TOWARDS RELIABLE AND COST-EFFECTIVE DNS OVER RIBLETS

F. Gattere ${ }^{1}$,
A. Chiarini ${ }^{1}$,
G. M. Cavallazzi ${ }^{1}, \quad$ A. Rossi ${ }^{1}$, M. Quadrio ${ }^{1}$

European Drag Reduction and Flow Control Meeting 2022
${ }^{1}$ Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano
${ }^{2}$ Institute for Fluid Mechanics, Karlsruhe Institute of Technology
${ }^{3}$ Dipartimento di Ingegneria Industriale, Università di Salerno

DR PERFORMANCE: IMPORTANCE OF THE SHARP CORNER

The drag reduction performance of the riblets depends on the sharpness of their tip.

Adapted from Garcia-Mayoral \& Jimenez, Phil. Trans. R. Soc. A (2011)

ANALYTICAL CORRECTION OF THE CORNER SINGULARITY

Luchini, "Higher-order difference approximations of the Navier-Stokes equations", J. Comput. Phys. (1991)

Stokes Problem:

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\frac{1}{\rho} \nabla P=\nu \nabla^{2} \mathbf{u} \\
\nabla \cdot \mathbf{u}=0 \\
\downarrow \\
\text { Analytical solution }
\end{gathered}
$$

volume for correction

ANALYTICAL CORRECTION OF THE CORNER SINGULARITY

- || to the edge

$$
0=v\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

$$
y_{\leftarrow}^{z} x
$$

$$
\downarrow
$$

1D Laplace problem

$$
u(r, \theta)
$$

ANALYTICAL CORRECTION OF THE CORNER SINGULARITY

- \perp to the edge

$$
\begin{aligned}
& \frac{\partial P}{\partial y}=v\left(\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right) \\
& \frac{\partial P}{\partial z}=v\left(\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)
\end{aligned}
$$

$$
\underset{y}{y}
$$

$$
\begin{aligned}
& v(r, \theta)=u_{r} \sin (\theta)+u_{\theta} \cos (\theta) \\
& w(r, \theta)=u_{r} \cos (\theta)-u_{\theta} \sin (\theta) \\
& p(r, \theta)
\end{aligned}
$$

2D Stokes problem

- Switch from cartesian to polar coordinates
- Assume variables separation
- Impose the boundary conditions
- Choose in the spectrum of exact solutions the dominant one, uniquely identified by the requirement that it must reduce with continuity to a linear velocity when the surface is flat

ANALYtical solution: Implementation into a DNS solver

Integration of the analytical corner correction with a IBM solver (Luchini, Eur. J. Mech. B Fluids (2016))

- correction imposed to $\nu \nabla^{2} \mathbf{u}$ and ∇P
- correction imposed implicitly
- $r=2 \delta y$

VALIDATION: PROTRUSION HEIGHTS

- For laminar flows, the protrusion height $\Delta h=h_{\|}-h_{\perp}$ can be computed exactly
- For turbulence flows, drag reduction performance is proportional to Δh

VAlidAtion: PROTRUSION HEIGHTS

Protrusion heights without and with corner correction with $8(\boldsymbol{\top})$ and $16(\boldsymbol{\top})$ points per riblet (n):

SIMULATION PARAMETERS

We performed two sets of DNS of a turbulent half channel flow with the wall covered by riblets at CPG by an IBM code written in CPL language.

Experimental result: $D R=5 \%$ (Bechert et al., J. Fluid Mech. (1997))

TURBULENT RESULTS: DRAG REDUCTION PERFORMANCES

Friction coefficient for the cases

- smooth
- with riblets
- without corner correction
- with corner correction
with $8(\boldsymbol{\bullet})$ and $16(\boldsymbol{\wedge})$ points per riblet (n).

DNS with analytical correction: $D R=4.8 \%$

Preliminary extension to 3D sinusoidal riblets

=

3D RIBLETS: ISSUES

- Global reference frame: decoupling into 1D Laplace and 2D Stokes problems fails
- Local reference frame: decoupling is possible, but velocity components are intermixed
- discretization becomes explicit
- discretization becomes challenging due to staggered grid

$$
\frac{x}{y_{2}} \underset{\text { flow }}{\mathbf{T}}
$$

Assumption: local misalignment of the riblets section is small

$$
\left(\beta(x)_{\max }=2^{\circ}, \lambda_{x}^{+}=1500\right)
$$

$$
\left\{\begin{array}{l}
u_{G} \\
v_{G}
\end{array}\right\}=\left[\begin{array}{ll}
f\left(\beta, c_{\text {lap }}, c_{s t}\right) & g\left(\beta, c_{\text {tap }}, c_{s t}\right) \\
p\left(\beta, c_{\text {lap }}, c_{s t}\right) & q\left(\beta, c_{\text {lap }}, c_{s t}\right)
\end{array}\right]\left\{\begin{array}{l}
u_{L} \\
v_{L}
\end{array}\right\}
$$

