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Abstract—In the emerging high mobility Vehicle-to-Everything
(V2X) communications using millimeter Wave (mmWave) and
sub-THz, Multiple-Input Multiple-Output (MIMO) channel es-
timation is an extremely challenging task. At mmWaves/sub-
THz frequencies, MIMO channels exhibit few leading paths in
the space-time domain (i.e., directions or arrival/departure and
delays). Algebraic Low-rank (LR) channel estimation exploits
space-time channel sparsity through the computation of position-
dependent MIMO channel eigenmodes leveraging recurrent train-
ing vehicle passages in the coverage cell. LR requires vehicles’
geographical positions and tens to hundreds of training vehicles’
passages for each position, leading to significant complexity and
control signalling overhead. Here we design a DL-based LR
channel estimation method to infer MIMO channel eigenmodes in
V2X urban settings, starting from a single LS channel estimate
and without needing vehicle’s position information. Numerical
results show that the proposed method attains comparable Mean
Squared Error (MSE) performance as the position-based LR.
Moreover, we show that the proposed model can be trained
on a reference scenario and be effectively transferred to urban
contexts with different space-time channel features, providing
comparable MSE performance without an explicit transfer learn-
ing procedure. This result eases the deployment in arbitrary
dense urban scenarios.

Index Terms—MIMO, Deep learning, Channel estimation,
V2X, Millimeter-wave, sub-THz, 6G

I. INTRODUCTION

M ILLIMETER Wave (mmWave) (30 − 100 GHz) and
sub-THz (100 − 300 GHz) bands arose as the leading

solution to overcome the bandwidth scarcity occurring in the
sub-6 GHz EM spectrum, e.g., 0.41 − 7.125 GHz in 5G
New Radio (NR) Frequency Range 1 (FR1). In particular,
mmWaves in the 24.25−52.6 GHz range are designated for 5G
NR FR2 [1], while sub-THz W- and D-bands will be the pillars
of 6G paradigm by 2030, to accommodate the increasing ca-
pacity requirements such as for Vehicle-to-Everything (V2X)-
enabled services [2]. By increasing the carrier frequency, the
propagation is affected by an orders-of-magnitude increase in
the path-loss, inducing coverage reduction in Non Line-Of-
Sight (NLOS) scenarios and a sparse communication channel
characterized by few significant paths in the Space-Time (ST)
domain of Directions of Arrival/Departure (DoAs/DoDs) and
delays [3]–[5]. In this regard, Multiple-Input Multiple-Output
(MIMO) systems, enabled by reduced antenna footprints at
mmWave and sub-THz, are used to counteract the path-loss by
beamforming strategies at both Transmitter (Tx) and Receiver
(Rx) [6].

In MIMO systems, channel knowledge is essential for
designing the correct Tx and Rx precoding/combining. Chan-
nel estimation methods can be classified as non-parametric,
such as Least Squares (LS) or Minimum Mean Square Error
(MMSE) [7], or parametric, e.g., Compressive Sensing [8],
MUltiple SIgnal Classification (MUSIC) [9], or Estimation
of Signal Parameters via Rotational Invariance Technique
(ESPRIT) [10], [11]. For non-parametric approaches, the goal
is to estimate the complex coefficients of the channel. LS
channel estimation is known to be inaccurate in low Signal-to-
Noise Ratio (SNR) conditions and large MIMO settings when
the number of unknowns scales with the number of antennas
and the bandwidth. The MMSE method shows superior per-
formance, although it requires the knowledge of the Channel
Covariance Matrix (CCM) and the correlation matrix of the
received signals. Considering the challenge in acquiring CCM
and covariance matrix of the received signals, the LS method is
preferred over MMSE in practical deployments. Indeed, legacy
multi-carrier systems, such as Orthogonal Frequency Division
Multiplexing/Multiple Access (OFDM/OFDMA) 5G NR FR2
radio interface systems, leverage LS MIMO channel estimation
from known pilot sequences [12], [13]. Nevertheless, paramet-
ric methods explore the physical structure of the propagation
channel and estimate these channel parameters, i.e., angles of
arrival/departure, delays, Doppler, and gain of each path. The
class of non-parametric methods, in general, requires more
training overhead and shows robust performance to the antenna
array structure and residual hardware impairments [7]. On the
other hand, the class of parametric methods requires lower
training overhead to perform channel estimation but guarantees
acceptable performances only for a sparse channel model and
perfect hardware calibration. Residual hardware impairments,
which are typical of practical systems, can lead to detrimental
performance as described in [14], [15].

An alternative to a parametric channel estimation is based on
algebraic theory. Algebraic Low-Rank (LR) methods combine
high accuracy with an inherent robustness to hardware im-
pairments [16], [17]. LR operate on multiple pilot sequences
transmitted from a single (or multiple) collaborative User
Equipment (UE) and collected by a fixed Base Station (BS),
where each pilot transmission shares the same DoAs, DoDs
and delays, while single paths’ fading amplitudes are assumed
to vary according to the Doppler spectrum. Indeed, the ensem-
ble of received pilot sequences are used to compute the spatial
and temporal modes of the MIMO channel to filter new pilot
signals to retrieve the LR channel estimate [17].
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From an algebraic point of view, LR only requires the
stationarity of the ST channel eigenmodes, and there is no
need to explicitly estimate DoAs, DoDs and delays, as the
channel modes are unstructured, resulting more robust to
antenna calibration issues. The LR efficacy is proportional
to the sparsity of the MIMO channel matrix. Early works
on LR were targeted to sub-6 GHz systems [16], while
more recent ones were tailored for mmWave and compared
with CS [17]. LR channel estimation leverages hundreds or
thousands consecutive transmissions from the same moving
collaborative UE towards the BS, limiting the application to
static or quasi-static communication scenarios.

