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OPTIMAL LOW THRUST ORBIT CORRECTION IN CURVILINEAR
COORDINATES

Juan L. Gonzalo; and Claudio Bombardellif

The minimum-time, constant-thrust transfer between two close, coplanar, quasi-
circular orbits is studied using a novel non-linear formulation of relative motion
in curvilinear coordinates. The Optimal Control Problem in the thrust orientation
angle is treated from a quantitative and qualitative point of view, using the direct
and indirect methods respectively. The former yields numerical solutions for a
wide range of thrust parameters, while a better understanding of the physics is
achieved seeking for an approximate solution of the latter. Fundamental changes
in the structure of the solution with the thrust parameter are identified.

INTRODUCTION

Many operational scenarios require to perform small corrections in the radius and phasing of an
orbit, using either impulsive or continuous low-thrust propulsion. A relatively new and challenging
application for such maneuvers is the design of Active Debris Removal missions, where the chaser
spacecraft must be placed in the same orbit as the target debris and at a prescribed operational
distance. The former condition is normally not met by the initial orbit of the chaser, especially when
launched as a piggyback payload or when a multiple target mission is considered, requiring an orbit
correction. Furthermore, a precise phasing maneuver is also needed to fulfill the normally tight
margins for the operational distance. These mission design issues have a prominent importance in
LEOSWEEP (improving LEO Security With Enhanced Electric Propulsion),' an EU-funded project
aiming at the contactless manipulation of non-cooperative targets using modified electric thrusters.>

This type of proximity rendezvous maneuvers were studied in the classical book by Marec,? ob-
taining closed solutions only for a small set of conditions. Its remarkable complexity has been
further highlighted by the work of authors such as Hall and Collazo-Perez,* who identified quali-
tative changes in the minimum-time orbit phasing maneuver depending on the magnitude of thrust.
The more complex problem of designing low-thrust reconfiguration maneuvers for spacecraft in for-
mation flying subjected to multiple operational constraints has been studied in detail by Massari and
Bernelli-Zazzera,> who propose an efficient algorithm implementation to cope with the increased
computational cost of optimizing the trajectories of several spacecraft simultaneously. In all cases,
an appropriate choice of the dynamics formulation can ease their treatment to a great extent. The
key idea behind this article it to employ a novel relative motion formulation based on curvilinear
coordinates. It can be seen as a continuation of the work already carried out by this authors using
the Clohessy-Wiltshire equations for relative motion® aiming to improve the previous results both
in precision and validity range.

*PhD candidate, Space Dynamics Group, School of Aerospace Engineering, Technical University of Madrid (UPM).
TResearch Associate, Space Dynamics Group, School of Aerospace Engineering. Technical University of Madrid (UPM).



In this work, the minimum-time proximity rendezvous maneuver between two close, coplanar,
quasi-circular orbits is studied from a qualitative and quantitative point of view. A non-linear for-
mulation in curvilinear coordinates is used to describe relative dynamics, and the Optimal Control
Problem in the thrust angle orientation is posed using both the direct and indirect formulations. The
former leads to a set of numerical solutions, while the latter provides more insight on the underly-
ing physics. While the focus is set in low-thrust transfers, a wide rage for the thrust parameter is
considered.

The formulation used for the relative motion differs from the classical solution by Clohessy and
Wiltshire in two aspects. On the one hand, it introduces curvilinear coordinates to achieve a bet-
ter description of the natural orbit curvature. On the other hand, it takes into account nonlinear
terms to improve accuracy when initial velocity and displacement conditions are not very small.
Nevertheless, the limitation of initially circular orbit still applies.

A qualitative understanding of the problem is sought for first by studying the Two-Point Boundary
Value Problem (TPVBP) derived from the Euler-Lagrange equations. The approximate analytical
solutions obtained for this TPBVP using perturbation techniques predict the existence of two dif-
ferent regimes with fundamental qualitative differences depending on the ratio between the desired
displacement and the available thrust. A direct relation between mission time and thrust is also iden-
tified for both regimes. This is in line with the previous works already mentioned.*® Moreover, the
approximate solutions also provide fast tools to predict some of their most notable features such as
the location of the transition between both regimes and the mission time. These predictions are then
compared with the high-precision numerical solutions obtained using a direct transcription method
and a large-scale Non-Linear Programming solver, finding a great agreement between them. While
the authors have already studied this kind of behaviors for the same-orbit rephasing problem using
the Clohessy-Wiltshire equations for relative motion,® the introduction of this novel formulation for
orbital dynamics allows for a more precise description of the problem with a wider validity range.

