
Lightweight Model for Session-Based Recommender Systems
with Seasonality Information in the Fashion Domain
Nicola Della Volpe
Politecnico di Milano

Milan, Italy
nicola.dellavolpe@mail.polimi.it

Lorenzo Mainetti
Politecnico di Milano

Milan, Italy
lorenzo.mainetti@mail.polimi.it

Alessio Martignetti
Politecnico di Milano

Milan, Italy
alessio.martignetti@mail.polimi.it

Andrea Menta
Politecnico di Milano

Milan, Italy
andrea.menta@mail.polimi.it

Riccardo Pala
Politecnico di Milano

Milan, Italy
riccardo.pala@mail.polimi.it

Giacomo Polvanesi
Politecnico di Milano

Milan, Italy
giacomo.polvanesi@mail.polimi.it

Francesco Sammarco
Politecnico di Milano

Milan, Italy
francesco.sammarco@mail.polimi.it

Fernando B. Pérez Maurera
Politecnico di Milano

Milan, Italy
fernandobenjamin.perez@polimi.it

Cesare Bernardis
Politecnico di Milano

Milan, Italy
cesare.bernardis@polimi.it

Maurizio Ferrari Dacrema
Politecnico di Milano

Milan, Italy
maurizio.ferrari@polimi.it

ABSTRACT
This paper presents the solution designed by the team “Boston Team
Party” for the ACM RecSys Challenge 2022. The competition was
organized by Dressipi and was framed under the session-based fash-
ion recommendations domain. Particularly, the task was to predict
the purchased item at the end of each anonymous session. Our pro-
posed two-stage solution is effective, lightweight, and scalable. First,
it leverages the expertise of several strong recommendation models
to produce a pool of candidate items. Then, a Gradient-Boosting
Decision Tree model aggregates these candidates alongside sev-
eral hand-crafted features to produce the final ranking. Our model
achieved a score of 0.18800 in the public leaderboard. To aid in the
reproducibility of our findings, we open-source our materials.

CCS CONCEPTS
• Information systems→ Learning to rank; • Theory of com-
putation → Boosting.

KEYWORDS
recommender systems, recsys challenge, neural networks, boosting,
feature engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSysChallenge22, September 18–23, 2022, Seattle, WA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9856-5/22/09. . . $15.00
https://doi.org/10.1145/3556702.3556829

ACM Reference Format:
Nicola Della Volpe, Lorenzo Mainetti, Alessio Martignetti, Andrea Menta,
Riccardo Pala, Giacomo Polvanesi, Francesco Sammarco, Fernando B. Pérez
Maurera, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2022. Light-
weight Model for Session-Based Recommender Systems with Seasonality
Information in the Fashion Domain. In RecSys Challenge 2022 (RecSysChal-
lenge22), September 18–23, 2022, Seattle, WA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3556702.3556829

1 INTRODUCTION
Recommender systems are software applications which aim to help
users in making choices from a large pool of possibilities and have
become a crucial part of many modern online services. Histori-
cally, these systems have mainly been based on the assumption
that information about individual users’ long-term preference is
available [13]. However, in many real-world applications, such as
e-commerce, this long-term information is often unavailable, as
users are not always logged-in or they are using the service for
the first time [22]. In these cases, instead of long-term profiles, the
interactions of the user during the ongoing session are used to
personalize recommendations. Such a setting is usually termed a
“session-based recommendation” problem, which is the focus of
the ACM RecSys Challenge 2022, organized by Dressipi, the global
leader in fashion-AI.1

The challenge consists in accurately predicting which fashion
item will be purchased at the end of a session based on the items
visited during the same session, historical data about previous in-
teractions, and several attributes of the items. The proposed final
solution is an ensemble which leverages a Gradient-Boosted Deci-
sion Trees (GBDT) model to combine the performances of several

1Details of the challenge available at: https://www.recsyschallenge.com/2022/

18

https://orcid.org/0000-0001-6578-7404
https://orcid.org/0000-0002-8972-0850
https://orcid.org/0000-0001-7103-2788
https://doi.org/10.1145/3556702.3556829
https://doi.org/10.1145/3556702.3556829
https://www.recsyschallenge.com/2022/

RecSysChallenge22, September 18–23, 2022, Seattle, WA, USA Della Volpe, et al.

strong recommendation algorithms. The source code of our final
model and the respective documentation are publicly available on
GitHub. 2

2 PROBLEM FORMULATION AND EDA
As part of this challenge, Dressipi published a dataset of past anony-
mous online retail sessions, sampled over 18 months - between
January 2020 and June 2021. The total number of available items
is around 24k, while the number of sessions is 1.1M. In particular,
each session, which correspond to one user’s activity on one day,
is composed by a sequence of views, i.e., the items seen by the
user during the session and result into a purchase that happened at
the end of the session. Each view and purchase is enriched with a
timestamp, including both date and time, which has been assumed
to be real and significant as no further information was provided
in the official data description.