In our previous work [18], we overcome this limitation by
collecting the set of received pilot sequences on recurrent
vehicle passages over the same geographical area, to ensure
the same ST channel structure for each received sequence.
The key idea is that roads constrain vehicles to have recurrent
passages and thus the associated MIMO channels share similar
ST channel structures over different vehicles, as depicted in
Fig. 1. The LR channel modes are thus related to physical
UEs’ positions in the cell, and this is suitable for V2X systems.
Still, the method presented in [18] requires the availability of a
suitable number (tens to hundreds) of collaborative UEs, i.e.,
vehicles transmitting their position, for each position within
a given coverage cell. When the number of cells grows, the
complexity of a position-based LR method rapidly becomes
overwhelming. Furthermore, LR requires the continuous ex-
change of UEs position information, imposing a non-negligible
BS-UE signalling.

Deep-Learning (DL) is foreseen to play a pivotal role
in 6G, complementing or even substituting standard tasks
introduced by novel communication frameworks, as MIMO
systems at mmWave/sub-THz frequencies or reconfigurable
intelligent surfaces [19], increasing the adaptability of the
communication system to the local conditions of the environ-
ment. DL learns complex tasks from data where model-based
techniques fail or turn out to be sub-optimal, exploiting Deep
Neural Networks (DNNs) [20]–[22]. Recently, many works
have addressed the problem of MIMO channel estimation
by means of DL models. A seminal work in this direction
is [20], which introduces the application of DL techniques
at the physical layer. A DNN with a convolutional denoiser
was derived from the learned denoising-based approximate
message passing algorithm [23]. Channel estimation for fast
time-varying MIMO OFDM systems in mobility is based on
convolutional long short-term memory NN in [24]. Exploiting
the deep image prior framework [25], the work [26] proposes
instead a massive MIMO channel estimation method through
an untrained deep neural network. A comparison of different
DNN architectures (fully-connected DNNs, CNNs and bidirec-
tional LSTMs) is presented in [27] to assist channel estimation
in MIMO-OFDM systems. The work [28] proposes a deep
learning-based channel estimation scheme based on LSTM
and MLP to solve error propagation issues in data pilot-aided
(DPA) channel estimation, while MIMO-OFDM pilot design
and downlink channel estimation based on deep learning
are achieved in [29], which provides also a pilot reduction
technique based on neural network pruning. Transfer Learning
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BS
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BS
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Fig. 1: Vehicular MIMO channel recurrences induced by road con-
straints: UE1 and UE2 experience the same DoDs, DoAs and delays
in communicating with the BS when passing over the same location
in the cell.

(TL) has been also recently considered as a powerful tool to
extend and transfer the knowledge from one task to another
that shares some inherent commonalities, by re-training only
a subset of the DNN layers [30]. On channel estimation, a
deep TL method exploits previously trained models to accel-
erate site adaptation [31]. The downlink channel prediction is
addressed in [32] as a deep TL problem, proposing the use of
fully-connected neural network architectures and fine-tuning
trained models for new environments.

To advance with respect to current state of the art, in this
paper we propose the following contributions:

• We propose a DL-based approach to infer the ST MIMO
channel eigenmodes of LR channel estimation for 6G
V2X with high-mobility. Compared to the reference
position-based LR approach [18], advantages (after the
initial training of the DNN) are the lack of UE position
information at BS, and associated control signalling.
Simulations by ray-tracing (to generate channel data) [33]
over realistic vehicle trajectories [34] prove feasibility
and benefits of the proposed DL-based LR approach,
that outperforms the conventional LS estimation in terms
of Mean Squared Error (MSE) by more than one order
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of magnitude (≈ 15 dB on average). MSE performance
of DL-based LR is comparable with position-based LR
method for both frequency-flat and frequency-selective
MIMO channels. Notice that MSE performance of the
position-based LR method reaches the theoretical lower
MSE bound in [16], thus our method is statistically
efficient too.

• We show that the proposed DL-based LR channel esti-
mation model generalizes over different urban scenarios,
each characterized by different ST channel eigenmodes.
Simulation results indicate that it is possible to perform
the DNN training over a single scenario (exploiting pilot
symbols from collaborative UEs in the reference position-
based LR method) and transfer the learned algebraic
MIMO channel structure to other scenarios, still out-
performing LS. In particular, for frequency-flat MIMO
channels, there is no practical advantage in employing
additional TL procedures. For frequency-selective chan-
nels, the explicit re-training of the last 2 fully-connected
layers of the DNN reduces the average MSE by ≈ 2 dB
(consistently over 5 different scenarios).

We remark that the proposed approach is substantially
different from the existing ones [23], [24], [26], which are
targeted to learning either the physical (structured) channel
features or directly the MIMO channel matrix entries. The
advantage of the proposed approach is indeed the robustness
against hardware impairments, inherited from the LR MIMO
channel estimation [17]. Moreover, as shown in our previous
work [35], MIMO channel eigenmodes can be effectively
grouped in few (< 10) clusters in space, much less that
the possible MIMO channel configurations. This characteristic
eases the information transfer from one scenario to another,
reducing the overall number of collaborative vehicular UEs
used for DNN training to a single reference scenario. In this
setting, the goal of the proposed DL-based LR estimation is
not to outperform position-based LR, but rather to avoid the
explicit signaling of the UE position for each pilot signal/LS
channel estimate, exploiting the representational power of DL
across different scenarios.

The paper is organized as follows: Section II outlines the
analytical system and channel model used in this paper; Sec-
tion III summarizes the reference position-based LR channel
estimation method, functionally to the application of the DL
technique in Section IV; Section V reports the simulation
results while Section VI draws some final conclusions.

Notation

Bold upper- and lower-case letters describe matrices and
column vectors. Matrix transposition, conjugation, conjugate
transposition and Frobenius norm are indicated respectively as
AT, A∗, AH and ∥A∥. tr (A), rank (A) extract, respectively,
the trace and the rank of A. Symbol ⊗ denotes the Kronecker
product between two matrices. vec(A) denotes the vectoriza-
tion by columns of A. diag(A) denotes the extraction of the
diagonal of A, while diag(a) is the diagonal matrix given
by vector a. In is the identity matrix of size n. The Cholesky
decomposition of a positive-definite matrix A is A = A

H
2 A

1
2 ,

where A
H
2 is the lower-triangular unique square root of A.

