail no extra computational cost and usually
improves the overall accuracy, assuming n′s > ns. On the contrary, collecting FOM residuals only gave
inaccurate results for all the performed test cases, as shown, for the stationary case, in [15]. In fact,
DEIM aims at approximating the nonlinear operators evaluated at the ROM solution, rather than at
the FOM solution. Therefore, the construction of the reduced space and system approximation must be
performed sequentially.

For every new instance of the parameter, the µ-dependent coefficient vector c is efficiently evaluated
online by collocating the approximation at the m components selected by a greedy procedure, that is,

ΦR|Ic(Vun,(k)
N , tn;µ) = R(Vun,(k)

N , tn;µ)|I ,

where ΦR|I and R(·)|I are the restrictions of ΦR and R(·) to the subset of indices I, respectively. We
thus define the hyper-reduced residual vector approximating VT R(Vun,(k)

N (µ), tn;µ) as

RN,m(Vun,(k)
N (µ), tn;µ) :=VTΦR(ΦR−1)|IR(Vun,(k)

N , tn;µ)|I .

During the online phase we need to assemble the µ-dependent quantities R(Vun,(k)
N , tn;µ)|I only, which

are vectors of (possibly small) dimension m. All other quantities are constant (in fact, ΦR does not
depend on t > 0, nor on µ ∈ P) and can be pre-computed and stored offline. Finally, the Jacobian
approximation to VT J(Vun,(k)

N , tn;µ)V can be computed as the derivative of RN,m(Vun,(k)
N , tn;µ) with

respect to the reduced displacement, that is,

JN,m(Vun,(k)
N (µ), tn;µ) :=

∂RN,m(Vun,(k)
N (µ), tn;µ)
∂uN

=VTΦR(ΦR−1)|I
∂R(Vun,(k)

N , tn;µ)
∂uN

|I = VTΦR(ΦR−1)|IJ(Vun,(k)
N , tn;µ)|IV
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or by relying on the MDEIM algorithm, as done in [15]. However, since we employ automatic
differentiation to get (an approximation of) the Jacobian matrices, we adopt the former approximation.
As before, the only quantity that must be computed online is the restriction of the Jacobian matrix to the
rows corresponding to the magic points, i.e., J(Vun,(k)

N , tn;µ)|I ∈ R
m×Nh . Note that employing DEIM can

be regarded as the use of an exact Newton method on the reduced problem RN,m(Vun,(k)
N (µ), tn;µ) = 0,

such that the k-th Newton iteration for its solution reads{
JN,m(Vun,(k)

N (µ), tn;µ)δun,(k)
N (µ) = −RN,m(Vun,(k)

N (µ), tn;µ),
un,(k+1)

N (µ) = un,(k)
N (µ) + δun,(k)

N (µ).
(4.5)

DEIM thus avoids any full-order evaluation, highly decreasing the computational effort, provided its
dimension is not too large [9]. Unfortunately, as we will see in the following section, when dealing
with problems arising in nonlinear elastodynamics characterized by highly nonlinear constitutive laws,
the DEIM dimension cannot be kept small, if aiming at ensuring a sufficient accuracy level.

In Algorithm 1 and 2 we report the offline stage and the online stage of the POD-Galerkin-DEIM
ROM, respectively.

Algorithm 1 POD-Galerkin-DEIM for nonlinear time-dependent problems. Offline stage.
INPUT: µ`, for ` = 1, . . . , ns, and µ`′ , for `′ = 1, . . . , n′s
OUTPUT: V ∈ RNh×N , ΦR ∈ RNh×m, I = {i1, . . . , im}

1: for ` = 1, . . . , ns do
2: for n = 1, . . . ,Nt do
3: for k ≥ 0 until convergence do
4: Assemble and solve problem (3.4)
5: Collect Su ← Su ∪

[
un,(k)

h (µ`)
]

columns-wise

6: Collect SR ← SR ∪
[
R(un,(k)

h (µ`′), t
n;µ`′)

]
columns-wise (see Remark 2)

7: Construct V = POD(Su, εPOD) (see Algorithm 3)
8: for `′ = 1, . . . , n′s do
9: for n = 1, . . . ,Nt do

10: for k ≥ 0 until convergence do
11: Assemble and solve reduced problem (4.3)
12: Collect SR ← SR ∪

[
R(Vun,(k)

N (µ`′), t
n;µ`′)

]
columns-wise

13: Construct (ΦR,I) = DEIM(SR, εDEIM) (see Algorithm 5)

Algorithm 2 POD-Galerkin-DEIM for nonlinear time-dependent problems. Online stage.
INPUT: µ ∈ P
OUTPUT: Vun

N(µ) ∈ RNh , for n = 1, . . . ,Nt

1: for n = 0, . . . ,Nt − 1 do
2: for k ≥ 0 until convergence do
3: Assemble and solve hyper-reduced problem (4.5)
4: Recover Vun

N(µ), for n = 1, . . . ,Nt

Remark 3. The m points selected by the DEIM algorithm correspond to a subset of nodes of the
computational mesh, which, together with the neighboring nodes (i.e., those sharing the same cell),
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form the so-called reduced mesh (see Figure 1). Since the entries of any FE-vector are associated
with the dofs of the problem, RN,m and JN,m can be computed by integrating the corresponding FOM
residual and Jacobian only on the quadrature points belonging to the reduced mesh, respectively.

Figure 1. Sketch of a reduced mesh for an hexahedral computational grid in a two-
dimensional case. The red dots represent the magic points selected by the DEIM algorithm.