Solution: limitation to the diagonal components of the correction matrix

3D RIBLETS: PRELIMINARY RESULTS

Friction coefficient for the cases

- smooth
- with riblets
- without corner correction
- with corner correction
with
- 8 (
- 16(

points per riblet

Conclusions

An analytical correction for the corner singularity was applied to the turbulent flow over ribelts

- reliable: increased accuracy in computing Δh
- effective: much fewer points per riblets are needed for a given accuracy obtaining
- DR of 4.8% for the reference configuration
- DR of $+30 \%$ for sinusoidal riblets compared to the reference configuration.

Analytical Corner Correction: Stokes problem with streamfunction-vorticity

 FORMULATION$$
\left\{\begin{array} { l }
{ \nabla \cdot \mathbf { u } = 0 } \\
{ \nabla ^ { 2 } \mathbf { u } - \nu ^ { - 1 } \nabla p = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\nabla^{2} \boldsymbol{\psi}=\boldsymbol{\omega} \\
\nabla^{2} \boldsymbol{\omega}=0 .
\end{array}\right.\right.
$$

The steady $\psi-\omega$ Stokes system in polar coordinates is

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}=\omega \\
& \frac{\partial^{2} \omega}{\partial r^{2}}+\frac{1}{r} \frac{\partial \omega}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \omega}{\partial \theta^{2}}=0 .
\end{aligned}
$$

Analytical CORNer CORRECTION: POLAR COORDINATES

By imposing a variable separation for $\psi(r, \theta)=P(r) F(\theta)$ and $\omega(r, \theta)=R(r) G(\theta)$, calling $\chi=\mathrm{G}^{\prime \prime} / \mathrm{G}$ and $k=-\sqrt{\chi}<0$:

$$
\begin{aligned}
& r^{2} \mathrm{R}^{\prime \prime}+r \mathrm{R}^{\prime}-\chi \mathrm{R}=0 \\
& \mathrm{G}^{\prime \prime}+\chi \mathrm{G}=0
\end{aligned} \quad \Rightarrow \quad \mathrm{R}=a r^{-\sqrt{\chi}}+b r^{\sqrt{\chi}}=a r^{k}
$$

since $r \ll 1$, we obtain:

$$
\begin{gathered}
\omega(r, \theta)=r^{k}\left[C_{1} \cos (k \theta)+C_{2} \sin (k \theta)\right] \\
\psi(r, \theta)=r^{k+2}\left[D_{1} \cos ((k+2) \theta)+D_{2} \sin ((k+2) \theta)+D_{3} \cos (k \theta)+D_{4} \sin (k \theta)\right]
\end{gathered}
$$

Analytical CORNER CORRECTION: BOUNDARY CONDItIONS

The coefficients D_{i} are given after the following boundary and symmetry conditions are provided:

$$
\begin{array}{lr}
u_{r}\left(r, \pm \varphi_{w}\right)=0 & \text { no penetration } \\
u_{\theta}\left(r, \pm \varphi_{w}\right)=0 & \text { no-slip } \\
u_{r}(r, \theta)=-u_{r}(r,-\theta) & u_{r} \text { odd in } \theta \\
u_{\theta}(r, \theta)=u_{\theta}(r,-\theta) & u_{\theta} \text { even in } \theta .
\end{array}
$$

Analytical Corner Correction: BOUNDARy conditions

The symmetry conditions lead to $D_{2}=D_{4}=0$, and the definition of the stream-function gives u_{r} and u_{θ} depending on $\gamma=k+1$ as

$$
\begin{aligned}
& u_{r}(r, \theta)=\frac{1 \partial \psi}{r} \frac{\partial \theta}{\partial \theta}=-r^{\gamma}\left[D_{1}(\gamma+1) \sin ((\gamma+1) \theta)+D_{3}(\gamma-1) \sin ((\gamma-1) \theta)\right] \\
& u_{\theta}(r, \theta)=-\frac{\partial \psi}{\partial r}=-(\gamma+1) r^{\gamma}\left[D_{1} \cos ((\gamma+1) \theta)+D_{3} \cos ((\gamma-1) \theta)\right]
\end{aligned}
$$

The boundary conditions are used to find the ratio between the coefficients D_{3} and D_{1}, that is

$$
\begin{equation*}
\frac{D_{3}}{D_{1}}=\frac{\cos \left((\gamma+1) \varphi_{w}\right)}{\cos \left((\gamma-1) \varphi_{w}\right)} \tag{1}
\end{equation*}
$$

We set $D_{1}=1$.