PROBLEM STATEMENT AND EQUATIONS OF MOTION

Let us consider two objects, a leader L and a chaser C, describing two close, coplanar, circular
orbits of radii R and r around a primary O with gravitational constant x. The objective is to perform
a rendezvous maneuver, placing the chaser in the same orbit as the leader at a given angular separa-
tion. The propellant mass expelled from the chaser mpp is assumed to be negligible compared to
its total mass m¢, so the later can be taken as constant. From now on, all the equations and variables
will be expressed in non-dimensional form, taking

as the characteristic magnitudes for length, time and mass respectively.

Dynamics will be studied using a non-linear relative motion formulation in curvilinear coordi-
nates.” Let us begin by introducing a Local Vertical-Local Horizontal (LVLH) reference frame
centered at the leader 7 = {L;i’,j’,k’} as shown in Figure 1. The position and velocity of the
follower can be written as:

r =i +yj + 2k’
v =i +gj + 2K



Figure 1. Schematic representation of the problem.

The curvilinear coordinates p and 6 are now defined in the form

p=—1+/(z+1)>+¢2, 0=atan2(y,1+2)

x=—-14+1+p)cosh, y=(1+p)sinb

where 0 is the angle formed by the position vectors of chaser and leader, and p is the radial separation
of the chaser from the orbit of the leader. Projecting the equations of motion along the radial and

transversal unity vectors

u, = cos 0i’ + sin j’

uy = —sin i’ + cos 6j’
as well as the normal unity vector, one finally reaches
ﬁ—29—3p:aip+agp+an

0+ 2p = aip + are

Z+z=ay, +ar;
where a;,, ayp, a9 and a4, account for the non-linear perturbation terms
)
I+p
1
+p | ags = z
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(1+p) +z] [(1+p) +z

aip=0%(L+p)+20p, apy=

)

agP:_2p+1_ :|3/27

while ar,, arg and a7, correspond to the actions of the continuous-thrust engine.
Restricting ourselves to the planar case, the previous equations read

0+ 2p = aip + ary
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with
arp, = esiny aTy = €COS7Y

where ¢ is the non-dimensional magnitude of the thrust acceleration, and -y is its orientation with
respect to the transversal direction. Introducing the state vector

) T
S=|p 0 p 0 4)

the equations can be expressed as a first order system in the form

29+ 3p+ aip +agp +an

as 9251 a;
2 _F(r,8), with F(r,S)= 2p + aig + arg : (5)
dr p

0

where T is the non-dimensional time.

Neglecting the non-linear perturbing terms, a linear formulation with the same structure as the
Clohessy-Wiltshire equations is reached:

p—20—3p=ar,

6+ 2p = ary ©)
or as a first order system:
20+ 3p + ar,
g =F*(1,S), with F*(7,S) = _QP'Z arg o

0
The final state for the proposed rendezvous maneuver must enforce that the chaser reaches the
same orbit as the leader with a certain phasing, leading to

. T T
S(Tf)Z[pf Or ps Qf} =[0 00 6] .

On the other hand, the initial state is determined by the original orbit of the chaser

[0 V1P -1 29 0(m) | -

where 6y comes from imposing initially circular orbit, Ap = py — pg = —po is the desired radial
displacement, and 6y is set free. The latter implies that the phasing problem will be solved by
simply selecting the angular position at which the maneuver is started, which is a fuel-efficient
solution for LEO orbits, separating it from the radius modification problem. Furthermore, without
loss of generality we can set ¢y = 0, and the boundary conditions take the final form:

S(TO):[pO b0 po 90}T=

S(r))=[0 00 0]"

S(To)z[o V1/(po+1)3—1 —Ap —AH]T, ®)

with A8 = Of — 0y = —Hb.