Remark 4. We recall that both the FOM and the ROM arrays, such as the solution and the residual
vectors, are column vectors whose elements are the values of the associated quantities evaluated on
the dofs of the physical mesh. Therefore, when assembling the snapshots matrices in order to compute
the RB and the DEIM basis, the corresponding arrays are stacked column-wise.

5. Numerical results

In this section we investigate the performances of POD-Galerkin-DEIM on the solution to the
parameterized nonlinear time-dependent mechanical problem (2.3), focusing on cardiac applications,
namely:

(i) two test cases on an idealized left ventricle geometry, simulating cardiac relaxation and
contraction, respectively; the steady-state versions of these test cases have been introduced in [47]
as benchmarks for the validation of cardiac mechanics software;

(ii) an idealized full cycle of a patient-specific left ventricle, where both pressure and active stress are
imposed.

In all these scenarios, the traction vector T is given by

T(X, t,N;µ) = −g(t;µ)JF−T N,

where g(t;µ) represents blood pressure exerting on the endocardium and will be further specified,
according to the application at hand. As a measure of the accuracy of the ROM with respect to the
FOM, for a given parameter instance, we consider time-averaged L2-errors of the displacement vector,
that are,

εabs(µ) =
1
Nt

Nt∑
n=1

‖uh(·, tn;µ) − VuN(·, tn;µ)‖2, εrel(µ) =
1
Nt

Nt∑
n=1

‖uh(·, tn;µ) − VuN(·, tn;µ)‖2
‖uh(·, tn;µ)‖2

.
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The CPU time ratio, i.e., the ratio between FOM and ROM computational times, is used to measure
the ROM efficiency, since it represents the speed-up of the ROM with respect to the FOM. The code
is implemented in Python in our software package pyfex, which contains a Python binding with the in-
house Finite Element library lifex (https://lifex.gitlab.io/lifex), a high-performance C++

library developed within the iHEART project∗ and based on the deal.II (https://www.dealii.
org) Finite Element core [48]. All the computations have been performed on a PC desktop computer
with 3.70GHz Intel Core i5-9600K CPU and 16GB RAM.

5.1. Benchmark problems with a prolate spheroid geometry

We first investigate the performances of a POD-Galerkin-DEIM reduced order models to address
benchmark problems in cardiac mechanics. In both cases, the reference geometry Ω0 ⊂ R

3 is that of a
truncated ellipsoid and the material law adopted is the nearly-incompressible Guccione relation (2.2),
although different parameter values are taken into account, according to [47]. For what concerns the
boundary condition of problem (2.3), we apply a linear external pressure

g(t;µ) = p̃ t/T

at the endocardium (i.e., ΓN
0 ), with p̃ > 0, simulating the presence of blood inside the cardiac chamber,

and consider homogeneous Neumann and Dirichlet conditions at the epicardium (i.e., ΓR
0 with α = β =

0) and on the base (i.e., ΓD
0 ), respectively, the latter representing the artificial boundary resulting from

truncation of the heart below the valves in a short axis plane.
The FOM is built on a hexahedral mesh with 4804 elements and 6455 vertices, depicted in Figure 2,

resulting in a high-fidelity dimension Nh = 19365, since Q1-FE (that is, bilinear FE on a hexahedral
mesh) are used. We point out that having chosen a rather coarse computational mesh results in moderate
speed-ups of the ROM with respect to the FOM in the considered test cases. However, taking into
account finer meshes, thus larger high-fidelity dimensions Nh, higher speed-ups can be achieved by the
POD-Galerkin-DEIM ROMs, since the reduced basis dimension N remains small (see Section 5.1.2).

Figure 2. Test case 1. Idealized truncated ellipsoid geometry and computational grid.

∗iHEART - An Integrated Heart Model for the simulation of the cardiac function, European Research Council (ERC) grant agreement
No 740132, P.I. Prof. A. Quarteroni.
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5.1.1. Passive inflation of a ventricle

In this first case, we do not account for anisotropy and only consider the passive contribution of
the Piola tensor, so that the obtained deformation pattern simulates passive ventricular diastole. As
parameters, we consider

• the material stiffness in fiber and cross-fiber directions b f , bn ∈ [0.8, 1.2],
• the multiplicative factor C ∈ [8 · 103, 12 · 103] Pa.

All the other parameters are fixed to their reference values: bs = b f s = b f n = bsn = 1, K = 50·103 Pa
and p̃ = 10 · 103. For the time setting, we choose t ∈ (0, 0.25) s and a uniform time step ∆t = 5 · 10−3 s,
resulting in a total number of 50 time instances. In Figure 3 we report the high-fidelity displacement at
different time instants. In order to compute the FOM solution, almost 340 s are required in average.

Figure 3. Test case 1, passive inflation of a ventricle. FOM solution computed at different
times for µ = [0.881, 1.171, 11650] (top) and µ = [1.007, 0.853, 8610] (bottom).

For ns = 50 points sampled in the parameter space P through latin hypercube sampling (LHS), we
collect the solution snapshots in order to compute the RB basis V ∈ RNh×N . The singular values arising
from the SVD of the snapshots matrix Su are reported in Figure 4, where a rapid decay of the reported
quantity is observed. We expect that a small number of basis functions is sufficient for the ROM to
guarantee a good approximation of the high-fidelity solution manifold. To assess the performance of
the method with respect to the dimension of the reduced subspace, we consider

εPOD ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

as POD tolerances, corresponding to a RB dimension of N = 5, 7, 12, 16, 26, 32 and 55, respectively.
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Figure 4. Test case 1, passive inflation of a ventricle. Decay of the singular values of the
FOM solution snapshots matrix.

