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Abstract. The human genome is traditionally represented as a DNA
sequence of three billion base pairs. However, its intricacies are captured
by many more complex signals, representing DNA variations, the ex-
pression of gene activity, or DNA’s structural rearrangements; a rich
set of data formats is used to represent such signals. Different con-
ceptual models explain such elaborate structure and behavior. Among
them, the Conceptual Schema of the Human Genome (CSG) provides
a concept-oriented, top-down representation of the genome behavior –
independent of data formats. The Genomic Conceptual Model (GCM)
instead provides a data-oriented, bottom-up representation, targeting a
well-organized, unified description of these formats. We hereby propose to
join these two approaches to achieve a more complete vision, linking (1)
a concepts layer, describing genome elements and their conceptual con-
nections, with (2) a data layer, describing datasets derived from genome
sequencing with specific technologies. The link is established when spe-
cific genomic data types are chosen in the data layer, thereby triggering
the selection of a view in the concepts layer. The benefit is mutual, as
data records can be semantically described by high-level concepts and
exploit their links. In turn, the continuously evolving abstract model can
be extended thanks to the input provided by real datasets. As a result, it
will be possible to express queries that employ a holistic conceptual per-
spective on the genome, directly translated onto data-oriented terms and
organization. The approach is here exemplified using the DNA variation
data type but is applicable to all genomic information.
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1 Introduction

Representing the human genome DNA as a three billion base pairs’ sequence is
just a first attempt to capture the complex mechanisms of the life engine that
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is underlying all our characteristics and behaviors. Many other aspects, such as
DNA mutations, the expression of gene activity, DNA’s structural rearrange-
ments, long distance contacts between DNA regions, and so on are now used
to extract complex signals from the DNA, exploiting Next Generation Sequenc-
ing [30]; a rich set of data formats is used to represent such signals. The study of
genomic information has practical implications on a number of fields such as can-
cer genomics, population genomics, and precision medicine. More importantly,
being able to interoperate different signals in the context of a same analysis
can provide insights and compute properties of the genome that remain other-
wise hidden. Genomic data integration has so far been addressed mainly with
operational approaches [18,1], whereas a holistic view – that encompasses the
meaning of different genomic regions – has not been embraced yet. Conceptual
models (CMs) have supported the effort of explaining such elaborate structure
and behavior since 2000 [24,6]. However, genome data are frequently generated
in practical lab settings without following any sound process of conceptual char-
acterization. This creates a gap between “real” genome data CMs (that represent
“genome data as it is”) and pure genome CMs (that model “data as it should
be”). Components obtained from the first kind of CMs must be connected with
their corresponding components in the CMs that represent higher-level concep-
tual genome knowledge. We refer to the process of connecting concepts with their
associated data as a “top-down” process, while we use the term “bottom-up”
for connecting data to concepts.

A number of works, summarized by the Conceptual Schema of the Human
Genome (CSG, [23]) produced by the PROS research center, provide a concept-
oriented, top-down representation of the genome that is independent from the
data formats, aiming to give a template of how the genome is supposed to be-
have. This perspective has contributed many valuable results devoted to building
a general understanding of the language of life [12]. Another initiative, repre-
sented by the Genomic Conceptual Model (GCM, [5]) produced by the GeCo
project [10], provides a data-oriented, bottom-up representation, targeting a high-
level, abstract description of these formats, focusing on what data capture, how
they capture it, to favour a joint use of the signals. With this approach, impor-
tant achievements have been obtained in the area of data integration and search
systems for genomics researchers [4,8].

By construction, the CSG model evolves according to upcoming require-
ments, while the GCM model evolves when new datasets arrive. In this work, we
propose to join these two independent directions by explaining how, together,
they can provide a more complete vision of the steps involved within the full-
stack research that goes from the collection of data to the understanding of life
mechanisms. On the one hand, we configure the CSG as the model that describes
concepts, now renamed as the concepts layer, i.e., the template of the genome,
where concepts are genome elements. On the other hand, we employ the GCM
as the model that describes data, that is the data layer, where classes are real
instances of datasets derived from tissues, cell lines, or individual cells that have
undergone a sequencing process. The data layer is organized in Datasets, each
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containing multiple Samples. Samples may contain multiple SampleRegions
that are records representing fragments of the genome with specific measured
properties. Each of these records can be linked to the corresponding concept in
the concepts layer. New links are established when specific data types or exper-
iments are chosen (in the data layer) triggering the selection of specific views
(of the concepts layer). The benefit is two-fold: 1) the GCM is extended by the
power of concepts, which enable high-level semantic-aware querying; 2) the CSG
is empowered by its links to real-world data, that allow building computations
on experimental instances and obtain biologically-relevant results.