CONTINUOUS THRUST MANEUVER

The minimum-time transfer between two close, coplanar, circular orbits is now studied for the
continuous, constant thrust case, using both the indirect and direct formulations. The solutions
are not restricted to low-thrust, covering a wide range of values for the non-dimensional thrust
parameter. Furthermore, since the mass of the maneuvering spacecraft has been assumed to be
constant, this Optimal Control Problem (OCP) is equivalent to minimizing the total impulse required
for the transfer.

The indirect method is considered first, posing the Two Point Boundary Value Problem derived
from the first order optimality conditions and studying it from a qualitative point of view. Although it
is not possible to obtain closed analytical solutions, and we have restricted the numerical treatment
of the OCP to the direct method, several key conclusions about the structure of the problem are
reached, identifying two different regimes depending on the ratio between radial displacement and
thrust parameter, and giving a first estimate of the maneuver time.

The OCP is then solved numerically using the direct method, for several values of the radial
displacement and the thrust parameter. The results confirm the conclusions from the previous qual-
itative analysis, and expand the information about those cases where the analytical approximations
where not valid.

Indirect Method

The cost function for a minimum-time maneuver can be expressed in the form:®

Tf
J:/ L(S,v,7)dr =1
0

where L (S,~,7) = 1 is the Lagrangian, and there is no dependence of the cost function with the
final state. Introducing a costate A, the Hamiltonian is then defined as:

©)

H=XT-F+L . X =[x M A M ]
The solution to the OCP can now be obtained by imposing the first order optimality conditions

given by the Euler-Lagrange equations. Using the Hamiltonian previously defined, one reaches four
adjoint equations

‘ OH
A=——= 10
IR 10)
one control equation
o0H .
OZW:>0:5/\pcosv—5)\ésm7, (11)
and one transversality condition, introduced by the minimum-time requirement
H(rj)=0= A" .F| =-1, (12)
s

which along the equations of motion yield a Two-Point Boundary Value Problem (TPVBP), formed
by eight differential Equations (5) and (10), and two algebraic Equations (11) and (12). The bound-
ary conditions for this TPVBP are imposed either on the state or its corresponding costate, so that
the boundary value of an element of the costate associated to a fixed element of the state is free,



while each element of the costate associated to a terminally-free element of the state must have a
boundary value of 0. From the boundary conditions of the problem, Eq. (8):

p(r0) =0, O(r)=0, p(r0)=—Ap, Xg(10)=0
plrs) =0, O(r;)=0, p(rs)=0, 0O(r)=0

The previous TPBVP cannot be solved analytically for a general case. A numerical solution
could be sought for using several algorithms such as shooting methods, but as previously stated the
numerical part of this study is focused on the direct method. Instead, the TPVBP is now studied
from a qualitative point of view, with the aim to extract knowledge about the structure of the solution
and the evolution of the state. This information can then be used to generate initial guesses for the
iterative Non-Linear Programming algorithms used in the direct method.

To ease the treatment of the equations, the linearized formulation of the relative motion in curvi-
linear coordinates is used. This leads to the following set of adjoint equations:

)\p = —)\p + 2)\9'
Mg =—2X— N
Ap=—3)\;

N =0

Note that, by neglecting the non-linear terms, the adjoint equations have been decoupled from the
equations of motion. The solution for these linearized adjoint equations along with the boundary
condition A\g (79) = 0 is now straightforward

Ay = Asin (14 ¢)

AN =2Acos(T+¢)+ B

Ap =3Acos (1T +¢) +2B

X =0
Since only one boundary condition is given for the costate, the solution depends on three parameters
which would be determined by imposing the boundary conditions for the state. It is observed that

the costate for 6 is equal to zero in all cases; this is due to the fact that § is subjected to no constraints
during the maneuver. This will also hold true for the non-linear case.

