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Abstract
CFGAN and its family of models (TagRec, MTPR, and CRGAN) learn to generate personalized and

fake-but-realistic preferences for top-N recommendations by solely using previous interactions. The

work discusses the impact of certain differences between the CFGAN framework and the model used

in the original evaluation. The absence of random noise and the use of real user profiles as condition

vectors leaves the generator prone to learn a degenerate solution in which the output vector is identical

to the input vector, therefore, behaving essentially as a simple auto-encoder. This work further expands

the experimental analysis comparing CFGAN against a selection of simple and well-known properly

optimized baselines, observing that CFGAN is not consistently competitive against them despite its high

computational cost. This work is an extended abstract of the paper presented in [1].
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1. Introduction

Evaluation studies of previous works are fundamental to validate previous claimed progress.

Several works have indicated the importance of such studies [2, 3, 4, 5, 6] for researchers and

practitioners. This work presents an evaluation study of the most notable generative model

applied in Recommender Systems: Collaborative Filtering GAN (CFGAN) [7].
1

CFGAN [7] is a recommendation model based on Generative Adversarial Networks (GANs). It

consists of two fully-connected feed-forward neural networks trained in an adversarial setting:

a generator and a discriminator. Figure 1 illustrates the adversarial training of CFGAN. The

generator learns to generate user profiles describing the preference of users toward items. The

discriminator learns to distinguish between real user profiles and those created by the generator.

Training of CFGAN converges when the generator creates fake but realistic user profiles. For a
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Figure 1: Training process of CFGAN. 𝐺, 𝐷, 𝑧 and 𝑐 are the generator network, discriminator network,
random noise, and condition vectors, respectively. Real profiles are not masked.

given user, CFGAN constructs their recommendations by selecting the top-N items with the

highest generated preference score.

This work presents and discusses the results of several experiments on CFGAN with the

goal of addressing two research objectives. First, to describe inconsistencies found between

the formulation of CFGAN and the implementation of it used in [7]. Second, to replicate

the claimed progress made in [7] by measuring the CFGAN quality under a traditional top-N

recommendation scenario against properly-tuned baselines. The discussions presented here are

aligned with the exhortation given in [8]: research works should focus on understanding and

analyzing the proposed models.

2. Inconsistencies in CFGAN

Figure 1 presents the architecture and training process of CFGAN as described in the reference

of CFGAN [7]. From the figure, two vectors are part of the architecture of CFGAN: the random

and condition vectors, denoted as 𝑧 and 𝑐, respectively. This work highlights inconsistencies

between the implementation and the reference CFGAN presented in [7]: the use of user profiles

as the condition vector and the absence of random noise for the empirical evaluation. These

inconsistencies raise concerns about the model’s ability to generalize and provide personalized

recommendations.

First, the condition vector is used to provide personalized recommendations. To achieve

this, this vector is encoded with users features, e.g., location, social information, identifiers,

among others. Due to the collaborative nature of the datasets used in the experiments of the

reference CFGAN [7], the user profiles are used as condition vectors, i.e., the data points that

the generator and discriminator learn from. Using the user profiles as the condition vector

makes both networks prone to learn trivial solutions. Essentially, the generator fundamentally

becomes an auto-encoder and the discriminator may degenerate into learning a function that

compares the condition with the real or generated profile.

Second, from a theoretical standpoint, the random noise is required on traditional GANs to



explore several points and to create a mapping between the random to the data spaces. The

random noise vector is also part of the CFGAN reference and it serves the same purpose as for

traditional GANs. However, the implementation of CFGAN in [7] removes the random noise

from the model. Due to the absence of random noise, CFGAN is trained on highly sparse user

profiles without the exploration of different input spaces. Furthermore, removing the random

noise implicitly makes the assumption user profiles are static over time. As a consequence,

CFGAN is less robust to evolving users preferences and dataset shifts [9].

3. Experimental Methodology

This work presents an evaluation study comprised of several experiments on CFGAN. The goal

of this evaluation study is two-fold. First, to replicate the progress claims made in [7], where

“replicability” is defined as in the ACM Artifact Review and Badging, version 1.1.
2

Second, to

measure the effects in recommendation quality caused by the inconsistencies between CFGAN

description and its implementation. The supplemental material provided in [7] solely contain

the implementation of CFGAN and its data splitting, training, and evaluation. The details of the

experimental methodology of the evaluation study is as follows:

Datasets and Splits: The experiments used the same open-source datasets and random holdout

splits in [7], i.e., a sampled version of Ciao [10], and ML100K and ML1M versions of Movie-

lens [11]. A validation split was created for hyper-parameter tuning purposes following the

same split-creation steps as in [7].