The following property of the vectorization is used in the text:
vec(AB) = (BT⊗I)vec(A). With a ∼ CN (µ,C) we denote
a multi-variate circularly complex Gaussian random variable
a with mean µ and covariance C. E[·] is the expectation
operator, while R and C stand for the set of real and complex
numbers, respectively. δn is the Kronecker delta.

II. SYSTEM AND CHANNEL MODEL

We consider a single-user, multi-carrier uplink communi-
cation system over a bandwidth B, in which the Tx and the
Rx are equipped with NT and NR antennas. At the receiving
antennas, after the time and frequency synchronization and
cyclic prefix removal, the Rx signal is:

y(t) = H(t) ∗ x(t) + n(t), (1)

where symbol ∗ denotes the matrix convolution between the
transmitted signal x(t) = [x1(t), . . . , xNT

(t)]T ∈ CNT×1 at
each Tx antenna and the NRNT MIMO channel responses

H(t) =


h11(t) · · · h1NT

(t)
h21(t) · · · h2NT

(t)
...

...
...

hNR1(t) · · · hNRNT
(t)

 ∈ CNR×NT , (2)

where hnm(t) is the impulse response from the m-th Tx
antenna to the n-th Rx antenna, whose maximum temporal
support of the MIMO channel is limited to τmax, ∀n,m.
Vector n(t) ∈ CNR×1 denotes the additive Gaussian distur-
bance corrupting the received signal, comprising thermal noise
and interference. By sampling (1) at time t = wT , where
T = 1/B, we obtain the discrete-time signal

y[w] = H[w] ∗ x[w] + n[w], (3)

for w = 0, . . . ,W − 1, where W = ⌈τmax/T ⌉ is the
maximum number of channel taps and H[w] ≡ H(wT ) is
the discrete-time MIMO channel matrix. For channel estima-
tion purposes, the Tx signal x[w] is modelled as a random
pilot sequence (known at the Rx), uncorrelated in time and
space, i.e., E

[
x[w]x[ℓ]H

]
= σ2

xINT
δw−ℓ (σ2

x is the signal
power). The w-th temporal sample of the noise at Rx array,
n[w] = [n1[w], ..., nNR

[w]]T ∈ CNR×1, is modelled as a
zero-mean circular Gaussian random vector with covariance
matrix Qn = E

[
n[w]n[w]H

]
, generally non diagonal (thus,

correlated in space) due to the presence of a directional
interference in the environment. We also assume that the noise
is temporally uncorrelated, thus E

[
n[w]n[ℓ]H

]
= Qnδw−ℓ.

Notice that the spatial covariance becomes diagonal, i.e.,
Qn = σ2

nINR
, when either there is no interference in the

environment (thermal noise only) or the interference can be
assumed as isotropic [17]. In this latter setting, σ2

n denotes
the noise power at each antenna. The SNR measured at each
antenna is:

SNR =
E
[∥∥∑

w H[w] ∗ x[w]
∥∥2]

tr(Qn)
. (4)

In the following, we detail the analytical model for the
MIMO channel discrete impulse response H[w], to better
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clarify the application of the DL-based LR channel estimation
proposed in Section IV.

A. MIMO Channel Model

The mmWave/sub-THz MIMO channel impulse response is
modelled as the sum of P paths as [3]:

H(t) =

P∑
p=1

βp e
j2πνpt aR(θp)a

T
T (ϕp) g(t− τp), (5)

where the p-th path amplitude βp depends on path-loss and
propagation geometry; νp is the p-th path Doppler shift;
aT (ϕp) ∈ CNT×1 and aR(θp) ∈ CNR×1 are the Tx and Rx
array response vectors to the p-th path, respectively, function
of the DoDs ϕp = [ϕazp , ϕ

el
p ]

T and the DoAs θp = [θazp , θ
el
p ]

T

(for azimuth and elevation); g(t − τp) is the pulse shaping
waveform (typically a raised cosine) delayed by τp (p-th path
delay). Without loss of generality, we consider half-wavelength
spaced uniform planar arrays with isotropic antennas for both
Tx and Rx. The Tx array response is structured as:

aT (ϕp) = aelT (ϕ
el
p )⊗ aazT (ϕazp ), (6)

where aazT (ϕazp ) = [1, . . . , ejπ(NT−1) sin(ϕaz
p )] and aelT (ϕ

el
p ) =

[1, . . . , ejπ(NT−1) sin(ϕel
p )] are the steering vectors along az-

imuth and elevation DoDs. The Rx steering vector aR(θp) is
similarly structured. We also assume that the Doppler-related
rotation is almost constant over τmax (normalized to the first
echo), such that αp = βp e

j2πνpt ∼ CN (0,Ωp), obeying
the wide-sense stationary uncorrelated scattering model. The
latter implies the uncorrelation between any pair of scattering
amplitudes E

[
αp,ℓα

∗
q,k

]
= Ωpδp−qδℓ−k, where αp,ℓ is the

scattering amplitude of the p-th path of the ℓ-th channel.
By sampling (5) at t = wT we obtain a compact matrix

formulation of the MIMO channel

H[w] =

P∑
p=1

αp aR(θp)a
T
T (ϕp) g [wT − τp] =

= AR (θ)Λ[w]AT
T (ϕ) , w = 0, . . . ,W − 1

(7)

where AT (ϕ) = [aT (ϕ1), . . . ,aT (ϕP )] ∈ CNT×P and
AR (θ) = [aR(θ1), . . . ,aR(θP )] ∈ CNR×P are two
frequency-independent matrices embedding the spatial channel
features, and Λ[w] = diag(α1 g[wT − τ1], . . . , αP g[wT −
τP ]) ∈ CP×P is a diagonal matrix collecting all the channel
amplitudes scaled by the w-th tap of the pulse shaping
waveform.