2.1 Problem Formulation
The task is a traditional top-100 recommendation scenario, i.e.,
to produce a recommendation list of length 100 for each session.
Each list must contain the purchased item from a subset of possible
candidates. The evaluation metric is the Mean Reciprocal Rank
(MRR) metric [16, 21]. The evaluation is performed over the month
of June 2021 - referenced as the test month, for which only the views
are available. Additionally, the test sessions have been randomly
sampled as to only keep the first 50 to 100% of the their viewed
items in order. This poses a problem for sequential and recurrent
architectures which are trained to predict the next item in the
succession until the purchased one, as the real progression is not
always available and the assumption of sequentiality of the model
fails.

Each test session must be independently considered at prediction
time, i.e., the prediction process for a single test session cannot ex-
ploit information about other test sessions. Moreover, test sessions
must exclusively be used at inference time as inputs and cannot be
employed to train models.

2.2 Data Analysis
Analyzing data in depth is crucial for this type of competition. For
the case at hand, the analysis was carried out on four fronts: anom-
aly detection, feature analysis, session analysis, and seasonalities.3

The majority of purchases are made in the evening while the
months with more purchases are November 2020 and May 2021.
The average duration of a session in terms of number of viewed
items was found to be around 4.7, with a minimum of 1 and a
maximum of 100. A small number of sessions - around 1.38% for the
test month - displays an interesting trend: they only contain views
of articles which were never viewed or purchased before. These
“cold” sessions required special care, as they could not easily be
compared to other sessions. Additionally, only 0.02% of the items
have no interaction at all in the dataset. The lack of information
about users and their characteristics meant it was not possible to

2Supplemental material is available at: https://github.com/recsyspolimi/recsys-
challenge-2022-dressipi.
3The notebook containing the most relevant data analysis is located in the "Notebook"
section of the GitHub repository

Table 1: Data splits used in our experiments.

Split Date Interval Num. of Sessions

Training 01/01/2020 - 31/04/2021 918382
Validation 01/05/2021 - 31/05/2021 81618
Leaderboard 01/06/2021 - 30/06/2021 50000
Final Test 01/06/2021 - 30/06/2021 50000

distinguish among different types of customers, e.g., a spendthrift
customer from a stingier one.

2.3 Notation
For the rest of the paper the following notation is used: I set
of possible items, i a generic item; A(i) = {(ci0 ,vi0), ...} a set of
attributes of item i , where ci j is a category index andvi j is its value;
F set of possible seasons, f a generic season; S set of possible
sessions, s = {i0, i1, ..., in } a generic session; ns number of items in
session s ;Q(i, ·) number of interactions for item i;Q(i, f) number of
interactions for item i in season f ; URM a binary matrix in which
each cellURM(s, i) has a value of 1 if session s contains at least one
view or purchase associated with item i , 0 otherwise.

3 DATA SPLITTING AND PRE-PROCESSING
The full dataset consists of 18 months of data, from January 2020 to
June 2021. In particular, the first 1M sessions compose the training
split and the last 100k compose the two test splits (leaderboard and
final). Since the test splits span all and only the entire month of
June 2021, the straightforward idea that allowed to have a local test
set similar to the real ones, was to use all and only the sessions in
the month of May 2021 as a validation set. Details of each split are
shown in Table 1.

3.1 Interaction Weighting
In order to provide the models with a more meaningful represen-
tation of the data, the following interaction weighting strategies
were developed:

• Views-purchases distinction: views are weighted with a value
α ∈ (0, 1).

• Cyclic decay: a sinusoid with frequency of 1
365 is used to give

a bigger weight to those interactions that are in a period of
the year that is closer to a reference timestamp.

• Exponential decay: an exponential function is used to re-
duce the weight of the interactions as the distance of these
increments with respect to a reference timestamp.