First, we investigate the performance of the ROM without hyper-reduction. Figure 5 shows the error
and the CPU time ratio over εPOD, where the average is computed over a testing set of 20 parameters,
different from those used for the generation of FOM snapshots. The plot confirms that few basis
functions are required to accurately approximate the high-fidelity displacements.

Figure 5. Test case 1, passive inflation of a ventricle. Average over 20 testing parameters
of relative error εrel (left) and average speed-up (right) of the POD-Galerkin ROM without
hyper-reduction.

In particular, we observe that the relative error εrel associated with the ROM approximation
decreases of almost three orders of magnitude when going from N = 5 to N = 55. However, since
at each Newton step we need to assemble high-dimensional arrays before projecting them onto the
reduced space, the CPU time required by the ROM for all RB dimensions, despite decreasing as N
becomes smaller, is almost comparable to the one of the FOM.

Then, we investigate the impact of hyper-reduction on the ROM solution error and efficiency. In
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order to build the POD-Galerkin-DEIM hyper-ROM, we consider N = 16 basis functions for state
reduction, obtained for εPOD = 10−5. For the construction of the residual basisΦR ∈ RNh×m, we rely on
a snapshots set computed for n′s = 50 points in P and apply POD on SR using

εDEIM ∈ {5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

corresponding to m = 84, 127, 148, 207, 239 and 368, and compare these options.
As shown in Table 1 and Figure 6, no loss of accuracy is experienced when decreasing the number

of DEIM interpolation points m. However, higher tolerances εDEIM on the DEIM error would not
ensure the convergence of the reduced Newton system for all testing parameters, such that no higher
speed-up can be achieved by further reducing the size of the residual basis. Furthermore, we point out
that m > N, meaning that the residual vector shows higher variability with respect to the displacement.
The POD-Galerkin-DEIM hyper-ROM with m = 84 is able to achieve a speed-up of ×9.3 compared to
the FOM, still achieving an approximation error equals to the projection error, that is εrel ≈ 10−3.

Table 1. Test case 1, passive inflation of a ventricle. Computational data related to POD-
Galerkin-DEIM with N = 16 and different values of m.

m = 84 m = 127 m = 368
Computational speed-up ×9.3 ×8.0 ×4.3
Avg. CPU time 36 s 42 s 77 s
Time-avg. L2(Ω0)-absolute error 5.3 · 10−5 2.9 · 10−5 2.9 · 10−5

Time-avg. L2(Ω0)-relative error 5.3 · 10−4 2.9 · 10−4 2.8 · 10−4

Figure 6. Test case 1, passive inflation of a ventricle. Average over 20 testing parameters of
relative error εrel (left) and average speed-up (right) of the POD-Galerkin-DEIM hyper-ROM
with N = 16 and different values of m.

5.1.2. Passive inflation and active contraction of a ventricle

The second benchmark takes into account both a varying fiber distribution and contractile forces,
dealing with the inflation and the active contraction of an idealized left ventricle with transversely
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isotropic material properties. Although it is still an idealized test case, the displacement field
reproduces the typical twisting motion of the systole in the left ventricle, caused by the distribution
of the muscular fibers. To compute the fiber orientation in cardiac geometries, suitable rule-based
methods have been developed [49–52], which usually depend on a set of parameter angles. In this
particular case, we consider the method proposed in [53], where αepi and αendo represent possible
values of the rotation angle of the fibers on the epicardium and endocardium, respectively.

Moreover, we surrogate the presence of the active generation forces driving the contraction
mechanics exploiting an active stress approach, and considering anisotropic active tension applied
in the fiber direction only, see Section 2.1. In particular, the parameterized active tension Ta = Ta(t;µ)
in the fiber direction is modeled as a linear function of the form

Ta(t;µ) = T̃a t/T.

To assess the performance of a POD-Galerkin-DEIM hyper-ROM to reduce the myocardium
contraction, we consider as unknown parameters:

• the maximum value of the active tension T̃a ∈ [49.5 · 103, 70.5 · 103] Pa,
• the fiber angles αepi ∈ [−105.5,−74.5]◦ and αendo ∈ [74.5, 105.5]◦,

both related to the active components of the strain energy functions. In particular, higher values of the
active tension correspond to a larger contraction of the cardiac muscle, whilst the fiber angles influence
the twisting motion. All the other parameters are fixed to their reference values, namely b f = 8,
bs = bn = bsn = 2, b f s = b f n = 4, C = 2 · 103 Pa, K = 50 · 103 Pa and p̃ = 15 · 103. Regarding time
discretization, we choose t ∈ (0, 0.25) s and a uniform time step ∆t = 5 · 10−3 s. Given a training set
of ns = 50 points obtained by sampling the parameter space P, we perform a convergence analysis of
the ROM without hyper-reduction by constructing the reduced basis V ∈ RNh×N for different values of
N and computing the associated approximation errors.

Figure 7. Test case 1, passive inflation and active contraction of a ventricle. Decay of the
singular values of the FOM solution snapshots matrix.

From Figure 7, we observe a slower decay of the singular values of Su with respect to the previous
test case of passive inflation (note the different values on the y axis). In fact, using POD tolerances

εPOD ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},
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we obtain the RB dimensions N = 16, 22, 39, 50, 87, 109 and 178, respectively, much larger than
the ones obtained for similar tolerances on the previous test case. This behavior is somehow expected,
as the underlying system dynamics, simulating ventricular contraction and associated torsion, is more
involved than the idealized diastole, in which tissue anisotropy is neglected.