Control Eq. (11) allows to express the thrust orientation angle + as a function of the costate,
leading to the following expressions

N M
/y2 2’ /2 2’
>‘p+)‘g )‘p+)‘g

v = atan2 (—sgn (€) A, —sgn (€) A;) -

siny = —sgn (¢) cosy = —sgn (¢)

Finally, introducing the known values of the final state into the transversality condition for optimum
final time, Eq. (12), yields
ApE SNy + Age cosy + 1‘Tf =0,

and substituting the previous expressions for sin v and cos y:

1
Mo(T1)2 4+ Ng(75)? = =1 (13)



So far, the original TPVBP has been reduced from eight ODEs and two algebraic conditions to
the four linearized equations of motion, Egs. (7), and one algebraic condition, Eq. (13), with five
unknowns 7y, A, B, ¢ and 6. However, there is no closed solution for the linearized equations of
motion perturbed by a continuous thrust acceleration, so it is not possible to find a fully analytical
solution for the OCP even in the linearized case. Nevertheless, additional information on the solu-
tion can be obtained by analyzing the orders of magnitude of the different terms in the equations and
locating the dominant ones. To this end, the linear, second order equations of motion are considered:

d? deé d26 d

d—§:2d——|— 3p +esiny | F:—Zd—p—l—ecosv (14)
T T~ S—— T T, N——
Vv Vv SAp EUp Vv Vv EUp

Ap A6 A 948p

AT2 AT A2 AT

with

Ap=pj—=po=—po
AO=0r—0y=—bp
AT =T —T9 =T¢
|upl, lug] <1

Note that Ap has a fixed value imposed by the requirements of the maneuver, while Af is a free
parameter. According to the second of Eqs. (14), said angular displacement can be driven both by
gravitational effects and the action of thrust. Considering the case where thrust is dominant, it is
possible to write:

A ~ 57’?1@

and introducing it into the first equation yields the following orders of magnitude
Ap ETJ?ZUQ 3Ap7‘? ET]%UP

For long non-dimensional mission times 7y > 1, the second and third terms are dominant, leading
to

[ EUg
which not only gives a first estimate of the required maneuver time, but also shows that the optimum
thrust orientation profile will remain close to the transversal direction. For the short mission time
scenario 7y < 1, the first and fourth terms become dominant (note that at least one control term
must be retained), giving the following estimate for the maneuver time:

TF o~ —
Elyp

Interestingly, the preferred orientation of thrust for minimum time maneuvers has changed from the

transversal to the radial direction.

Carefully examining these two regimes, it is possible to check that the gravity-dominated scenario
is already included in them. Certainly, for long maneuver times introducing the expression for 7¢
into the second equation yields

Ap?  Ap?
Ag 2P 22
Eug  cug



showing that both gravitational and thrust effects are of the same order, and giving an estimate for
Af. Nevertheless, the first equation indicates that the desired displacement in p is reached through
the coupling between both equations due to the gravitational effects, so this regime will be referred
to as gravity-dominated.

In the short maneuver time case, that same equation reads

A Apry Ap%
o

where the minimum-time condition of dominantly radial thrust implies that |uy| < 1. Therefore,
transversal control will be at most of the same order as the gravitational effects, due to the need to
meet the boundary conditions in 0, yielding up < 77 < 1 (that is, the shorter the maneuver time the
more close the thrust profile will be to the radial direction). Since the displacement in p is mainly
driven by the action of thrust in its direction, this regime will be called thrust-dominated.

The transition between both regimes takes place for
Tr~0(l) = Apre.

In this transition zone, all terms in both equations became of the same order, and no simplifications
can be made. Thrust will no longer have a preferred orientation, taking intermediate positions as
it evolves from one limit case to the other. Since 7y = 27 corresponds to one orbital revolution
of the leader, it follows that another key difference between both regimes is whether the maneuver
requires less than one revolution to complete or several.