In the following, we present how our background approaches to conceptual
modeling in genomics deal with concepts and data (Sec. 2); we describe our
vision of a unified conceptual model including a concepts and a data layer, and
then illustrate our method for the linking of the two layers (Sec. 3); to exemplify
the approach, we focus on the knowledge concerning DNA variation and we show
how the two models can be pragmatically connected in this case (Sec. 4). This
method is applicable to other genomic data types; in a more general framework,
it will be possible to develop additional views and to use them together, towards
a more encompassing conceptual perspective on the human genome (Sec. 5).

2 Background

As of today, two main approaches have tackled genomics from a conceptual
modeling perspective, as briefly described in the following.

PROS: a top-down approach. The Research Center on Software Produc-
tion Methods (PROS) at the Universitat Politecnica de Valencia has invested
many efforts in studying the genome from a conceptual modeling perspective,
introducing the first Conceptual Schema of the Human Genome in 2011 [23]
and producing several extensions since then [28,12]. The schema now results
into a rich map of concepts and relationships that support the holistic under-
standing of different knowledge modules. The most recent version, called the
Conceptual Schema of the Genome v3 (CSG) is reported in [13]. The employed
method is considered top-down, as the main objective stands in identifying rel-
evant concepts and their connections, independently on how datasets are really
represented in available databases and sources.

GeCo: a bottom-up approach. The approach devised within the data-driven
Genomic Computing (GeCo) group, funded by the ERC AdG 693174 (2016-
2021), has instead adopted a bottom-up approach, meaning that models are
developed for representing existing data, with the purpose of making data more
interoperable and ready for large-scale computations. Open data sources are
analyzed and evaluated, understanding their underlying models; selected inter-
esting datasets are imported within an integrative repository [4]. Information is
divided between: region data (representing actual genomic elements, measured
by experiments – using the Genomic Data Model, GDM [18]) and metadata
(descriptions of genomic experiments – captured by the Genomic Conceptual
Model, GCM [5]), which make data searchable [8]. Finally, the modeled datasets
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attempt to resolve data-level interoperability, thereby enabling powerful queries
using, e.g., the GenoMetric Query Language (GMQL system [17]).

Concepts
Data

GeCoPROS
GCM+GDMCSG

Open processed data sources(ill)represented data sources

Fig. 1. Schematization of the two compared approaches.

Comparing the two approaches. We compare the two existing approaches
under two perspectives: 1) how they deal with the concepts representing the
knowledge of genomics; 2) how they manage their instantiation in the form
of data. Genomic information can be interpreted as a dual system that is ap-
proached in two opposite directions, as observed in Fig. 1: on one side, the
possibility to connect data to existing concepts that have been modeled in an
abstract way (top-down approach), on the other side the possibility to build
concepts based on already available data (bottom-up approach). Traditionally,
PROS has adopted a top-down perspective, starting from modeling biological en-
tities and only after checking if underlying data sources exist that represent such
concepts, possibly unveiling problems in the quality of data structures definition
and values. GeCo, instead, has adopted a bottom-up approach, starting from the
observation of available data sources and only later building models to system-
atize, organize and interoperate such existing data, with the purpose of building
easy-to-use systems that facilitate domain experts’ work. With the intention of
connecting these two perspectives, our work contributes a comprehensive ap-
proach that integrates them in order to facilitate genome data management by
using a sound CM support.

3 Methodological Framework

We describe a general two-layer schema that contains:
• a concepts layer capturing the knowledge available about the human genome

mechanisms (inspired by the CSG [13]);
• a data layer representing genomic data, with its types and experiments,

captured by information structures and formats (inspired by the original
GCM [5] for metadata and the Genomic Data Model [18] for region data).

Making an analogy with the triptych paradigm of Mayr and Thalheim [19], we
can interpret our data layer as the one of “languages”, enabling the narrative
representation of our concepts layer (the “mental reasoning”). Written records
(artifact world, our genomic data) stay on one level and – when instantiated –
point directly to beliefs and perspectives (mental world, our genome concepts).