As shown by the results obtained so far, the construction of a ROM is highly problem dependent,
since the parameters considered, e.g., in the constitutive relation, strongly influence the form of the
solution manifold, thus the RB dimension necessary to obtain comparable accuracy between the
different ROMs. The error and the CPU speed-ups averaged over a testing set of 20 parameters are
both shown in Figure 8, as functions of the POD tolerance εPOD. As already discussed, although we
observe lower online CPU times when smaller RB dimensions N are employed, the speed-up achieved
by the ROM without hyper-reduction is negligible. For what concerns the approximation error, we
observe a reduction of almost two orders of magnitude when going from N = 16 to N = 178.

Figure 8. Test case 1, passive inflation and active contraction of a ventricle. Average over 20
testing parameters of relative error εrel (left) and average speed-up (right) of ROM without
hyper-reduction.

Given V ∈ RNh×N with N = 16, we construct the POD-Galerkin-DEIM approximation by
considering n′s = 200 parameter samples. Figure 9 shows the decay of the singular values of SR,
that is, the snapshots matrix of the residual vectors R(Vun,(k)

N (µ`′), t
n;µ`′). We observe that the reported

curve decreases very slowly, so that we expect a large number of basis functions to be required to
correctly approximate the nonlinear operators. In fact, by computing ΦR ∈ RNh×m using

εDEIM ∈ {5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6}

as DEIM tolerances, we obtain m = 303, 456, 543, 776, 902 and 1233, respectively. Higher values
of εDEIM (related to hopefully smaller dimensions m) were not sufficient to guarantee the convergence
of the reduced Newton problem for all the parameter combinations considered. The average relative
error over a set of 20 parameters and the computational speed-up are both reported in Figure 10. In
particular, we observe that the relative error is between 4 · 10−3 and 8 · 10−3, indeed quite close to the
ones reported in Figure 8. In this respect, provided a sufficient DEIM dimension is considered, hyper-
reduction does not impact significantly on the ROM accuracy. DEIM performances are not influenced
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by the size of the sample considered for the residual arrays. Indeed, collecting a smaller number n′s of
samples would only have small effects on the approximation error, as shown in Figure 11.

Similar results are obtained when using a finer mesh with 13025 vertices, corresponding to Nh =

39075 dofs for the FOM. In this case, a reduced basis of dimension N = 16 is computed using εPOD =

10−3, while the POD tolerance εDEIM for the approximation of the nonlinear arrays has to be chosen no
larger than 10−4 to ensure Newton convergence, obtaining m = 385 DEIM terms and a corresponding
approximation error εrel ≈ 5 · 10−2. Also in this case, the highest speed-up achieved by the ROM is
greater than that obtained for the coarser mesh (i.e., ×8 against ×6), suggesting that the POD-Galerkin-
DEIM convenience grows as the dimension of the underlying FOM increases.

Figure 9. Test case 1, passive inflation and active contraction of a ventricle. Decay of the
singular values of the ROM residual snapshots matrix.

Figure 10. Test case 1, passive inflation and active contraction of a ventricle. Average
over 20 testing parameters of relative error εrel (left) and average speed-up (right) of POD-
Galerkin-DEIM with N = 16.
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Figure 11. Test case 1, passive inflation and active contraction of a ventricle. Average on
20 testing parameters of the time-averaged L2(Ω0)-absolute error (left), the time-averaged
L2(Ω0)-relative error (center) and the average speed-up (right) over εDEIM with respect to
the FOM, when n′s = 50 (blue circle), 100 (red square), 150 (green diamond), 200 (orange
downward facing triangle) training samples are used.

Figure 12. Test case 1, passive inflation and active contraction of a ventricle. Evolution in
time of the average L2(Ω0)-relative error for (N,m) = (16, 303) (blue squares) and (N,m) =

(39, 767) (green circles).

Table 2. Test case 1, passive inflation and active contraction of a ventricle. Computational
data related to POD-Galerkin-DEIM with (N,m) = (16, 303) and (N,m) = (39, 767).

εPOD 10−3 (N = 16) 10−4 (N = 39)
εDEIM 5 · 10−4 (m = 303) 10−5 (m = 767)
Computational speed-up ×6.2 ×2.9
Avg. CPU time 58 s 124 s
Time-avg. L2(Ω0)-absolute error 1 · 10−3 2 · 10−4

Time-avg. L2(Ω0)-relative error 7 · 10−3 1 · 10−3

Indeed, when a larger reduced basis is considered, such as in the case of N = 39 basis functions
obtained for εPOD = 10−4 in the case of a FOM with dimension Nh = 19365, a remarkable improvement
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in accuracy is achieved, as shown in Figure 12 and Table 2. However, a higher number of DEIM magic
points is required for the solution of the reduced nonlinear system, ultimately doubling the online CPU
time required to solve the hyper-ROM for each parameter instance.

As a matter of fact, the residual basis dimension m is highly influenced by the size N of the reduced
subspace for the solution, so that a larger basis V requires a greater number of interpolation points to
correctly approximate the reduced nonlinear operators, thus reducing the overall speed-up of the ROM.
Therefore, choosing N = 16 represents a good trade off between accuracy and efficiency. The FOM and
the POD-Galerkin-DEIM ROM solutions computed using m = 303 at different time instants are shown
in Figures 13 and 14 for two parameter values, together with their point-wise difference. We observe
a good agreement between the high-fidelity and the reduced dynamics, with the greatest pointwise
approximation error located near the apex, that is where the greatest displacement is experienced.
About 6 minutes are required in average to solve the FOM for each instance of the parameter, while
the solution of the hyper-ROM requires less than a minute, thus achieving a speed-up equal to ×6.2.