The rationale behind the deploying of the first strategy is that the
majority of the models used in the final ensemble were not suitable
to make a distinction between views and purchases. This is due
to their usage of the URM , which also limits the models to take
advantage of the temporal correlation between the session views.
Additionally, it has to be taken into account that the fashion realm
is a field in which the tastes of the customers are in continuous
evolution, with different periods that often present far different ten-
dencies on the purchased products [5]. This could lead the models,
in some cases, to learn noisy patterns for the reference period. This

19

https://github.com/recsyspolimi/recsys-challenge-2022-dressipi
https://github.com/recsyspolimi/recsys-challenge-2022-dressipi

Lightweight Model for Session-Based Recommender Systems in the Fashion Domain RecSysChallenge22, September 18–23, 2022, Seattle, WA, USA

two latter issues justify the deployment of the second and the third
strategies.4

4 FEATURES
The feature engineering phase was of the utmost importance to
achieve the best performance of our models. Given the dataset
provided by Dressipi, both an elaboration of the basic features and
the extraction of some custom attributes were performed. In the
following sections the most important features are presented.

4.1 Item Features
A very specific taxonomy was available in the dataset as content
data, where each item i was decorated with an attribute set A(i).
This representation was devoid of semantics, in fact both category
and value were represented by integers. Thus it was not possible
to infer any specific meaning from them except of the presence or
absence of the specific couple. A further complication was given
by the possibility for an item to have multiple values for the same
category, formally:

∃i j , ik : {(ci j ,vi j), (cik ,vik)} ∈ A(i) ∧ ci j , cik ∧ vi j = vik

The set of unique couples (ci j ,vi j) was 904. In order to manage
such number of couples a multi-label-encoding (MLE) [7] approach
was adopted. Each of the available tuples was translated into a
feature, leading to represent each itemwith a vector of 904 elements
expressing the presence (1) or absence (0) of the specific pair.

4.2 Booster Features
Additional features were needed to enhance the ranking process,
e.g., features related to seasonality traits. At the same time, these
features needed to have low correlation and a tractable dimen-
sion. The term booster features is used to refer to this set of features,
whichwas used in the booster architecture (described in Section 5.2).
Firstly the dimensionality of the basic attributes was reduced adopt-
ing a Variational Autoencoder [12] with a latent space of size 32.
This model was trained to minimize the reconstruction error of
the MLE vector, using as regularizing factor the Kullback–Leibler
Divergence [9], as optimizer Adam [11], and a train-validation split
of 80% of items for the train set and 20% of items for the vali-
dation set. Once obtained the model, it was possible to retrieve
the embeddings for each item. We then explored way to enrich
session representation in the booster, as noted at the start of the
section. A first, naive approach consisted in aggregating through
a sum the embeddings of the items belonging to the same session.
Another type of representation was instead obtained through a Rec-
ommender Variational Autoencoder (RecVae) [19] model, optimised
on the top-N recommendations task. After a training procedure,
each different session was used as an input of the network, and
the output of the encoder was extracted and used as the additional
representation of the sessions. Additionally, for each session-item
candidate, the scores provided by our basic models were inserted,
range-normalized in an intra-session fashion. As final attributes,
the seasonal tendencies of each item i were added, encoded as a
continuous value ranging from 0 to 1, considering distinctly in the
computation the concept of view and purchase. These attributes
4For these strategies, the reference timestamp was the starting date of the test set.

express the tendency of an item to be purchased or viewed in a
specific season or subset of seasons (values close to 1) or to be all-
seasonal (values close to 0). This seasonal tendency was computed
leveraging the concept of entropy of a random variable [18]. The
seasonal tendency sstend_total can be expressed as:

sstend−total = 1 −
∑
f ∈F

sstend (f) log |F | sstend (f)

where sstend (f) indicates the specific season tendency, com-
puted as the portion of purchases or views over the total:

sstend (f) =
Q(i, f)

Q(i, ·)

5 PROPOSED SOLUTION
The solution consisted in two steps: first, multiple recommender
models were optimized to perform top-N recommendations, then
for each session a selection of the best candidate items of each
model was merged and ranked through Gradient Boosting. Finding
the optimal hyperparameters of each model is a fundamental step
to maximize recommendation quality. For all algorithms, Bayesian
Optimization was performed using the Optuna [1] framework, fol-
lowed by the optimization of the interaction weighting strategies
described in Section 3. Additionally, each parameter combination
for LightGBM was evaluated using 3-fold cross validation.