The data layer. The data layer (schematized in Fig. 2) is centered on the
Sample concept. It holds two metadata perspectives: the biological one contains



A Comprehensive Approach for the Conceptual Modeling of Genomic Data 5

the Replicate to which a sample belongs, part of a BioSample, extracted
from a Donor; the organizational one has the CaseStudy under which the
sample was produced, which is contained in a greater Project. Samples are
built when an ExperimentType (e.g., DNA-Seq, RNA-Seq, or ChIP-Seq) is
run, expressing information about the sequencing technology and representing a
specific genomic data type (e.g., DNA variation, gene expression quantification,
or binding sites of DNA-associated proteins). With respect to the original GCM,
we also have that samples contain multiple SampleRegions, typically a file row
representing a fragment of the genome on a specific chromosome strand, with
start and stop coordinates. All the regions in a sample follow the same Schema.
Note that these two classes were added to the data layer (w.r.t. the original
GCM) as they are necessary to manage the linking between the two layers. Many
samples are grouped into a Dataset, which is homogeneous in the schema and
in the experiment type.

The concepts layer. The concepts layer is based on the last version of the
CSG [13], including five modules, respectively describing i) the structure of the
human genome; ii) protein synthesis; iii) changes in the sequence referring to a
reference sequence (the “Variation module”); iv) information and sources related
to the elements of the conceptual schema; and v) human metabolic pathways.
The schema is manually-generated and incrementally enriched as new mecha-
nisms are understood by a team of conceptual modelers or when new research
findings are published. Genome knowledge is under continuous progress and un-
derstanding the human genome is an open big scientific challenge. For this rea-
son, completeness is obviously not guaranteed and a mechanism to periodically
handle needed extensions is employed. We consider this a “work-in-progress”
model, where knowledge representation evolves, based on incoming requirements.
While building the link with the data layer, it is likely that extensions to the
CSG will be required, reinforcing the relevance of accomplishing the essential
data-concepts genomic connection that this paper develops.

Data type-driven linking of the two layers. Connections are built between
the data and the concepts layers. By selecting specific genomic data types (based
on the represented sequencing experiment type) we trigger a mechanism that
invokes a specific portion of the concepts schema, as described by Fig. 2. In their
previous description within the GCM [5], data types were forced into containers
(i.e., Samples) that flattened their semantics for integration and processing
benefits; instead, here each data type is “freed” from its container, separately
handled, analyzed, and mapped onto its explanation in conceptual terms.

The concepts layer and the data layer are connected by means of relations
between concepts (i.e., a variation of DNA) and instances of data layer classes
(i.e., the specific data record). For instance, a SampleRegion measured through
a DNA-Seq experiment, can be represented by its related concept, i.e., a variation
at position 43,044,295–43,170,245 of the negative strand of chromosome 17.

Much in the spirit of Ontology-Based Data Access (OBDA [7]) approaches
and in the fashion of ISGE [14], we envision the primary use mechanism of
our two-layer schema as follows: 1) Identification of a genomic data type
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Fig. 2. Link between the concepts layer and the data layer by means of connections
between sample regions and concepts.

(ExperimentType in the data layer); 2) Selection of the related – possibly
multiple – Datasets, which have a corresponding Schema that is followed by
the SampleRegions of the dataset (again, in the data layer); 3) GEneration
of a view (in the concepts layer) built around a central concept that represents
the SampleRegion of the identified data type. Intuitively, the identification of
a genomic data type (within an experiment type) triggers the generation of a
specific view of interrelated concepts, comprising only entities and relationships
that contribute to explain the content of that data type.

4 Method Application: Modeling DNA Variation

Many datasets are used in the daily practice of geneticists and computational bi-
ologists. These represent various types of information captured from the genome
and the study of cohorts of patients, including information on the variation
of DNA (population variation, its association with phenotype, somatic muta-
tions, copy number variation, or structural rearrangements); the behavior of
RNA (gene, miRNA, or isoform expression); or epigenetic signals (such as DNA
methylation, DNA binding, or DNase I Hypersensitive sites).

For instantiating our method and describing it in more detail, we focus on
one specific type of data, i.e., DNA variation, which includes both population
variation and cancer-derived somatic mutations. We carefully considered the
DNA variation module of CSG and applied appropriate changes to instantiate
the related concepts layer view. The color code in Fig. 3 highlights which com-
ponents have been added (green) or removed (red) with respect to the original
model (blue classes) based on [13]; these changes are consolidated in an updated
version of the CSG, which is next described so as to explain the evolved concepts
layer in full detail.