The equations of motion could be approximately solved for both regimes by neglecting the non-
dominant terms, leading to a set of simplified equations. In the long maneuver time, or gravity-
dominated, case, the control and acceleration terms in the radial equation become negligible com-
pared to the other two, leading to a relation between the radial displacement and the angular velocity:

e 3

ar 2
Introducing this into the second of Eqgs. (14) leads to:

dp

— =2ap .

dr a6

Both ODEs are first order, so the boundary conditions for p and 6 cannot be imposed. From a
physical point of view, this shows that a small component of thrust in the radial direction would be
needed to enforce them. Assuming that ag is constant, which is consistent with the condition that
thrust should be as close to the transversal direction as possible, these two equations can be solved:

p = po+ 2agT
3 3
0=10y— §p07' — §a972
leading to a maneuver time
Ap
= — 15
T 20,9 ( )

This estimation of the maneuver time also shows that thrust must be oriented in the same sense as
the velocity if the final orbit is higher than the initial one, and opposite to it if the final orbit is lower.



In the short mission time, or thrust-dominated, case, the leading terms in the radial equation are
those associated with acceleration and thrust, yielding

d?p

dr2 @p

which can be readily integrated assuming constant a,,

p=po+a,T
. ap 2
P = PoTPOT + 5T

Introducing these results into the second of Egs. (14)

d?¢ _
EP) = —2po — 2a,T + ay
and integrating for constant a,, and ag

0 =0+ (ag —2po) T — (lpTQ

) _ 95
9:90—%007—1—%72—%73

The fulfillment of the final boundary condition in 6 would require a small component of thrust in
the direction of 6, large enough to interact with the contribution from the main component of thrust
in the direction of p; this leads to the already commented condition of ag ~ 7. Focusing on the
equations for p, a thrust orientation profile compatible with the boundary conditions for p can be
achieved by thrusting in one direction during the first half of the maneuver and then in the opposite
direction during the second half, yielding

p(7r/2) = apre/2, p(rp) =0

a . T a a
p(ri/2) = po+Z7F. plrp) = p(ry/2) +p(rp/2) 5 = F7F = po+ 7y
The maneuver time can now be obtained from the last equation as:
A
=22 (16)
Qp

This kind of approximate analysis cannot be carried for the transition zone, where all the terms
in the equations become of comparable order. The structure of the solution undergoes fundamental
qualitative changes as it moves from one regime to the other, transitioning from a nearly bang-
bang thrust orientation law in the radial direction for the thrust-dominated case to approximately
tangential in the gravity-dominated case. In the absence of an analytical solution for the TPVBP,
this transition zone will be studied numerically using the direct method.



Direct Method

The proposed minimum-time transfer is now studied from a numerical point of view, using a
direct transcription®!° to express the original continuous problem as a discrete Non-Linear Pro-
graming (NLP) one. This NLP subproblem is then solved using an iterative algorithm, starting from
a suitable initial guess of the solution.

The discretization is performed by introducing a uniformly spaced grid of M nodes for the in-
dependent variable 7, ranging from 0 to 7¢. The optimization variable is formed by the values of
the state S and the control  at each node of the grid, as well as the free final time 7. This implies
that the minimum-time objective function can be expressed as a simple function of the optimization
variable

J=r75.

The equations of motion are enforced by expressing them as a discrete set of non-linear equality
constraints, called defect constraints, using schemes from the Implicit Runge-Kutta family.”!! The
selection of implicit algorithms over explicit ones is based on their greater order for the same number
of stages and better stability, while their normally higher computational cost is compensated by the
iterative nature of the NLP algorithms. Two different schemes are considered in this study. On
the one hand, the Trapezoidal Method, a 2-stages, 3" order IRK which yields 4 (M — 1) defect
constraints, is used to obtain fast and coarse solutions. On the other hand, the Hermite-Simpson
Separated (HSS) method, a 3-stages, 4" order IRK which yields 8 (M — 1) defect constraints, is
employed to compute refined solutions. The HSS method has the additional advantage of providing
information about the costate,” but it also presents the caveat of requiring the middle-points of the
grid to be included in the optimization variable, almost doubling its size for the same number of
nodes. Finally, the conditions in which the maneuver is to be performed introduce no additional
path constraints, only bound constraints for the initial and final values of the state.