Figure 13. Test case 1, passive inflation and active contraction of a ventricle. FOM
(top) and POD-Galerkin-DEIM (middle) displacements computed at different times for
µ = [61942.5,−77.5225, 87.9075] and difference between them (bottom).
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Figure 14. Test case 1, passive inflation and active contraction of a ventricle. FOM
(top) and POD-Galerkin-DEIM (middle) displacements computed at different times for
µ = [59737.5,−102.3225, 91.1625] and difference between them (bottom).

At last, we consider a higher dimensional parameter space, taking P = 12 input parameters,

µ = [b f , bs, bn, b f s, b f n, bsn,K,C, T̃a, p̃,αepi,αendo] ∈ P ⊂ R12,

as follows:

• the material stiffness in different directions b f ∈ [6.6, 9.4], bs, bn, bsn ∈ [1.65, 2.35], b f s, b f n ∈

[3.3, 4.7],
• the bulk modulus K ∈ [4 · 104, 6 · 104] Pa,
• the multiplicative constant C ∈ [1.5 · 103, 2.5 · 103] Pa,
• the maximum active tension T̃a ∈ [49.5 · 103, 70.5 · 103] Pa,
• the fiber angles αepi ∈ [−105.5,−74.5]◦ and αendo ∈ [74.5, 105.5]◦,
• the steepness of the pressure ramp p̃ ∈ [14 · 103, 16 · 103] Pa.
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We consider ns = 50 and n′s = 75 training parameters sampled in the parameter space P through
LHS for the construction of the FOM solution and the ROM residual snapshots matrices, respectively.
Further details are summarized in Table 3.

Table 3. Test case 1, passive inflation and active contraction of a ventricle, case P = size(µ) =

12. Computational data related to POD-Galerkin-DEIM with N = 19 and m = 574.

εPOD 1e-3 (N = 19)
εDEIM 1e-4 (m = 574)
Computational speed-up ×4.1
Avg. CPU time 87 s
Time-avg. L2(Ω0)-absolute error 3 · 10−3

Time-avg. L2(Ω0)-relative error 2 · 10−3

Despite increasing the number of unknown parameters from 3 to 12, the hyper-ROM dimension N
is almost unaffected by the choice of a higher dimensional parameter space, as the mechanical behavior
during systole is mostly influenced by the active stress and the fiber orientation. To better see this, we
perform a sensitivity analysis in order to quantify the effects of parameter variation on some quantities
of interest, that are outputs y(µ) associated with the PDE solution u(X, t;µ).

A variance-based measure of sensitivity can be obtained, e.g., through the Sobol’ indices. These
latter can be computed by evaluating the underlying model with multiple parameter values and
analyzing the statistical properties of the associated input-output samples. In particular, we define

S i =
Varµ(i)(Eµ∼i

[y(µ) | µ(i)])
Var(y(µ))

(5.1)

S Ti = 1 −
Varµ∼i

(Eµ(i)[y(µ) | µµ∼i
])

Var(y(µ))
(5.2)

for i = 1, . . . , P, where the main effect indices (5.1) represent the main contribution of each input
factor alone to the variance of the output, whereas the total effect indices (5.2) include also the
interactions with the other parameters. Above, Eµ∼i

[ · ] and Varµ∼i
( · ) denote the conditional expectation

and variance, respectively, taken over µ∼i (all parameter components but µ(i)); similarly, Eµ(i)[ · ] and
Varµ(i)( · ) denote the conditional expectation and variance, respectively, taken over µ(i).

In our case, we consider as quantities of interest the displacement of the apex A0 in the direction
perpendicular to the basal plane and the displacement of a point P0 located between the apex and the
base on the epicardium in the direction perpendicular to the basal plane, both evaluated every 10 time
steps (see Figure 15).

We consider Nbase = 50 base samples for the Saltelli method [54], corresponding to Nbase(P + 2) =

700 input-output evaluations, and rely on the POD-Galerkin-DEIM ROM with N = 19 and m = 574
(see Table 3) to speed-up the computations. The average over time of the sensitivity indices related to
the apex A0 and point P0 displacements are reported in Figure 16. From these results, we can conclude
that the most influential parameters are the maximum value T̃a of the active tension and the parameter
αepi related to the fiber orientation at the epicardium.
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Figure 15. Points A0 (red circle) and P0 (blue square) at different times, for a given µ value.

Figure 16. Passive inflation and active contraction of a left ventricle. Average sensitivity
indices for A0 (left) and P0 (right), computed using POD-Galerkin-DEIM ROM with N = 19
and m = 574.

5.2. Idealized full cycle of the left ventricle with a patient specific geometry

Finally, we want to analyze the performances of the POD-Galerkin-DEIM method when the whole
cardiac cycle is taken into account. For the sake of simplicity, we employ suitable analytical time-
dependent functions to represent the influence of the active stress model and blood circulation. In
particular, the active tension Ta(t;µ) and the pressure g(t;µ) are computed as follows:

1) for a fixed set of physiological parameters, we solve the cardiac electromechanics (EM) problem
coupled with a lumped-parameter model for hemodynamics, as done in [55].