The obtained schema has 21 entity classes and 2 association classes, with
six generalizations and three compositions (one of which is double). The most
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Fig. 3. Conceptual view dedicated to the DNA variation data type. Blue classes are
derived from the CSG [28]; green classes, attributes, and relationships have been added
here; red attributes and relationships are removed for the purpose of this effort.

important class is the Variation one, with a date, name, description, and type
(deletion, insertion or substitution); it is located on a specific Strand (with pos-
itive or negative polarity), which contributes to compose a Chromosome (with
a name). Chromosomes are related to a Species (with a taxonomy definition
and scientific/common name), made of Locations (with name, description, and
descriptors), such as Tissues. On a strand, several ChromosomeElements
can be hosted (with their name and description). These include Transcript-
ableElements, such as Genes (with their alternative gene synonyms) and
RegulatoryElements that regulate genes, such as Enhancers. Elements
present possibly multiple ElementPositions (start and end positions on the
chromosome, the genes on which they insist, and the information source from
which the position has been obtained); these are measured with respect to an As-
sembly, i.e., a reference system based on a community-defined sequence (with a
name and date). Each strand of the observed chromosome has a Chromosome-
Sequence, which is also determined based on the assembly.

Variations may be specialized according to how their position is considered. If
the position is not determined, we call the variation Unknown; else it is Known.
Known variations have alleles called reference (the base reported by the reference
sequence in that position), alternative (the mutated base), and ancestral alleles.
If the exact position is available, we call the variation Precise; if the position
is reported within a range, we call it Imprecise. Precise variations record the
VariationPosition – with start and end coordinates – as an association class.
Imprecise variations are also related to an assembly, but their association is
characterized by a VariationRange class that sets start and end positions
within intervals of confidence (called ci start and ci end).
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In the context of a Population (with name, geographic region, and size),
a known variation has an AlleleFrequency, with a frequency indication re-
porting the percentage of presence of the allele within the considered population.
Variations can alter the functionality of genes; we represent this with the Anno-
tation class, with an impact, effect, responsible allele, and information source.

In Fig. 3, we applied notable additions (green elements) to the original CSG:

• A Strand class was added such that a chromosome is made of two strands
and a Variation is exhibited only on one of them (i.e., variations can be
read from 5’ to 3’ or from 3’ to 5’).

• The ancestral attribute was added in the Known class to represent the allele
of the last common ancestor of primates.
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Fig. 4. Representation of the DNA variation information comprising the concepts view
and related datasets.
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• The concept previously represented by the Imprecise class (i.e., variation
for which coordinates were unknown) was updated to include variations
with uncertain positions (within confidence intervals, represented by ranges),
whereas the new Unknown class was added to capture the original concept.

• The Known variation class was added to generalize properties of both Pre-
cise and Imprecise variations.

• The source attribute was added in the Annotation class to identify the
origin of such assertion (e.g., a research group or automated annotation
software).

• The original association class ElementPosition was transformed into a
regular class, to overcome the limitation of only allowing one-to-one corre-
spondences between the two linked classes. This enables, for example, the
characterization of a same ChromosomeElement in terms of coordinates
(in the same assembly) provided by different authoritative sources (e.g., Ref-
Seq or GENCODE).

When a full correspondence between the concepts layer and the data layer is
established, the complete schema is obtained as in Fig. 4. Here, connections are
made between Donor (data layer) and Species (concepts layer); Biosample
(data) and Tissue (concepts): SampleRegion (data) and Variation (con-
cepts); and Dataset (data) and Assembly (concepts).

4.1 Mapping with Real Datasets

Many different data representations may be used to indicate same concepts. Se-
mantic integration can be achieved by using the conceptual layer as a pivot of
data representations. To practically discuss how concepts can be instantiated
into data records in real world scenarios, we consider the use of datasets rep-
resenting human variation as collected within two important research projects.
The Cancer Genome Atlas (TCGA,[31]) is a landmark cancer genomics pro-
gram that sequenced and characterized over 11,000 patients of primary cancer
samples, analyzing them with different experiments, including one dedicated to
somatic mutations. The 1000 Genomes Project (1KGP, [26]) is an international
research effort established to create a catalogue of common human germline vari-
ation, using samples from healthy people. In the GMQL data repository [4,17]
(http://gmql.eu/gmql-rest/), we analyzed all the data fields contained in
the datasets’ schemas that refer to these data types. Specifically, we considered
1000 Genomes Project datasets (for both the hg19 and GRCh38 assemblies)
and TCGA datasets related to masked somatic mutations (for both the hg19
and GRCh38 assemblies [9]).