5.1 Candidate Selection
Several baseline models were tested to produce the initial candi-
dates. K-Nearest Neighbors (KNN) models were fast to train and
provided satisfying results. A hybrid item-based KNN taking advan-
tage of both collaborative and content based information (ItemKNN-
CFCBF) and a user-based collaborative KNN (UserKNN-CF) were
built. For the latter, extra care was taken to ignore the similar-
ity information among sessions belonging to the test set, in order
to comply with the rules of the competition. A purely content-
based item KNN was also trained specifically on the sessions in
which the collaborative information was lacking. Graph-based mod-
els were also tested with a special focus on RP3Beta [2]. Another
group of baseline models that were trained are autoencoders, specif-
ically EaseR [20], RecVAE [19], and MultVAE [14]. Finally, a simple
non-personalized algorithm which recommends the items with the
highest number of interactions was added (TopPop). Each baseline
model is able to produce a relevance score for each recommended
item. The nature and scale of this metric depends on the structure
and inner mechanics of the specific algorithm: for collaborative and
content-based models, the score is given by computing the dot prod-
uct between the session profile and the similarity matrix calculated
at training time; for GRU4Rec, RecVAE and MultVAE the score is
the predicted preference of the items, i.e., the likelihood for each
item of being the next in the session; for the TopPop recommender,
the score is simply the popularity of the item, i.e., the number of
unique interactions with the item across the dataset.

5.1.1 GRU4Rec. Recurrent Neural Networks (RNNs) arewell suited
to model complex dynamics of sequential event sessions [15]. For
this reason, GRU4Rec [6] played a key role in our experiments.

20

RecSysChallenge22, September 18–23, 2022, Seattle, WA, USA Della Volpe, et al.

Table 2: Performance and best interaction-weighting hyper-parameters of the base models in the local validation set. Models
are presented in descending order based on their MRR. Interaction weighting is not applied to GRU4Rec as it is does not uses
the URM.

Model MRR Validation View-Purchase Weight Uses Cycling Decay Exponential Decay Weight

GRU4Rec 0.17953 - - -
RP3Beta 0.15768 0.2 No -
EaseR 0.15518 0.5 Yes 182
UserKNN CF 0.14962 0.2 Yes 182
ItemKNN CF+CBF 0.14886 0.5 Yes 182
RecVAE 0.14748 0.5 Yes 182
MultVAE 0.13004 0.5 No 365

Such approach exploits the Gated Recurrent Unit (GRU) to incre-
mentally learn the succession of events in variable-length series
and to predict the subsequent ones. The best configuration found
led to a final architecture composed by a single GRU layer with
122 units, preceded by an embedding layer of 98 units with a mini-
mum dropout of 0.05 to prevent the network to overfit the training
data. The introduction of the embedding layer slightly improved
the performance, whereas adding other GRU layers provided far
worse results, as well as increasing the layer dimension. The model
was trained for only 6 epochs by using BPR-max loss function [17].
Being a pairwise ranking loss function, it considers the difference
in score between relevant and non-relevant items, therefore it is
very suitable for recommendation tasks. Furthermore, it seemed to
be the only loss function able to keep the network stable during
the training phase. The cold-start problem for items needed to be
addressed. At inference time the accepted inputs for the model
are sessions including only items already seen during the train-
ing phase. For this reason, all the new items that were not in the
training data were excluded from the test sessions.

5.2 Ranking
Gradient-Boosted Decision Trees (GBDTs) are particularly popular
in the Recommender Systems field because of their capacity to work
on heterogeneous features and to aggregate results from different
sources [8]. In our case, GBDTs were trained to solve a Learning
To Rank (LETOR) task over the recommendations produced by
many different baseline models for the purpose of finding their
optimal ordering. The LambdaMART algorithm [3] was used to
maximize the Mean Average Precision (MAP) metric with a cutoff
value of 100 to match the scoring conditions of the competition.
MAP was chosen since it is strongly correlated with MRR and it
is already provided as a metric by the two tested state-of-the-art
implementations of GBDTs which were tested: XGBoost [4] and
LightGBM [10]. It is worth mentioning that both libraries work
with tabular data, therefore the following description will refer to
tables, rows and columns. Training the boosting model required
five main steps:

(1) The best N baseline algorithms were trained on the train-
ing split and used to produce sixty candidate items each
together with their relevance scores; the candidates of all

models were combined by performing an inner join, discard-
ing duplicate recommendations but keeping all scores on
separate columns.

(2) The candidates table was checked against the validation
data table to ensure that the actual purchased item for each
session was present, otherwise the session was excluded
from the training of the GBDT as to make sure each session
had at least one positive sample the boosting model could
use to learn; finally, the ground truth was inserted as a binary
value for each row.

(3) The GBDT model was trained on the candidates table, aug-
mented with session and item attributes, using the optimal
hyperparameters found as described in Section 5.

(4) The baseline models were all trained again, this time includ-
ing the validation month; the candidates were recalculated
and then processed as described in step one.

(5) The previously trained GBDT model was used to perform
prediction over the new candidates table, again augmented
with session and item attributes.

The final prediction was obtained by simply reordering the candi-
dates of each session according to the score assigned by the GBDT
model.