2) by performing a cubic spline interpolation of the space-averaged active tension T EM
a (t) and of the

pressure gEM(t) coming from the EM simulation, we obtain the corresponding analytical surrogate
functions T M

a (t) and gM(t), reported in Figure 17.
3) to take into account a parameter-dependence, we define

Ta(t;µ) =
T̃a

max
t∈[0,T ]

T M
a (t)

T M
a (t), g(t;µ) =

p̃
max
t∈[0,T ]

gM(t)
gM(t),

in order to model different maximum active tensions and loading conditions.
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Figure 17. Test case 2, idealized full cycle of the left ventricle with a patient specific
geometry. Space-averaged active tension (left) and blood pressure (right) computed during a
EM simulation and the corresponding fitted curves.

The reference geometry Ω0 ⊂ R
3 is a patient-specific left ventricle, pre-processed from the Zygote

Solid 3D heart model [56] reconstructed from an high resolution computed tomography scan, whose
associated hexahedral mesh with 6167 vertices is reported in Figure 18. The FOM is built usingQ1-FE,
such that the high-fidelity dimension is Nh = 18501. Differently from all other test cases considered so
far, we assume the following boundary conditions, according to [57]:

• Robin boundary conditions at the epicardium Γ
epi
0 (or ΓR

0 ),

P(u)N = −(N ⊗ N)(K⊥u + C⊥∂tu) − (I − N ⊗ N)(K‖u + C‖∂tu),

with K⊥ = 2 · 105, K‖ = C⊥ = 2 · 104 and C‖ = 2 · 103;
• Neumann boundary conditions at the endocardium Γendo

0 (or ΓN
0 ),

P(u)N = −g(t;µ)JF−T N;

• energy-consistent boundary conditions [58] at the base Γbase
0 ,

P(u)N = −
‖JF−T N‖∫

Γbase
0
‖JF−T N‖dΓ

∫
Γendo

0

P(u)NdΓ.

This choice of boundary conditions do not affect the construction of the ROM, since no assumptions
about the form of the FOM are made in the reduction strategy. As for the previous test cases, we
consider the nearly-incompressible Guccione law and adopt the active stress approach. Regarding the
fiber distribution, we employ the rule-based method proposed in [49], depending on parameter angles
αepi, αendo, βepi and βendo. For time discretization, we consider a uniform time step ∆t = 5 · 10−3 s and
set T = 0.8 s, corresponding to the duration of a single heartbeat, resulting in a total number of 160
time iterations. We choose, as unknown parameters, those most affecting cardiac deformation during
systole and diastole, that are,

• the multiplicative factor of the constitutive law C ∈ [0.44 · 103, 1.32 · 103] Pa;
• the active tension parameter T̃a ∈ [49.5 · 103, 70.5 · 103] Pa;
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• the fiber angle at the epicardium αepi ∈ [−75,−45]◦.

The active tension and the fiber angle influence the contraction and the twisting motion typical of the
ventricular systole, whereas C is related to the stiffness of the tissue. All the other parameters are fixed
to their reference values, namely b f = 8, bs = 6, bn = b f n = bsn = 3, b f n = 12, K = 50 · 103 Pa,
p̃ = 15 · 103 Pa, αendo = 60◦, βepi = 20◦ and βendo = −20◦. Computing the high-fidelity solution for
each instance of the parameter required almost 15 minutes.

Figure 18. Test case 2, idealized full cycle of the left ventricle with a patient specific
geometry. Unloaded geometry and computational grid.

Remark 5. Due to the fact that we are neglecting the coupling between mechanics and circulation,
non-physiological pressure-volume loops are obtained, especially in the first time steps of the
heartbeat, corresponding to ventricular systole, which lacks of the isometric contraction phase. In
addition to this, the end-diastolic configuration of the left ventricle should be recovered before starting
the mechanical simulation. However, we point out that our aim is to test and analyze the reduction
methodology on parameterized time-dependent nonlinear PDEs. Moreover, the simulated cardiac
cycle can be regarded as a sufficiently accurate reproduction of both systole and diastole deformations
for the purpose at hand.

For the construction of the reduced basis V, we collect nS = 20 FOM solutions and perform POD
with εPOD = 10−3, obtaining a reduced subspace of dimension N = 28. To build the residual basis, we
perform n′s = 50 ROM simulations and collect the residual snapshots. Since we are using Nt = 160 and
n′s = 50, and at least two Newton iterations are performed at each time step, we end up with a residual
snapshots matrix SR of more than 16000 columns. For this reason, we rely on randomized-SVD to
speed-up the computation of ΦR, by choosing a priori the number of DEIM basis, rather the the POD
tolerance εDEIM (see Algorithm 4). Table 4 summarizes the average errors computed over a testing set
of 20 random parameters and the CPU times obtained using m = 850, 1000 and 1200, while volume
and pressure-volume loop for m = 850 are reported in Figure 19. Here, POD-Galerkin-DEIM outputs
are compared to those of the FOM for two different values of the parameters vector. We point out that
no convergence of the reduced Newton system has been obtained for all testing parameters when using
smaller residual basis.
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Table 4. Test case 2, idealized full cycle of the left ventricle with a patient specific geometry.
Computational data related to POD-Galerkin-DEIM with N = 28 and different values of m.

m = 850 m = 1000 m = 1200
Computational speed-up ×3.0 ×2.8 ×2.7
Avg. CPU time 285 s 303 s 311 s
Time-avg. L2(Ω0)-absolute error 1 · 10−3 1 · 10−3 1 · 10−3

Time-avg. L2(Ω0)-relative error 8 · 10−3 8 · 10−3 8 · 10−3

Figure 19. Test case 2, idealized full cycle of the left ventricle with a patient specific
geometry. Ventricular cavity volume (left) and pressure-volume loop (right) for parameter
values µ1 = [1.078, 50.025,−66.75] (top) and µ2 = [0.682, 69.975,−54.75] (bottom).