To demonstrate a possible implementation of the proposed approach, we em-
ploy a relational database representation. The top part of Table 1 describes the
schemas of the tables designed starting from the presented model. Note that
most tables are directly derived from a translation from the class diagram into
an RDBMS logical schema. The central Sample class (a file in the repository)
has one-to-many SampleRegions, which correspond to a specific Schema (an
auxiliary table with a row for each dataset, in the example two rows for TCGA

http://gmql.eu/gmql-rest/
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Data.Donor(source id,species,age,gender,ethnicity)
Data.BioSample(source id,type,tissue,cell line,is healthy,disease)
...
Data.Sample(source id,size,date,checksum,content type,platform,pipeline,url)
Data.SampleRegion1KGP(chr,start,stop,strand,AL1,AL2,ref,alt,mut type,length,id,quality,filter,DP,AF,AC,

AFR AF,AMR AF,EUR AF,EAS AF,SAS AF,AA,IMPRECISE,CIEND,CIPOS,“germline”)
Data.SampleRegionTCGA(chrom,start,end,strand,gene symbol,entrez gene id,variant classification,

variant type, reference allele, tumor seq allele1, tumor seq allele2, dbsnp rs,“somatic”)

Concept.Variation(gen(),name,gen(),type)
⊇ Data.SampleRegion1KGP( , , , , , , , ,type, ,name, , , , , , , , , , , , , , , )

Concept.Variation(date,name,description,type)
⊇ Data.SampleRegionTCGA( , , , , , , ,type, , , ,name, )

Concept.Known(reference,alternative,ancestral)
⊇ Data.SampleRegion1KGP( , , , , , ,reference,alternative, , , , , , , , , , , , , ,ancestral, , , , )

Concept.Known(reference,f(reference,allele1,allele2),null)
⊇ Data.SampleRegionTCGA( , , , , , , , ,reference,allele1,allele2, , )

Concept.Imprecise() ⊇ Data.SampleRegion1KGP( , , , , , , , , , , , , , , , , , , , , , ,true, , , )
Concept.Precise() ⊇ Data.SampleRegion1KGP( , , , , , , , , , , , , , , , , , , , , , ,false, , , )
Concept.VariationRange(start,ci start,end,ci end)

⊇ Data.SampleRegion1KGP( ,start,end, , , , , , , , , , , , , , , , , , , , ,ci end,ci start, )
Concept.VariationPosition(start,end)

⊇ Data.SampleRegion1KGP( ,start,end, , , , , , , , , , , , , , , , , , , , , , , )
Concept.VariationPosition(start,end)

⊇ Data.SampleRegionTCGA( ,start,end, , , , , , , , , , )
Concept.Species(f(scientificName),scientificName,f(scientificName))

⊇ Data.Donor( ,scientificName, , , )
Concept.Location(name, gen(), f(is healthy,disease))

⊇ Data.Biosample( ,“tissue”,name, ,is healthy,disease)
Concept.Chromosome(name) ⊇ Data.SampleRegion1KGP(name, , , , , , , , , , , , , , , , , , , , , , , , , )
Concept.Chromosome(name) ⊇ Data.SampleRegionTCGA(name, , , , , , , , , , , , )
Concept.Strand(polarity) ⊇ Data.SampleRegion1KGP( , , ,strand, , , , , , , , , , , , , , , , , , , , , , )
Concept.Strand(polarity) ⊇ Data.SampleRegionTCGA( , , ,strand, , , , , , )
Concept.ChromosomeElement(name,gen())

⊇ Data.SampleRegionTCGA( , , , ,name, , , , , , , , )
Concept.Gene(geneSynonym)⊇ Data.SampleRegionTCGA( , , , , ,geneSynonym, , , , , , , )
Concept.Assembly(name,f(name))

⊇ Data.Dataset( , , ,name, )
Concept.AlleleFrequency(allele,frequency)

⊇ Data.SampleRegion1KGP( , , , , , , ,alt, , , , , , ,AF, , , , , , , , , , , )
Concept.Annotation(effect,f(effect),f(ref,allele1,allele2))

⊇ Data.SampleRegionTCGA( , , , , , ,effect, ,ref,allele1,allele2, , )
Concept.Population-AlleleFrequency(“African”,“Africa”,1418,allele,frequency)

⊇ Data.SampleRegion1KGP( , , , , , , ,allele, , , , , , , , ,frequency, , , , , , , , , )
...