The NLP subproblem is solved using Ipopt (Interior Point OPTimizer), a third-party software
package for large-scale nonlinear optimization.!? It is distributed as open source code under the
Eclipse Public License (EPL), and available from the COIN-OR initiative*. This NLP solver re-
quires as an input the Jacobian of the objective function and the constraints, and can use either
a user-supplied Hessian or its own limited-memory BFGS approximation. Since both the objec-
tive function and the defect constraints are relatively simple, their respective Jacobians are build
analytically as sparse matrices. Regarding the Hessian, for small grids (M < 200) a numerical ap-
proximation based on finite differences of the gradients is used,'? while the build-in L-BFGS update
is preferred for larger grids. Whereas the former gives a much better approximation of the Hessian,
requiring less iterations to converge and being more stable, the latter takes much less computational
time to evaluate and factorize. As the size of the problem grows, the extra time spent computing
and factorizing the Hessian at each step rapidly overcomes the gains from the reduced number of
iterations, justifying the use of the L-BFGS approximation to improve the overall performance of
the solver.

The minimum-time transfer between two coplanar, circular orbits around Earth is now computed
for several values of the orbital separation and the thrust parameter. In all cases, the final orbit has
an altitude of h = 635 km over Earth mean equatorial radius Rg = 6378.1 km, that is

R=7013.1km, Top=97.415min, € = 1.075010 > rad/s

*http://www.coin-or.org/
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Figure 2. Time of flight as a function of the non-dimensional thrust parameter for
several radial displacements.

where Toy, is the orbital period of the final orbit. Six different radial separations AR with values
+10m, £100m and #1000 m are considered, corresponding to values of Ap of +1.42591076,
+1.4259107° and +1.4259 10~ respectively. The sign of Ap indicates whether the initial orbit is
above the reference orbit, negative Ap, or below it, positive Ap. A wide range of non-dimensional
thrust acceleration parameters ¢ € [10°,1078] is considered, corresponding to physical accelera-
tions between 8.1043 m/s? and 8.1043 10~% m/s%. Initial guesses are constructed either using the
qualitative information obtained from the indirect method or a previous solution for the same or-
bital separation and a similar thrust parameter. All final solutions have been computed with the HSS
method, the Trapezoidal method being used for initialization purposes only.

Figure 2 shows the evolution of the maneuver time 7, with the non-dimensional thrust parameter
g, for different values of the radial displacement AR. The two different regimes predicted by the
qualitative study of the equations from the indirect method can be clearly identified, with the tran-
sition between them taking place for values of 7; around one orbit of the leader, that is, 7y ~ 2.
This confirms the hypothesis that one of the key differences between both regimes is whether the
maneuver can be completed in one revolution or not. Interestingly, the main effect of increasing
|AR| appears to be just a displacement of the curves along the horizontal axis; this can be clearly
seen in Figure 3, where the evolution of 7; with the ratio Ap/¢ is represented. While this behavior
is consistent with the predictions given by the indirect method, it is important to keep in mind that
those results where obtained neglecting the non linear terms in the equations of motion. Therefore,
the numerical results reveal that the influence of the non-linear terms in 7 is negligible for the con-
sidered values of the radial displacement. The predictions for 7; obtained from the indirect method
have also been represented in Figure 3, showing a great correspondence with the numerical results.
The total impulse required to perform the maneuver also behaves differently in both regimes as
shown by Figure 4. It decreases with maneuver time in the thrust-dominated regime, but remains
nearly constant in the gravity-dominated regime. Consequently, for relatively short maneuvers (less
than one revolution to complete) the required propellant can be reduced by decreasing thrust and
increasing maneuver time, while for long maneuvers (more than one orbit to complete) the magni-
tude of thrust only has a noticeable effect in maneuver time. In all cases total impulse increases with
the required radial displacement and presents the same values for orbit raising and orbit lowering
maneuvers.
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Figure 3. Time of flight as a function of the ratio between the non-dimensional radial
displacement and the thrust parameter for several radial displacements.
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Figure 4. Total impulse in m/s as a function of non-dimensional time for several radial
displacements.
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Figure 5. Minimum-time trajectories for a radial displacement of 1 km and different
values of the thrust parameter.
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Figure 6. Minimum-time transfer for a positive radial displacement of 10 m and a

non-dimensional thrust parameter of ¢ = 1.0093 10 4.
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16