In Figure 20 we finally report the POD-Galerkin-DEIM solutions at four time instants, for two
different values of the parameter vector µ = [C, T̃a,α

epi], respectively. Moreover, the corresponding
pointwise difference between the high-fidelity solution and its reduced-order approximation is also
reported, showing that the error does not increase over time.
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Figure 20. Test case 2, idealized full cycle of the left ventricle with a patient specific
geometry. Lines 1–2: POD-Galerkin-DEIM solution (top) and error (bottom) computed at
different times for µ = [1.078, 50.025,−66.75]; lines 3–4: POD-Galerkin-DEIM solution
(top) and error (bottom) computed at different times for µ = [0.682, 69.975,−54.75].

6. Conclusions

In this paper we have introduced and investigated a projection-based reduced order modeling
framework to deal with problems arising in cardiac mechanics, which present great challenges from
a numerical standpoint due to the complex material behavior. The POD-Galerkin ROM, equipped
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with DEIM hyper-reduction, has enabled to accurately approximate the high-fidelity solution of
parameterized nonlinear, time-dependent problems in elastodynamics. Examples have been shown
related to test cases reproducing different phases of the cardiac cycle on both idealized and realistic
left ventricle geometries. The hyper-ROMs proposed rely on (i) POD for the construction of a low-
dimensional trial subspace to represent the problem solution, (ii) a Galerkin projection to generate,
in a physically consistent way, the reduced order model, and (iii) suitable hyper-reduction techniques
such as the discrete empirical interpolation method to enhance the assembling of nonlinear terms (with
respect to the solution, to input parameters, or to both). In the considered test cases, POD provides
low-dimensional subspace, still preserving a sufficient fidelity: despite their highly nonlinear nature,
elastodynamics problems can be effectively reduced by exploiting projection-based strategies, with
POD-Galerkin ROMs showing very good accuracy even in presence of a handful of basis functions.
In this respect, mechanical problems do not pose the same issue as transport, wave, or convection-
dominated phenomena, such as those related with cardiac electrophysiology, where coherent structures
propagate over time and the RB method may yield inefficient ROMs, necessitating a high number of
basis functions.

Performing hyper-reduction by means of the DEIM technique allows to achieve good results in
terms of computational speed-ups of the ROMs with respect to the FOM without affecting the overall
approximation error. In particular, since only a handful of basis functions is required for solution-space
reduction, we expect even higher gains when finer computational meshes are used. Furthermore, we
point out that relying on randomized-SVD allows to deal with massive datasets of nonlinear arrays
which would be otherwise difficult to handle with deterministic techniques, such as POD.

A serious issue is instead represented by the assembling of reduced operators in this framework,
and the projection of the approximated operators through DEIM onto the RB space. In fact, even if
the nonlinear quantities are assembled onto a reduced mesh, a large residual basis may be needed to
ensure the convergence of Newton method for complex applications, overall compromising the ROM
efficiency, as most of the online CPU time is required for assembling the reduced residual vector. In
addition to the fact that hyper-reduction aims at approximating vanishing terms with a global basis,
the highly nonlinear nature of the constitutive laws makes the residual terms orders of magnitude more
expensive to be approximated than the parameter-to-solution map, regarding both the number of basis
functions involved in their expansions, and the computational time required at the offline and the online
stages.

This observation suggests the idea of relying on surrogate models to perform operator
approximation, overcoming the need to assemble the nonlinear terms onto the computational mesh.
Pursuing this strategy, will allow us to rely on physics-based (thus, consistent) ROMs built through a
POD-Galerkin RB method, however avoiding the computational burden entailed by classical hyper-
reduction strategies. The analysis and the application of deep learning-based methods to perform
hyper-reduction will make the object of forthcoming publications.
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Appendix
A. Proper orthogonal decomposition

Let sh : P → Vh be a parameter-dependent function and sh(µ) ∈ RNh the corresponding vector of
dofs, where Nh = dim(Vh). For a given set of training parameters S =

{
µ1, . . . ,µns

}
⊂ P, with ns < Nh,

we define the snapshots matrix
S =

[
s1 | . . . | sns

]
∈ RNh×ns ,

where si = sh(µi), i = 1, . . . , ns. Proper Orthogonal Decomposition (POD) aims at approximating the
manifold Ms = {sh(µ) ∈ Vh : µ ∈ P} identified by the image of sh with a low-dimensional linear
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subspace, retaining as much as possible of the information gathered in the snapshots. To achieve this
goal, the singular value decomposition (SVD) of S,

S = UΣZT ,

is computed, where U = [ξ1| . . . |ξNh
] ∈ RNh×Nh and Z = [ζ1| . . . |ζns

] ∈ Rns×ns are orthogonal matrices
collecting column-wise the left and the right singular vectors, respectively. The diagonal matrix Σ =

diag(σ1, . . . , σr) ∈ RNh×ns contains all singular values of S, sorted in descending order σ1 ≥ · · · ≥ σr >

0, where r ≤ min(Nh, ns) is the rank of S, so that we can write

S =

r∑
j=1

σ jξ jζ
T
j .