Algebraic analysis of the matrixes AT (ϕ) and AR (θ)
defines the spatial diversity orders of the MIMO channel in
terms of the number of distinguishable rays at Tx and Rx,
given the number of antennas NT and NR. The diversity orders
are expressed as

rTx
S = rank(AT (ϕ)) ≤ min (NT , P ) (8)

rRx
S = rank(AR (θ)) ≤ min (NR, P ) (9)

for Tx and Rx, respectively. From an algebraic point of
view, rTx

S and rRx
S are the number of dimensions of the

spatial subspaces spanned by the columns of AT (ϕ) and

UE

BS t

Fig. 2: Effect of Tx/Rx spatial and temporal selectivity on a mul-
tipath scenario (P = 4): reflections represented with dashed lines
are spatially and temporally indistinguishable from the solid line
one, due to the Tx and Rx beamwidths and bandwidth, therefore
rTx
S = rRx

S = rT = 2.

AR (θ), respectively, i.e., the number of spatial eigenmodes
representing the channel H[w]. Orders are limited by either
the number of channel paths or by the number of antennas.
Usually, mmWave and sub-THz channels are characterized by
P < NT , NR.

To ease the analytical derivations in Section III and the
application of DL in Section IV, we can further manipulate
(7) to extract the temporal (delays-related) diversity order of
the MIMO channel as:

H = A (θ,ϕ)DGT(τ ), (10)

where: H = [vec(H[0]), . . . , vec(H[W − 1])] ∈ CNTNR×W

is the ST channel matrix, whose LS estimate is used as
input to the DNN proposed in Section IV; A (θ,ϕ) =
[aT (ϕ1) ⊗ aR(θ1), . . . ,aT (ϕP ) ⊗ aR(θP )] comprises both
the DoDs and DoAs; D = diag(α1, . . . , αP ), and matrix
G (τ ) = [g(τ1), . . . ,g(τP )] embeds the temporal features
τ = [τ1, . . . , τP ] through vectors g (τp) ∈ RW×1 =

[g [−τp] , . . . , g [(W − 1)T − τp]]
T. The temporal diversity or-

der is therefore:

rT = rank(G (τ )) ≤ min (W,P ) . (11)

Similarly to (8)-(9), the temporal diversity order rT has the
meaning of number of temporally distinguishable paths of the
MIMO channel, ruled by the temporal resolution of the system,
i.e., the pulse width T (or equivalently by bandwidth B). For
instance, for B = 100 MHz, a two-path channel with echoes
spaced by 5 ns leads to rT = 1, as the temporal resolution of
the system (T = 1/B = 10 ns) is not sufficient to distinguish
each of the two paths. The algebraic interpretation of rT is the
number of dimensions of the temporal subspace of the channel,
spanned by matrix G (τ ). The meaning of spatial and temporal
channel orders is illustrated in Fig. 2, while the different
channel manipulations used throughout the paper are reported
in Table I. The knowledge of the channel diversity orders rTx

S ,
rRx
S and rT and of the spatial covariance of the noise allows to

optimally estimate (in a statistical sense) the MIMO channel
from multiple received pilot sequences sharing the same spatial
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TABLE I: Channel manipulations

Symbol Dimensions Description

h WNTNR × 1 time-space(Tx)-space(Rx) vector
H NTNR ×W space(Tx+Rx)-time matrix
H[w] NR ×NT space(Rx)-space(Tx) matrix (w-th sample)

and temporal channel subspaces (eigenmodes), as described in
the next section.

III. POSITION-BASED LR CHANNEL ESTIMATION

This section reports the algebraic background for the LR
channel estimation leveraging L different received pilot se-
quences {yℓ[w]}ℓ=L

ℓ=1 , assumed to be collected by the BS from
different vehicular UEs passing in the same location p̄ within
the cell. Each UE is also requested to share with the BS
its geographical position, obtained from on-board sensors or
other techniques [36], [37]. Thus, sequences {yℓ[w]}ℓ=L

ℓ=1 share
the same ST propagation pattern, namely the same channel
eigenmodes, while fading amplitudes can be arbitrarily varying
for Doppler and mutually uncorrelated across the L pilot
sequences. The complete analytical treatment, beyond the
scope of the present work, can be found in [16]. In brief, the
LR-estimated channel is retrieved through the application of a
pilot-specific matrix Tℓ, providing the conventional LS MIMO
channel estimate, and a position-specific matrix ΠL(p̄) (p̄
denotes a given position in the radio cell) on a single received
pilot signal yℓ =

[
yT
ℓ [0], . . . ,y

T
ℓ [W − 1]

]T ∈ CWNR×1

collected from position p̄:

ĥLR,ℓ = ΠL(p̄) ĥLS,ℓ, (12)

where ĥLR,ℓ ∈ CWNRNT×1 is the LR-estimated channel
vector and ĥLS,ℓ = Tℓ yℓ ∈ CWNRNT×1 is the conventional
LS MIMO channel estimate, whose analytical expressions are
detailed in [17]. Channel vector h (true or estimated) can
be obtained from channel matrix H (true or estimated) by
vectorization h = vec(H).

The position-specific linear processing in (12) is designed
in [16] as:

ΠL(p̄) = C
H
2 Π̂(p̄)C−H

2 , (13)

where
• C ≈ 1

σ2
x
(IW ⊗ INT

⊗ QT
n ) is the sample covariance

matrix of the LS channel estimate ĥLS,ℓ, needed to handle
spatial/temporal noise correlations of interfering users in
Qn;

• Π̂(p̄) = Û(p̄)ÛH(p̄) is the position-dependent projection
matrix onto the ST propagation subspace associated to the
ST basis (set of eigenmodes)

Û(p̄) = Û∗
T ⊗ ÛTx,∗

S ⊗ ÛRx
S . (14)

Spatial (ÛTx
S ∈ CNT×rTx

S , ÛRx
S ∈ CNR×rRx

S ) and temporal
(ÛT ∈ CW×rT ) MIMO channel eigenmodes are related to the
set of DoDs, DoAs and delays, respectively. Eigenmodes form
an orthonormal basis used to filter out from the LS estimate
the noisy components that are not within the spanned algebraic

subspace of the underlying channel. The eigenmodes ÛTx
S ,

ÛRx
S and ÛT follow from the sample estimate of the spatial

(Tx and Rx) and temporal correlation matrices, respectively

R̃Tx
S =

1

L

L∑
ℓ=1

∑
w

H̃LS,ℓ[w] H̃
H
LS,ℓ[w], (15)