Table 1. Top part: relational schema of the data layer, with the 1000 Genomes Project
population variation dataset and the TCGA masked somatic mutations dataset. Bot-
tom part: examples of mapping rules for building the relational schema of the concepts
layer; we assume Population-AlleleFrequency to be a single table obtained as the
join of tables derived from the Population and AlleleFrequency classes.

and two rows for 1KPG). For sample regions we employ one table for each differ-
ent dataset. For simplicity, in this example we refer to SampleRegionTCGA
and SampleRegion1KGP (only considering their GRCh38 versions).

Mapping rules are used to describe how datasets information can be mapped
into the concepts schema, considering the view that is specific for DNA variation.
The bottom part of Table 1 provides the mappings for the TCGA and 1KGP
datasets. Each mapping rule is a logic formula (in Datalog-like syntax [11]) with
variables in its left end side (LHS) that are computed from the variables in its
right end side (RHS). The order of the variables follows the one indicated in
the upper part of the table (e.g., the SampleRegion1KGP table has 26 fields
and the SampleRegionTCGA table has 13 fields). As an example, the entity
Variation of the concepts schema is filled using data from the SampleRe-
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gion1KGP table, using the attributes in its 9th and 11th position (originally
called mut type and id) that map to the type and name attributes of the output
Variation table. Similarly, the same Variation entity is filled using also data
from the SampleRegionTCGA table, using the attributes in its 8th and 12th
position (originally called variant type and dbsnp rs) that map to the type and
name attributes of the output Variation table. Note that we wrote a different
rule for each pair of output table (in the concepts layer) and input table (1KGP
or TCGA in the data layer), when the mapping is meaningful.

In some cases, we need to derive new fields in the concepts layer schema as
functions of original fields. One such example is in the Known table: here, the
second field alternative requires combining the values of three fields in the in-
put table SampleRegionTCGA. For this, we use the notation f(...). Moreover,
names or descriptions are generated from the system admin (with gen()). A par-
ticular case is the one of Population and AlleleFrequency tables: here the
computation of the attributes of the second table (allele and frequency) depends
on the values of the first. The values coming from the input table (e.g., AFR AF
from the SampleRegion1KGP schema) denote the allele frequency only for a
specific population. We thus represent this case using, as output table, the joined
table that contains together the information of the population matching with its
allele/frequency information. Here we did not report concepts layer’s tables that
could not be directly mapped to any field of the two data sources considered
in this example; this is the case of Chromosome, for instance, whose attribute
sequence can be filled by inspecting authoritative sources such as RefSeq [22].

4.2 Examples of Applications

This section reports examples of queries that are enabled by concept-to-data
linking, showing that: a) data improves the representation of genome concepts
within a specific view (bottom-up); b) concepts and their connections improve
the knowledge generation process allowing connections across views generated
by different data types (top-down). Examples 1 and 2 demonstrate case (a) while
examples 3 and 4 show case (b).

Ex 1. Extract positions of chromosome elements provided by different sources.
Intuitively, one would expect that a specific gene was located in a uniquely de-
fined range on a chromosome. However, its positions are identified by means of
complex measurements which depend on the used technology or employed bioin-
formatics algorithm/parameters. Indeed, when such a query is posed to real data
sources, we find multiple distinct positions. For instance, in the hg19 assembly,
the PAQR6 gene is located in chromosome 1 at 156,213,111–156,217,908 accord-
ing to RefSeq, whereas it is located at 156,213,205–156,217,881 according to
GENCODE. The concepts layer adequately captures these aspects and it allows
to pose a generic query while extracting heterogeneous definitions from the data.

Ex 2. Extract mutations whose position is not precisely identified. The concepts
layer includes the possibility to represent known imprecise variations, which are
commonly found in variation data sources such as the 1000 Genomes Project. For
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instance, a 297 bases-long variation could be located between position 14,477,084
(with a range of uncertainty that spans from 22 bases before, up to 18 bases after)
and position 14,477,381 (with uncertainty between 12 and 32 bases).