The N-dimensional POD basis V =
[
ξ1 | . . . | ξN

]
is obtained by collecting the first N columns of U

corresponding to the N largest singular values (see Algorithm 3). At the basis of POD, the Schmidt-
Eckart-Young theorem (originally introduced for integral operators) provides a criterion for the best
low-rank approximation of a given matrix of rank r. In fact, the basis V ∈ RNh×N is such that

VVT S =

N∑
j=1

σ j

has rank N ≤ r and satisfies the following optimality property:

‖S − VVT S‖2F = min
A∈RNh×Nh
rank(A)≤N

‖S − A‖2F =

r∑
j=N+1

σ2
j , (A.1)

where ‖·‖F is the Frobenius norm. Furthermore, thanks to (A.1), the singular values of the snapshots
matrix provide an heuristic criteria for choosing the basis dimension N, which can be computed as the
minimum integer satisfying the condition∑N

i=1 σ
2
i∑r

i=1 σ
2
i

≥ 1 − ε2
POD, (A.2)

where εPOD > 0 is a given tolerance.

Algorithm 3 Proper orthogonal decomposition (POD)
INPUT: S ∈ RNh×ns OUTPUT: V ∈ RNh×N

1: Perform SVD of S, i.e., S = UΣZT

2: Select basis dimension N as the minimum integer fulfilling condition (A.2)
3: Construct V collecting the first N columns of U

B. Randomized singular valued decomposition

Randomized Singular Valued Decomposition (randomized-SVD) provides a non-deterministic
alternative to POD. Randomization offers, in fact, a powerful tool for performing low-rank matrix
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approximation, especially when dealing with massive data sets. The randomized approach usually
beats its classical competitors in terms of computational speed-up, accuracy and robustness [59].
The key idea of randomized SVD is to split the task of computing an approximated singular value
decomposition of a given matrix into a first random stage, and a second deterministic one, see
Algorithm 4. The former exploits random sampling to construct a low-dimensional subspace that
captures most of the action of the input matrix; the latter is meant to restrict the given matrix to this
subspace and then manipulate the associated reduced matrix with classical deterministic algorithms, to
obtain the desired low-rank approximations.

Algorithm 4 Randomized-SVD
INPUT: S ∈ Rm×n, target rank k ∈ N
OUTPUT: UΣZT ≈ S
stage 1

1: Generate a Gaussian matrix Θ ∈ RNh×k

2: Compute Q ∈ RNh×k whose columns form an orthonormal basis for the range of SΘ and such that

‖S −QQT S‖2 ≤ min
rank(X)≤k

‖S − X‖2,

e.g., using the QR factorization.
stage 2

1: Form S̃ = QT S ∈ Rk×n

2: Compute SVD of S̃ = ŨΣZT

3: Set U = QŨ

This randomized approach is particularly convenient when the snapshots matrix is high-
dimensional, i.e., when Nh and ns are large. In fact, finding the first k dominant singular-values for
a dense input matrix of dimension Nh × ns, requires O(Nhns log(k)) floating-point operations for a
randomized algorithm, in contrast with O(Nhnsk) flops for a classical one. Finally, Algorithm 4 can
be adapted to solve the following problem: given a target error tolerance ε > 0, find k = k(ε) and
Q ∈ RNh×k satisfying

‖S −QQT S‖2 ≤ ε.

C. Discrete empirical interpolation method (DEIM)

The DEIM algorithm for the approximation of a generic nonlinear function f : P → RNh , f = f(τ)
(where τ = t and/or µ), as originally proposed in [37], is outlined as follows†:

1) construct a set of snapshots obtained by sampling f(τ) at random values τ1, . . . , τns and apply POD
to extract a basis from these snapshots, i.e.,

RNh×m 3 ΦF = POD(
[
f(τ1), . . . , f(τns)

]
, εDEIM),

where εDEIM > 0 is a given tolerance such that a condition similar to (A.2) holds;
†For simplicity, we consider vector representations of functions, assuming that all quantities have been discretized on a FE mesh.
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2) iteratively select m � Nh indices I ⊂ {1, . . . ,Nh}, corresponding to a subset rows of ΦF , using a
greedy procedure, which minimizes the interpolation error over the snapshots set;

3) given τ < {τ1, . . . , τns}, impose the interpolation conditions at the selected entries I

ΦF |Ic(τ) = f(τ)|I , (C.1)

Here ΦF |I ∈ R
m×m is the matrix formed by the I rows of ΦF ; as a result, we obtain

f(τ) ≈ fm(τ) := ΦFΦ−1
F |I

f(τ)|I .

Algorithm 5 reports the greedy procedure to determine the DEIM interpolation points. At each step
k ∈ {2, . . . ,m}, the k-th magic point is selected as the quadrature point maximizing the (absolute value
of the) difference between the basis vector φk and its current approximationΦF ( : , 1: k − 1)ψ relyiı̀ng
on the k − 1 computed magic points. Magic points are hierarchical and non-repeated by construction.

Algorithm 5 Discrete empirical interpolation method (DEIM)
INPUT: ΦF = [φ1, . . . ,φm] ∈ RNh×m

OUTPUT: I = {i1, . . . , im}

1: Find i1 = arg maxi{|φ1|i}
Nh
i=1

2: Set I = {i1}

3: for k = 2, . . . ,m do
4: Solve ΦF ( : , 1: k − 1)|Iψ = φk |I
5: Compute r = φk −ΦF ( : , 1: k − 1)ψ
6: Find ik = arg maxi{|r|i}Nh

i=1
7: Set I ← I ∪ {ik}

8: end for

Condition (C.1) can be generalized to the case where more sample indices than basis function are
considered, leading to a gappy POD reconstruction. he solution to the least-squares problem

c(τ) = arg min
x∈Rm

‖f(τ)|I −ΦF |Ix‖
2
2

would yield fm(τ) = ΦFΦ
†

F |I
f(τ)|I , where the Moore-Penrose inverse of a full column rank matrix

A ∈ Rn×m is A† := (AT A)−1AT .
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