R̃Rx
S =

1

L

L∑
ℓ=1

∑
w

H̃H
LS,ℓ[w] H̃LS,ℓ[w], (16)

R̃T =
1

L

L∑
ℓ=1

H̃
H

LS,ℓ H̃LS,ℓ, (17)

computed over L received pilot sequences from different
vehicular UEs passing on the same position p̄. In (15)-(17),
H̃H

LS,ℓ[w] and H̃LS,ℓ are suitable arrangements (according
to Table I) of the whitened channel h̃LS,ℓ = C−H

2 ĥLS,ℓ.
Spatial and temporal eigenmodes are then obtained as ÛTx

S =

eigrTx
S
(R̃Tx

S ), ÛRx
S = eigrRx

S
(R̃Rx

S ) and ÛT = eigrT(R̃T),
i.e., from the rTx

S , rRx
S and rT leading eigenvectors of R̃Tx

S ,
R̃Rx

S and R̃T. Notice that the directionality of the interference
embedded in C (by means of matrix Qn) is typically estimated
from the LS residual error [17]. Therefore, matrix ΠL(p̄)
operates a position-based, noise-aware modal filtering on the
standard LS MIMO channel estimate.

LR performance is proportional to the sparsity degree of the
MIMO channel. It can be demonstrated that, if at least one of
the following conditions holds [18]:

rTx
S < NT , rRx

S < NR, rT < W, (18)

the LR method asymptotically (L → ∞) outperforms LS.
The value of L for practical convergence depends on NT ,
NR and W as well as on the SNR. For the MIMO settings
and bandwidths considered in Section V, L ≈ 100 guarantees
the convergence, that is for each location of the coverage cell.

It is worth remarking that the application of LR does not
require additional pilot signaling with respect to conventional
communication systems. For instance, considering the 5G NR
standard employing OFDM, LR can be enabled by the usage
of the Demodulation Reference Signal (DM-RS). Further, no
specific synchronization or cooperation among different UEs
is needed. The key idea of LR is that it is sufficient to have
enough channel samples for each position p̄ (i.e., received
pilot sequences/LS MIMO channel estimates) to guarantee the
accurate estimation of the sample correlations (15), (16), (17).
In this setting, the L pilot sequences from the same position p̄
can be transmitted by different, uncoordinated UEs, provided
that each sequence share the same spatial and temporal chan-
nel subspaces, i.e., the same channel eigenmodes, while the
fading amplitudes can be mutually uncorrelated. Realistically,
position p̄ is the center of a geographical region with invariant
ST channel features, whose spatial size is practically ruled
by the accuracy of the positioning system. As shown in our
previous work [18], it is enough to collect the channel samples
with a position accuracy of 1 − 2 m to reach the optimal
(asymptotic) LR performance. For each region identified by p̄,
the BS can associate a list of eigenmodes {ÛTx

S , ÛRx
S , ÛT}.

The only additional signalling is the estimation of the UE’s
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Fig. 3: Proposed DNN architecture. The network takes as input the real and imaginary parts of a LS channel estimate (after proper whitening
by matrix C), stacked on the spatial dimension, and outputs the corresponding Space-Time channel eigenmodes.

position p̂ for each transmitted pilot sequence. LR requires the
knowledge of the UE position p̄ during both the training phase
(computation of ΠL(p̄)) and the communication phase (run-
time). The continuous exchange of position information in
V2X systems is signalling intensive and increases the overhead
on control channels. We explore in the following section a DL
approach to retrieve the ST basis Û(p̄) (and ΠL(p̄)) directly
from ĥLS,ℓ, without the knowledge of the UE position.

IV. DL-BASED LR CHANNEL ESTIMATION

Leveraging the LR channel estimation algorithm described
in Section III, we propose a DNN to infer the spatial and
temporal LR MIMO channel eigenmodes UT, UTx

S , and URx
S

from a single received pilot sequence, or, equivalently, a
LS MIMO channel estimate. Exploiting the representational
power of DL, we test its capability to capture recurring
vehicular patterns in the neighborhood of the BS within an
urban scenario, without requiring the explicit signalling of
UE’s position. In this regard, we use a large dataset of
LS channel estimates {ĥLS,m}m=M

m=1 gathered at the BS by
multiple vehicular UEs along their path within the radio
cell. The resulting labelled dataset {(ĥLS,m, ĥLR,m)}m=M

m=1 is
composed by couples associating a given input LS channel
estimate ĥLS,m to the corresponding LR channel estimate
ĥLR,m, provided by the position-based LR method in Section
III. In this setting, M denotes the cardinality of the dataset,
comprising a suitable number of different tracks covering the
whole radio cell.

The proposed DNN is depicted in Fig. 3. An input
LS-estimated ST channel matrix (after whitening) H̃LS , is first
normalized by the maximum absolute value of its elements and
finally stacked by real and imaginary parts along the spatial
dimension, leading to a 2NTNR ×W input matrix. We use
a set of convolutional layers to extract effective features from
the input channel matrix. Each convolutional layer employs the
Leaky Rectified Linear Unit (Leaky ReLU) activation function
[38]:

Γ(x) =

{
x for x > 0

0.01x for x ≤ 0,
(19)

and is followed by a batch normalization layer [39], which
speeds up network convergence and improves stability. After
flattening the output of the last batch normalization layer
to a single vector of convolutional features, the latter are
mapped through a set of fully-connected layers to six matrices
representing (grouped in pairs) the real and imaginary parts of
three complex-valued matrices with the same dimensions of
ÛTx

S , ÛRx
S and ÛT in (14), respectively. In order to output

complex-valued unitary matrix representations, we project the
three aforementioned complex-valued matrices on the corre-
sponding Stiefel manifolds by applying thin Singular Value
Decomposition (SVDth), which is an efficient operator to
diagonalize LR matrices [40]. SVDth decomposes a matrix
A ∈ Cn×r, with r ≤ n, as:

[U, s,V] = SVDth(A) → A = U diag(s)VH , (20)

where U ∈ Cn×r, s ∈ Cr×1, and V ∈ Cr×r, with U and V
unitary matrices. From (20), we consider only the U output,
which is orthonormal and has the same dimensions as the
target LR modes (14). Therefore, network training is carried
only over U, without updating the weights related to s and
V. Details on the automatic differentiation of complex-valued
SVD can be found in [41]. The DNN input-output relation is
therefore described by the nonlinear parametric mapping

ÛDL = fΘ(H̃LS), (21)

where Θ represents the network parameters to be optimized
during training and ÛDL = Û∗

T ⊗ ÛTx,∗
S ⊗ ÛRx

S is the DNN-
inferred set of ST eigenmodes, aggregating the separate spatial
and temporal eigenmodes as in (14). The LR-estimated MIMO
channel is inferred as

ĥpred
LR = ΠDL ĥLS . (22)

where ΠDL = C
H
2 ÛDLÛ

H
DLC

−H
2 is the DL-estimated

counterpart of the position-specific matrix ΠL(p̄) in (12).
Notice that ΠDL is not explicitly position-dependent. The
selected training loss function, to be minimized over the DNN
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parameters Θ, is the sum of the MSEs between the inferred
LR channel estimates and the training ones:

L =

M ′∑
m′=1

∥ĥtrain
LR,m′ − ĥpred

LR,m′∥2, (23)

where M ′ < M is the cardinality of the training dataset,
a portion of the full one, ĥtrain

LR,m′ is the m′-th point LR
MIMO channel estimate used for training and ĥpred

LR,m′ is from
(22). In the simulations of Section V, the DNN parameters
are optimized using the Adam [42] optimizer, updating the
network weights at mini-batches of 32 data points.

An exhaustive analysis of computational complexity of the
proposed method is beyond the scope of this work. However,
for uplink the DNN training and prediction are performed at
the BS, where computational constraints are more relaxed with
respect to execution over specialized UE hardware. Moreover,
we observe that, even if suboptimal, the decomposition of
the channel eigenmodes into separate temporal and spatial
components at Tx and Rx shown in Fig. 3 highly reduces the
network training and inference computational complexity with
respect to considering joint Space-Time channel eigenmodes.
Indeed, the estimation of the latter would require to introduce,
before the application of SVDth, a network layer of dimension
2NTNRWr̄, as opposed to the proposed one with dimen-
sion 2(NT r̄

Tx
S ) + 2(NRr̄

Rx
S ) + 2(Wr̄T). The computational

cost for the automatic differentiation of complex-valued SVD
performed during training can be easily derived from the
procedure described in [41]. We refer the reader to [43] for a
thorough analysis of CNNs’ computational complexity under
time constraint for real-time applications in industrial and
commercial scenarios.

It is worth underlining that, differently from the MIMO
channel eigenmodes obtained from the position-based LR
method (Section III), which have variable diversity orders in
space, i.e., {rTx

S,m, r
Rx
S,m, rT,m}m=M

m=1 , all the unitary matrices
inferred by the DNN have fixed orders r̄Tx

S , r̄Rx
S , r̄T. Fixed

orders are needed as the output layer of the DNN has fixed di-
mension, and this implies that each set of channel eigenmodes
(spatial and temporal) lie on the same Stiefel manifolds [44].
Notice that, considering a single cell scenario, the optimal
value of r̄Tx

S , r̄Rx
S , r̄T should guarantee the best possible

modal filtering provided by ΠDL over the whole scenario. In
principle, this shall imply to select the largest orders over the
scenarios: r̄Tx

S = max{rTx
S,m}m=M

m=1 , r̄Rx
S = max{rRx

S,m}m=M
m=1 ,

r̄T = max{rT,m}m=M
m=1 . In practice, however, the true diversity

orders of the channel are difficult to be estimated at each
trajectory point within the cell. Moreover, the orders should be
selected to enable a proper model transfer between different
scenarios. Therefore, we consider the diversity orders as
network hyperparameters to be optimized.

V. SIMULATION RESULTS

In this section, we present numerical results proving the
effectiveness of the proposed DL-based LR channel estima-
tion. Five scenarios are selected for numerical testing from
portions of the city of Milan. They are depicted in Fig. 5,
representing typical urban road crossings characterized by

Channel 
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Estimated
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channel

estimation

(a)

Channel 

equalization

DNN core
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LS 

channel

estimation
DNN

Estimated
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Fig. 4: Conceptual block scheme of the Rx implementing the position-
based LR method (a) and the DL-based LR method (b). In (a), the
estimated UE position p̂ is required to select the best eigenmodes
from the database, while DL method (b) removes the position
signalling constraint.

LOS propagation. Each scenario has a different geometry, road
topology, and vehicular trajectory patterns, thus leading to
diverse features in the ST domain. The simulation parameters
are presented in Table II. We consider a OFDMA uplink
communication at f0 = 28 GHz carrier frequency between
multiple vehicular UEs and a tri-sectoral BS, the former
equipped with NT = 16 (4 × 4) antennas and the latter with
NR = 64 (8×8) antennas (for each sector). The BS is located
at 6 m from ground, in the position highlighted with a triangle
in Fig. 5, while each UE moves at 1.5 m from ground. Two
different communication bandwidths per UE are tested: B = 1
MHz, for which the channel is frequency-flat (W = 1), and
50 MHz, producing a frequency-selective channel (W ≫ 1) in
each of the five scenarios. We analyze the performance of the
proposed channel estimation method in terms of Normalized
Mean Squared Error (NMSE), defined as

NMSE = 10 log10

(
E[∥hℓ − ĥLR,ℓ∥2]
E[∥hℓ − ĥLS,ℓ∥2]

)
, (24)

to highlight the MSE gain of LR compared to LS as reference
method.
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Fig. 5: Scenarios for the training and evaluation of the proposed DNN, with corresponding DoD/delay channel features (ray-tracing derived).
Colored lines represent the reference vehicle trajectories, associated to colored paths in the DoD/delay plots.