Ex 3. Extract mutations located on enhancers associated to breast cancer. Let
us consider the study of a patient genome targeting presence of mutations on
BRCA1, i.e., a specific gene that is associated to breast cancer, located at po-
sition 43,044,295–43,170,245 of the negative strand of chromosome 17. From
data, it can be observed that no relevant mutations are present in this range.
However, in terms of clinical significance, in addition to genes, it is critical to
consider also their regulatory elements. In this case, mutations should be tested
also on the enhancers of BRCA1. Several data sources can provide this informa-
tion. For example, the GH17J043124 enhancer is reported by GeneCards [29] at
positions 43,123,800–43,127,201 and by ENCODE [27] at positions 43,124,247–
43,126,961, being currently associated to breast cancer [2]. Note that mutation
datasets (such as TCGA’s ones) may sometimes report correspondence between
variations and their enclosing genes; while this is a quite standard information,
less studied elements, such as enhancers, are not typically considered. This con-
nection, however, can be made by employing the concepts layer representation.
The schema allows to make explicit a relation between positions and elements
(including genes and enhancers) that remains instead hidden in the data.

Ex 4. Extract orthologous genes for humans and other species. By exploiting the
connection between Donor (data layer) and Species (concepts layer) it would
be possible to select genes of Homo Sapiens and genes of, e.g., canine models,
which are orthologous (i.e., genes in different species that evolved from a common
ancestral gene by speciation). Notably, over 58% of genetic diseases seen in the
dogs closely depict the phenotype of human diseases caused by mutations in
orthologous genes [15]. By exploiting the findings available for canine genes,
candidates for gene-driven therapies may be found, e.g., for Duchenne muscular
dystrophy [21].

5 Discussion and Conclusion

In this work we have described the concept-driven and data-driven approaches to
conceptual modeling for genomics, that have guided the development of CSG and
GCM. We then described a method for linking these models so as to generate
an encompassing conceptual model that provides both the concept and data
viewpoints. We applied our approach to the DNA variation case, showing that
the new conceptual model can support interesting queries and applications, both
acting on a single dataset and on several integrated datasets.

This work inspires future developments within the two projects and sig-
nificant future joint activities that will integrate several available open data
sources [3]. For what concerns the CSG model, the most substantial issue that
will be addressed as future work is the inclusion of the notion of “individual”.
Indeed, DNA variation data, as well as many other genomic signals – here not
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discussed – do express information of this kind. Examples taken from the ana-
lyzed domain include 1) the person’s genotype, which comprises the allele1 and
allele2 attributes, concerning on which of the two chromosome copies the asso-
ciated variant is located; 2) the origin (i.e., nature) of the variation, which could
be somatic (occurring from damage to DNA in an individual cell during a per-
son’s life, not passed from parent to child) or germline (occurring in a sperm/egg
cell, copied into every cell in the body, possibly passing from generation to gen-
eration). This may, for instance, enable studies on overlaps between variations
that are recorded both as somatic and as germline in public databases [20]. The
missing notion of “individual” is being investigated within the CSG working
group and the upcoming results will be reported on this effort as well. For what
concerns the GCM model, work has been so far driven by the requirement of
creating a large repository (hosting, at the time of the writing, about 550 thou-
sand files within a large database of 9 terabyte [17]). As a consequence of this
initial choice, today GCM misses opportunities for conceptual data linking, that
will drive its future extensions.

Regarding the joint effort described here, the most important challenge
stands in generating views for all most relevant genomic data types, while care-
fully designing their links. In this paper, we show the variation-related informa-
tion, but we will next take data types one by one and generate extensions of
the concepts layer view by view. In this direction, we envision a holistic system
that, based on the accurate view-specific contents, is able to provide a synergical
perspective on the genome. The system will enable the combined use of multiple
views, with selective mechanisms that activate one area or the other.

Users will then be allowed to ask questions that, for example, connect datasets
on variation at the DNA level to variation at the amino acid level (i.e., proteins).
More complex queries could compare somatic and germline variations (by means
of “differential mutation analysis”) to identify genes that are likely involved
in a given disease [25] or identify susceptibility to tumorigenesis by exploiting
genome-wide association studies [16]. More broadly, queries could span from
mutations to their interaction with phenotype evidence, using their position
within annotated genome elements, possibly also connecting it to interactions
with the epigenome or the tridimensional organization of the genomic chain.
All of these queries would benefit from the approach described in this work,
facilitating in a natural way the interoperability between different data types
connecting their corresponding views.
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