Analytical Corner Correction: boundary conditions

The last constant to find is γ, whose value is given solving numerically $\operatorname{det}(\mathbf{Q}(\gamma))=0$.

$$
\underbrace{\left[\begin{array}{cc}
(\gamma+1) \sin \left((\gamma+1) \varphi_{w}\right) & (\gamma-1) \sin \left((\gamma-1) \varphi_{w}\right) \\
\cos \left((\gamma+1) \varphi_{w}\right) & \cos \left((\gamma-1) \varphi_{w}\right)
\end{array}\right]}_{\mathbf{Q}(\gamma)}\left[\begin{array}{l}
D_{1} \\
D_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The solution depends on the geometry considered: for the problem at hand, with $\varphi_{w}=\pi / 6$, the result is $\gamma \approx 0.51222$.

Analytical Corner Correction: pressure

The last unknown for the Stokes problem is the pressure:

$$
\begin{gathered}
\nu\left[\frac{\partial^{2} u_{r}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{r}}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2} u_{r}}{\partial \theta^{2}}-2 \frac{\partial u_{\theta}}{\partial \theta}-u_{r}\right)\right]-\frac{1}{\rho} \frac{\partial p}{\partial r}=0 \\
\nu\left[\frac{\partial^{2} u_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2} u_{\theta}}{\partial \theta^{2}}+2 \frac{\partial u_{r}}{\partial \theta}-u_{\theta}\right)\right]-\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta}=0 \\
\frac{1}{\nu} p(r, \theta)=-4 \gamma D_{3} r^{\gamma-1} \sin ((\gamma-1) \theta) .
\end{gathered}
$$

Analytical Corner Correction: Pressure

The expression for p can not be used itself, because it is not guaranteed that p is symmetric and continuous inside the body. A correction can be implemented to choose a continuous branch for the solution, considering $\tilde{\theta}=\theta f(\theta)$ where $f(\theta) \neq 1$ only if $|\theta|>\varphi_{w}$, so that p is given by

$$
\begin{aligned}
& \frac{1}{\nu} p(r, \theta)=-4 \gamma D_{3} r^{\gamma-1} \sin ((\gamma-1) \theta f(\theta)) \\
& f(\theta)= \begin{cases}1+\frac{|\theta|-\pi}{\pi-\varphi_{w}}\left(\frac{1}{\gamma-1}-1\right) & \text { if }|\theta|>\varphi_{w} \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

ANALITICAL CORRECTION: LAPLACE PROBLEM

The Laplace problem reads:

$$
\nabla^{2} u=0 \Rightarrow \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0,
$$

and a variable separation leads to the general solution

$$
u(r, \theta)=r^{m}[C \cos (m \theta)+D \sin (m \theta)]
$$

No-slip boundary conditions, namely $u\left(r, \pm \varphi_{w}\right)=0$, lead to $\cos \left(m \varphi_{w}\right)=0$ and so $m \varphi_{w}=\pi / 2$. The symmetry condition, $u(r, \theta)=u(r,-\theta)$, gives $D=0$ and the final expression for u, namely

$$
u=C r^{m} \cos (m \theta)
$$

C here is a free constant that can be set to 1 to have a unique solution.

Analytical Corner Correction: implementation

$$
u^{(t+\Delta t)}=u^{(t)}+(\text { lapl }+\mathrm{NL}+\nabla p) \Delta t-u^{(t+\Delta t)} i m b c \Delta t \Longrightarrow u^{(t+\Delta t)}=\frac{u^{(t)}+R H S \Delta t}{1+i m b c \Delta t}
$$

Being $u_{l o c}$ and $p_{\text {loc }}$ the analytical solutions for the velocity and the pressure respectively, considering the problem for the x-direction one gets

$$
d_{u}=\underbrace{\left(\frac{\operatorname{lapl}\left(u_{\operatorname{loc}}(x, \cdot)\right)}{\operatorname{Re}}-\frac{p_{\text {loc }}(x+\Delta x, \cdot)-p_{\text {loc }}(x, \cdot)}{\Delta x}\right) \frac{1}{u_{\text {loc }}(x, \cdot)}}_{\text {corrstokes }} u(x, \cdot),
$$

where lapl() is the laplacian corrected with the true distance from the body. The Navier-Stokes problem here is not so different: the terms to add inside imbc are a contribution from the Laplace problem in u, corr lapl, and from the Stokes problem in v and w, corr stokes .