A. Simulation setup

The datasets used for training the DNN over each scenario
are produced by means of simulated channel data over realistic
vehicle trajectories, obtained from SUMO (Simulation of
Urban MObility) [34]. The mmWave channel parameters at 28
GHz are simulated by ray tracing using Altair WinProp [33]
software, which provides for each considered geographical
point the Direction of Departure (DoD) ψ, the Direction of
Arrival (DoA) θ, the power Ω and the scattering amplitude α of
each ray. The MIMO channel impulse response follows from

(7) by fixing the maximum number of taps over all the five sce-
narios (W = 22 for B = 50 MHz, determined by ray tracing).
This enables the direct model transfer from one scenario to
another. For each scenario, a dataset of M = 2.5×105 channel
samples has been produced considering multiple (different)
realizations of 5 reference vehicular trajectories, where the
Signal-to-Noise Ratio (SNR) has been fixed at 0 dB along all
the trajectory.

We train the proposed model on scenario a), testing the
learning capabilities of the DNN by comparing the NMSE of
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TABLE II: Simulation parameters

Parameter Symbol Value

Carrier frequency f0 28 GHz
Bandwidth B 1, 50 MHz
BS height from the ground - 6 m
UEs height from the ground - 1.5 m
Number of BS antennas NR 64 (8× 8)
Number of UE antennas NT 16 (4× 4)
Signal to Noise Ratio SNR 0 dB

the DL-based LR method against the NMSE of the reference
position-based LR introduced in Section III. Then, we analyse
the generalization of the model to the remaining 4 scenarios
b), c), d) and e) considering two distinct procedures: (i) testing
the performance of the trained model by directly applying it
to the new 4 scenarios, without any retraining; (ii) fine-tuning
of the model trained on a) on the specific application scenario
(b,c,d,e) by training only the last two fully-connected layers of
the DNN (only for B = 50 MHz, since no improvement has
been obtained by applying this procedure to the frequency-flat
case). The DNN is trained using Adam optimizer [42] with a
learning rate η = 0.001. Hyperparameters tuning is performed
by means of grid search over the parameters presented in Table
III (optimal selected hyperparameters are shown in bold).

B. Results for B = 1 MHz (frequency-flat)

We present the results obtained by applying the proposed
DL-based channel estimation to frequency-flat MIMO chan-
nels with W = 1 temporal tap. After showing the NMSE
performance of the model on the reference scenario a) (Fig. 5),
we examine its generalization capabilities by directly applying
it over scenarios b), c), d), e).

1) Performance of the DNN model on the reference urban
scenario: The DNN model selected for frequency-flat channel
estimation has 3 convolutional layers and 4 fully-connected
layers. The first two convolutional layers use 64 filters while
the last one uses a single filter. All the three convolutional
layers use a 1 × 1 kernel, while the fully-connected layers
are composed of 50 neurons each. This leads to ≈ 2.5× 105

trainable model parameters Θ. We train our model with LS
and LR channel estimates gathered on the reference scenario
depicted in Fig. 5a). By hyperparameter search, we selected
the ranks r̄Tx

S = 4, r̄Rx
S = 8, r̄T = 1 for the inferred

unitary matrices corresponding to the spatial and temporal
MIMO channel eigenmodes. Hence, with r̄T = 1, the MIMO
channel is characterized by spatial modes only. The DL model
converges within 10 training iterations to an average NMSE
value of −14.9 dB (MSE gain with respect to LS estimation),
to be compared with −15.7 dB NMSE provided by the
position-based LR method in Section III. Figs. 6b and 6e
show the NMSE performance of the proposed DL model
when applied to 2 reference vehicular trajectories within the
training scenario a). We consider multiple realizations of each
trajectory to estimate pointwise the NMSE standard deviation
for the inferred LR channel estimates (represented by the
shaded gray area in Figs. 6b and 6e). The blue dashed line

is instead the mean NMSE provided by position-based LR
channel estimation described in Section III (used for training),
averaged over the whole length of the chosen trajectory. The
results show that the DL-based NMSE closely matches the
position-based NMSE except for some small performance
penalty (< 2 dB). The same behavior has been also observed
on the other 3 trajectory types over which the DNN model has
been trained.

2) Generalization of the DNN model to different urban
scenarios: To assess the effectiveness of the proposed DL
method when challenged with new ST features of the envi-
ronment, we test the model trained on the reference scenario
a) against the b), c), d), and e) environments in Fig. 5.
Notice that no transfer learning fine-tuning is used here.
Our aim is to evaluate the capability of the model to map
local convolutional features—learned from channel impulse
responses sampled on the reference scenario—to the spatial
and temporal MIMO channel eigenmodes on new data. Fig.
7a summarizes the NMSE of the channel estimates inferred
over the tested scenarios by means of box plots, where the
red line represents the median, the box encloses the interval
between the first and the third quartiles, and the outer bars
delimit the range of observed NMSE performances. We notice
that the DL model transfer between one scenario to the others
provides comparable NMSE performance, with only a slight
increase of the NMSE dispersion. We also observed that TL
fine-tuning does not provide any benefit, as the DL model is
able to represent the MIMO spatial eigenmodes with the same
accuracy experienced on a reference scenario. This result is
particularly relevant for the implementation of the proposed
DL-based channel estimation in practical systems, as it allows
a remarkable reduction of the number of collaborative vehicles
(UEs) used for training the DNN, at least for the frequency-
flat channel case. In the considered settings, the DNN training
dataset can be reduced by ≈ 80 %, as a full re-training of the
DNN over the other 4 scenarios is not necessary.

C. Results for B = 50 MHz (frequency-selective)

We show the results obtained evaluating the proposed
DL-based channel estimation method to frequency-selective
MIMO channels, i.e., B = 50 MHz. After training the
proposed model on the reference scenario a) in Fig. 5, we
analyse—as for the previously discussed frequency-flat case—
its generalization to scenarios b), c), d), e). In this case, we
first test the direct application of the trained model to the new
urban scenarios, without any further retraining, having fixed
the temporal channel length W = 22 as the maximum over
all the scenarios. We then examine whether any improvement
can be obtained by retraining some network layers over LS
and LR channel estimates proper of the specific application
scenario.