Continuing the analysis of the numerical results, Figure 5 shows the minimum-time trajectories
for a radial displacement of 1 km and different values of . Since the total angular displacement
strongly varies with €, it has been normalized with its initial value to get a more clear representation
of the different trajectories. The first two cases, ¢ = 1073 and ¢ = 10~%, correspond to the thrust-
dominated (or short mission time) regime, while the last two, ¢ = 1076 and ¢ = 1077, belong
to the gravity-dominated (or long mission time) regime. The trajectory for ¢ = 107° lies in the
transition zone, separating the previous ones. It is observed that the solutions corresponding to the
same regime have a very similar qualitative behavior, while drastic changes appear when moving
from one regime to the other. Particularly, the thrust-dominated solutions have a distinguishable
overshoot in # and no oscillatory components, while the gravity-dominated solutions present no
overshoot and small oscillations.

In order to provide a more detailed description of the problem, this section is concluded by
presenting three representative cases taken from both regimes and the transition zone. All of
them correspond to the same positive radial displacement of 10 m. Figure 6 shows the thrust
orientation angle, trajectory, state and costate for a solution in the thrust-dominated regime with
e = 1.0093 10~4, corresponding to a physical acceleration of ¢ = 8.1793 10~% m/s? and a maneu-
ver time of 7y = 0.2375. The control variable -y resembles a step function, with the switch located
at the middle of the maneuver. Thrust is orientated close to the positive radial direction during the
first half of the maneuver, and in the second half it reverses to point opposite to it. As a conse-
quence, the curves for p, A, and \; are highly symmetric, while the short maneuver time prevents
the gravity-dominated effects to fully develop. It is also interesting to point out that the curves for -,
p, p and the costates fit very well with the behaviors predicted by the approximate analytical study
of the equations from the indirect method.

The solution has a completely different structure in the gravity-dominated regime, as shown in
Figure 8 for e = 1.000 10~% (a = 8.1043 10~ m/s?, 7; = 71.4536). The thrust control angle is now
oriented along the transversal direction, describing small oscillations about it. Oscillatory behaviors
can also be found in the rest of variables, except for # and \g. Nevertheless, the evolution of p, 6
and 6 is driven by their secular components, which fits very well with the approximations obtained
from the indirect method. Interestingly, the secular evolution of p have changed from quadratic to
linear, justifying the different slopes showed in Figure 2 for 7 (¢).

Finally, Figure 7 corresponds to a transfer maneuver in the transition zone, with ¢ = 1.5038 1077,
a =1.218610"%m/s? and Tr = 5.2442. The thrust angle profile reflects said transition between
both limit cases, taking intermediate values. The radial distance profile is still very similar to the
thrust-dominated case, but the trajectory no longer has an overshoot in ¢. The curves for p, 6 and
the costate also present clear differences from the thrust-dominated case, although they have not yet
developed the oscillatory behavior which characterizes the gravity-dominated regime.

CONCLUSION

The minimum-time constant-thrust transfer between two close, coplanar circular orbits has been
studied, using a non-linear relative motion formulation in curvilinear coordinates and both the direct
and indirect methods. Results show the existence of two different regimes depending on whether the
maneuver takes less or more than one orbit to complete, with fundamental qualitative differences
between them. In the short, or thrust-dominated maneuver the thrust orientation control law is nearly
bang-bang along the radial direction. In the long, or gravity-dominated maneuver said control law
oscillates with small amplitude about the transversal direction. The ratio of the required radial
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displacement and the available thrust is identified as the main parameter of the problem and a clear
relation between this parameter and the maneuver time is observed for both regimes. Finally, an
approximate analytical study of the Euler-Lagrange equations leads to an explicit expression for
the relation between maneuver time, radial displacement and thrust parameter, as well as other
qualitative informations about the state and costate. This information can be very useful to construct
initial guesses for iterative optimization algorithms or to quickly determine the main characteristics
of a continuous-thrust maneuver without actually solving the associated Optimal Control Problem.
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