Analytical Corner Correction: rotation

Considering $\left(u^{\prime}, v^{\prime}\right)$ in the local reference frame and (u, v) in the global one, the following additional rotation should be performed:

$$
u^{\prime}=\cos (\beta) u+\sin (\beta) v, \quad v^{\prime}=\cos (\beta) v-\sin (\beta) u
$$

The imbc coefficients in the local reference frame were already found for the straight riblets as

$$
d_{u^{\prime}}=\operatorname{corr}_{\text {lapl }} u^{\prime}, \quad d_{v^{\prime}}=\operatorname{corr}_{\text {stokes }} v^{\prime}
$$

but to define the corrections in the cartesian global reference frame the two components get mixed into the 2×2 non-diagonal system.

Analytical Corner Correction: rotation

$$
\begin{gathered}
{\left[\begin{array}{l}
d_{u} \\
d_{v}
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2}(\beta) \operatorname{corr}_{\text {lapl }}+\sin ^{2}(\beta) \operatorname{corr}_{\text {stokes }} & \left(\operatorname{corr}_{\text {lapl }}-\operatorname{corr}_{\text {stokes }}\right) \sin (2 \beta) / 2 \\
\left(\operatorname{corr}_{\text {stokes }}-\operatorname{corr}_{\text {lapl }}\right) \sin (2 \beta) / 2 & \cos ^{2}(\beta) \operatorname{corr}_{\text {stokes }}+\sin ^{2}(\beta) \operatorname{corr}_{\text {lapl }}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] .} \\
\left\{\begin{array}{l}
d_{u}=\left(\cos ^{2}(\beta) \operatorname{corr}_{\text {lapl }}+\sin ^{2}(\beta) \operatorname{corr}_{\text {stokes }}\right) u \\
d_{v}=\left(\cos ^{2}(\beta) \operatorname{corr} \text { stokes }+\sin ^{2}(\beta) \operatorname{corr}_{\text {lapl }}\right) v .
\end{array}\right.
\end{gathered}
$$

Protrusion Heights

	nppr	$h_{\\|}$	$(\mathrm{err} \%)$	h_{\perp}	$(\mathrm{err} \%)$	Δh	$(\mathrm{err} \%)$
Standard	8	0.1537	(-10.4)	0.1254	$(+54.8)$	0.02831	(-68.7)
+ Correction	8	0.1683	(-1.9)	0.0811	$(+0.2)$	0.0872	(-3.7)
Standard	16	0.1639	(-4.4)	0.1028	$(+26.9)$	0.06111	(-32.5)
+ Correction	16	0.1702	(-0.7)	0.0812	$(+0.3)$	0.0890	(-1.7)

Table 1: Results of the validation for straight riblets with the immersed boundary correction only (Standard) and with the addition of the corner correction (+ Correction). Errors are estimated as $(h-\bar{h}) / \bar{h}$.

Protrusion Heights

$\bar{h}_{\\|}$	\bar{h}_{\perp}	$\Delta \bar{h}$
0.17150	0.08099	0.09051

Table 2: Protrusion heights reference values for $h / s=\sqrt{3} / 2$.

Skin Friction Coefficient and U_{b} - Straight

	n	U_{b}	$\left(\Delta U_{b}^{+} \%\right)$	$C_{f} \times 10^{3}$	$\left(\Delta C_{f} / C_{f, 0} \%\right)$
Standard	8	15.62	(-2.7)	8.20	$(+5.7)$
+ Correction	8	16.58	$(+3.3)$	7.27	(-6.3)
Standard	16	16.14	$(+0.1)$	7.67	(-0.1)
+ Correction	16	16.54	$(+2.6)$	7.31	(-4.8)

Table 3: U_{b}^{+}and C_{f} for the straight case. ΔU_{b}^{+}and ΔC_{f} are evaluated considering the smooth channel simulation with the same δy^{+}of the case considered.

Skin Friction Coefficient and U_{b} - Sinusoidal

	n	U_{b}	$\left(\Delta U_{b}^{+} \%\right)$	$C_{f} \times 10^{3}$	$\left(\Delta C_{f} / C_{f, 0} \%\right)$
L Standard	8	16.28	$(+1.4)$	7.55	(-2.7)
L + Correction	8	16.75	$(+4.4)$	7.13	(-8.1)
L Standard	16	16.43	$(+1.9)$	7.41	(-3.5)
L + Correction	16	16.67	$(+3.4)$	7.19	(-6.4)

Table 4: U_{b}^{+}and C_{f} for the sinusoidal cases. ΔU_{b}^{+}and ΔC_{f} are evaluated considering the smooth channel simulation with the same δy^{+}of the case considered.