1) Performance of the DNN model on the reference urban
scenario: The considered DNN model has 3 convolutional
layers and 4 fully-connected layers. The first two convolutional
layers employ 64 filters, while the third one uses a single
filter. Differently from the frequency-flat condition, the three
convolutional layers use 1×3 convolutional kernels, in order to
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TABLE III: Hyperparameter values considered in grid search for B = 1 MHz and B = 50 MHz.

Hyperparameters B = 1 MHz B = 50 MHz

Activation function for fully-connected layers sigmoid, tanh, ReLU, leaky-ReLU sigmoid, tanh, ReLU, leaky-ReLU
Activation function for convolutional layers sigmoid, tanh, ReLU, leaky-ReLU sigmoid, tanh, ReLU, leaky-ReLU
Number of units for fully-connected layers 20, 50, 100, 200 20, 50, 100, 200
Number of filters for convolutional layers 16, 32, 64, 128 16, 32, 64, 128
Kernel size for convolutional layers 1x1, 3x1, 5x1 1x1, 1x3, 3x3, 1x5, 5x5

Rank for spatial channel eigenmodes at Tx (r̄Tx
S ) 2, 4, 6 2, 4, 6

Rank for spatial channel eigenmodes at Rx (r̄Rx
S ) 6, 8, 10, 12 6, 8, 10, 12

Rank for temporal channel eigenmodes (r̄T) 1, 2, 3 3, 5, 7, 9
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Fig. 6: Evaluation of the proposed method over sample trajectories in the reference scenario a) for B = 1 MHz and B = 50 MHz
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direct model transfer over the remaining scenarios for B = 1 MHz (a), with direct model transfer over the remaining scenarios for B = 50
MHz (b), and with fine-tuning of the last two fully-connected layers on the specific scenario for B = 50 MHz (c).
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Fig. 8: NMSE gain achieved by the proposed DL method on the
training set and on 5-fold cross-validation over training iterations.

jointly capture temporal features among consecutive temporal
channel taps. The fully-connected layers are composed of 100
neurons each. This leads to ≈ 4.7 × 106 trainable model
parameters Θ. We train the DNN model on the reference
scenario a), selecting the diversity orders r̄Tx

S = 4, r̄Rx
S = 8,

r̄T = 5. With the considered setting, the DNN converges
within 10 training iterations to the average NMSE value of
−16.7 dB, compared to the −17.1 dB obtained with the
position-based LR method. Fig. 8 presents the NMSE gain
attained by the proposed DL method on the training dataset
and on 5-fold cross-validation over training iterations both at 1
MHz and 50 MHz bandwidths when scenario a) is considered.
Training and cross-validation curves present the same NMSE
gain behaviors for both the considered bandwidths, showing
the generalization capabilities of the proposed architecture.
We observed similar convergence behavior and generalization
properties also for scenarios b), c), d), and e). Figs. 6c and
6f show the NMSE performance over the same 2 vehicular
trajectories of, respectively, Figs. 6b and 6e (over scenario
a)). Although with more variability, even in the B = 50 MHz
case the DL model is able to provide comparable NMSE
performance of the reference position-based LR method; as
previously, a similar behavior is observed over the other three
reference trajectories of a).

2) Generalization of the DNN model to different urban
scenarios: To evaluate the generalization capabilities of the
DL model in the frequency-selective channel case, we apply
two different procedures: i) we directly test the model trained
on reference scenario a) against scenarios b), c), d), and e),
without any further re-training, and ii) starting from the model
trained on scenario a), we fine-tune it by training only the
last two fully-connected layers on the specific application
scenario. We observed that the fine-tuning procedure converges
after training the network with LS and LR channel estimates
gathered in 10 vehicle passages for each trajectory type
in the target urban scenario. Figures 7b and 7c show the
NMSE performance achieved over the evaluated scenarios
respectively for procedures i) and ii) by means of box plots,
where the red line represents the median, the box encloses
the interval between the first and the third quartiles, and the

outer bars delimit the range of observed NMSE performances.
We notice that, compared to the frequency-flat case, the NMSE
performance slightly deteriorate when transferring information
to new scenarios, both in absence of retraining and with
an explicit TL fine-tuning, still outperforming LS channel
estimate by at least 10 dB. This effect is a consequence of
a greater variability of the MIMO channel eigenmodes due to
the non-negligible temporal component (W ≫ 1). However,
we did not observe any remarkable improvement applying a
TL procedure, that only allows for a NMSE decrease of 1− 2
dB for scenarios b), d) and e).

VI. CONCLUSION

This paper addresses the problem of MIMO channel es-
timation in future 6G V2X systems proposing a novel DL-
based LR channel estimation method. The proposed method
leverages the received signal at the BS from road-induced
recurrent vehicular UEs passages to design and train a DNN
for the inference of MIMO channel eigenmodes. The goal is
to improve conventional LS MIMO channel estimates without
the need of any information on UEs’ position. Exploiting the
expressive power of DL and a training on LS and LR channel
estimates collected over a whole radio cell, the proposed
method requires only single input LS channel estimates to
effectively infer the corresponding channel modes. Compared
to a position-based LR channel estimation—which requires
L ≈ 100 pilot signals from as many vehicle passages for
each location within a radio cell—this remarkably reduces
any position-based training still achieving comparable NMSE
performance.

Numerical results using realistic vehicular traffic and
mmWave ray-tracing data show that the proposed DL-based
LR method outperforms LS in terms of NMSE (≈ 15 dB)
on channel estimation in both frequency-flat and frequency-
selective channel cases, and attains the performance of the
position-based LR, which in turn attains the theoretical MSE
bound. Moreover, we show that the proposed DL model can be
trained to infer the MIMO channel eigenmodes on a reference
scenario, and then can be effectively transferred to urban
scenarios (e.g., radio cells) characterized by substantially
different space-time channel features, providing comparable
NMSE performance without an explicit transfer learning fine-
tuning procedure. This result allows to drastically reduce the
number of training vehicles used to train the DNN, easing
the practical implementation and motivating the application to
future 6G V2X systems.
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