Evaluation: All recommenders were evaluated on traditional accuracy and beyond-accuracy

metrics [2] in the standard top-N recommendation scenario. Hyper-parameters were searched

using bayesian search with 16 random cases, 50 total cases, and optimizing NDCG [2].

Baseline Recommenders: Neighborhood-based (Item KNN and User KNN) [2], graph-based

(𝑅𝑃 3
𝛽 ) [12], auto-encoders (SLIM ElasticNet [13] and EASE R [14]), and machine learning

recommenders (PureSVD [15] and MF BPR [16]). The description of these recommenders, their

hyper-parameters, and their ranges is found in [2].

CFGANRecommenders: CFGAN as implemented in [7] was optimized. Two different variants

were trained using the optimal hyper-parameters of the previous: CFGAN with random noise,

and CFGAN using user identifiers as condition vectors.
3

4. Results and Discussion

Table 1 shows accuracy and beyond accuracy metrics of baseline and CFGAN recommenders on

the ML1M dataset.
4

Results on other datasets are consistent with this dataset except otherwise

noted. From the table, it can be seen that at least two baselines have higher accuracy metric

2

Available online at https://www.acm.org/publications/policies/artifact-review-and-badging-current.
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Due to space limitations, this work omits the list of hyper-parameters of CFGAN.
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Due to space limitations, only a subset of accuracy and beyond-accuracy metrics are shown.
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Table 1
Accuracy and beyond-accuracy metrics for tuned baselines and CFGAN on the ML1M dataset at
recommendation list length of 20. Higher accuracy values than CFGAN models reached by baselines
in bold. ItemKNN and UserKNN use asymmetric cosine. CFGAN uses early-stopping. CFGAN UI is
CFGAN with user identifiers as condition vector. CFGAN RN is CFGAN with random noise vector.

PRECISION RECALL MRR NDCG
COVERAGE

ITEM

UserKNN 0.2891 0.2570 0.6595 0.3888 0.3286
ItemKNN 0.2600 0.2196 0.6254 0.3490 0.2097
RP3beta 0.2758 0.2385 0.6425 0.3700 0.3427
PureSVD 0.2913 0.2421 0.6333 0.0516 0.2439
SLIM ElasticNet 0.3119 0.2695 0.6724 0.4123 0.3153
MF BPR 0.2485 0.2103 0.5753 0.3242 0.3126
EASE R 0.3171 0.2763 0.6795 0.4192 0.3338

CFGAN 0.2955 0.2473 0.6222 0.3799 0.2167

CFGAN UI 0.1459 0.1118 0.3695 0.1831 0.0291
CFGAN RN 0.2915 0.2425 0.6211 0.3760 0.2021

than CFGAN. In particular, User KNN, SLIM ElasticNet, and EASE R have relative higher

NDCG than CFGAN by 2.34%, 8.53%, and 10.34%, respectively. Furthermore, these more

accurate baselines also trained faster than CFGAN, with differences in training time between

two or three orders of magnitude. The results indicate that the progress claims made in [7]

could not be replicated in the experiments of this evaluation study.

Regarding the absence of random noise, the results of the experiments are varied. Across

datasets and variants, including random noise to CFGAN (CFGAN RN in Table 1) led to both

relative increases or decreases in accuracy without a clear pattern.

Clear patterns resulted by changing the condition vector from user profiles to user identifiers

(CFGAN UI in Table 1). Particularly, across datasets and variants, CFGAN UI consistently

obtained relative lower accuracy metrics with respect to the base CFGAN. These results impose

the following dichotomy. On one hand, using user profiles as condition vector may lead to

both networks learn a trivial solution, as discussed in Section 2. On the other hand, using

user identifiers as condition vectors when learning from pure collaborative data is possible on

CFGAN at the cost of providing accurate recommendations.

Further studies are needed to address the recommendation quality of CFGAN and the incon-

sistencies presented in this work. For instance, a revision of the architecture of CFGAN can

be addressed in future works. In this work, the results suggest that the current architecture

does not work when changing the condition vectors to be the user identifiers. All these aspects

are still open research questions and addressing will be beneficial for the maturity of this

recommendation model.
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