6 RESULTS
The baseline models provided an initial measure of the complex-
ity of the task. Table 1 presents the overall performance of these
models with respect to the local validation set. From the table, neu-
ral (GRU4Rec) and graph based models (RP3Beta) stood out with
respect to the others. The top performer was GRU4Rec, which ex-
hibited also an interesting behaviour with respect to sessions of
length 1. In fact, in our local validation set, it showed promising
results (MRR ∼ 0.23) in these specific sessions, although they can
be considered among the most complex to predict. Unfortunately it
was not possible to translate such a result in the test set due to its
structure (spurious sessions of length 1 created by the random cut-
off). The use of our interaction weighting strategies was effective as
it generally led to accuracy increases with respect to the traditional
use of the URM. The most accurate and easy-to-implement interac-
tion weighting strategy was views-purchases distinction. Combining
this strategy with cyclic and exponential decay generally improved
the accuracy further. Our most accurate URM-based models (EaseR,
UserKNN, ItemKNN, MultVAE, RecVAE) used the three strategies:

21

Lightweight Model for Session-Based Recommender Systems in the Fashion Domain RecSysChallenge22, September 18–23, 2022, Seattle, WA, USA

Table 3: Performance of the boosters both in the local vali-
dation set and in the public test set.

Model 3-Fold CV MAP
(Validation)

MRR
(Public Leaderboard)

LightGBM 0.49115 0.18800
XGBoost 0.46390 0.18347

views-purchases distinction, cyclic, and exponential decay. RP3Beta
was the exception, as it only used views-purchases distinction and
did not achieved higher accuracy by including time-based decays.
Interestingly, the best weight for a given interaction-weighting
strategy vary per model. For instance, RP3Beta and EaseR use two
different weights: 0.2 and 0.5, respectively. These differences in each
strategy between the models suggest that tuning these strategies
on each model is required.

Regarding the second stage of the pipeline, which involved the
usage of GBDTs as stated in Section 5.2, our final choice has been
LightGBM, due to its faster training and superior accuracy with
respect to XGBoost as shown in Table 2. It was also computed the
feature importance of each attributes involved in the final model, in
order to check its relevance.5 The results show a balance between
features, meaning that all of them contributed mostly equally in
final ranking, with a slight preference for the scores of the baseline
models. This suggests that the GBDTs model interpreted the scores
as knowledgeable experts in specific contexts, selecting which ones
to trust more according to the recommendation scenario of interest.

In the first evaluation round our approach got a score of about
0.1845 which put us in 29th place in the final leaderboard. Unfortu-
nately, due to a technical mistake in our submission, we achieved
in the second evaluation (after the re-opening of the challenge) a
lower score and position in the leaderboard.

7 CONCLUSIONS
The ACM RecSys Challenge 2022 consisted in predicting the pur-
chased item of anonymous sessions composed by the sequence of
interactions with items. Starting from the available data, two set of
features related to the items and to sessions were extracted both
with ad-hoc models and feature engineering. A GBDT model was
used to provide final recommendations. This model combines the
candidates selected the baseline recommendation models alongside
their features. Our two-stage model was able to efficiently and effec-
tively recommend accurate fashion items, resulting in a simple and
scalable solution. Our results indicate that all features, including
but not limited to session and seasonal features, are important to
provide accurate recommendations in this domain. Also, weight-
ing interactions on baseline models contributes positively in the
accuracy of them. These weighting strategies differentiate types of
interactions and include seasonal aspects into these models.

ACKNOWLEDGMENTS
We would like to thank Prof. Paolo Cremonesi for his support.

5Results ommited due to space limitations.

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019,
Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and
George Karypis (Eds.). ACM, 2623–2631. https://doi.org/10.1145/3292500.3330701

[2] Cesare Bernardis, Maurizio Ferrari Dacrema, and Paolo Cremonesi. 2018. A novel
graph-based model for hybrid recommendations in cold-start scenarios. CoRR
abs/1808.10664 (2018), 2 pages. arXiv:1808.10664 http://arxiv.org/abs/1808.10664

[3] Christopher J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report. Microsoft Research. http://research.microsoft.
com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf

[4] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi (Eds.). ACM, 785–794. https://doi.org/10.1145/
2939672.2939785

[5] Yashar Deldjoo, Fatemeh Nazary, Arnau Ramisa, Julian J. McAuley, Giovanni
Pellegrini, Alejandro Bellogín, and Tommaso Di Noia. 2022. A Review of Mod-
ern Fashion Recommender Systems. CoRR abs/2202.02757 (2022), 35 pages.
arXiv:2202.02757 https://arxiv.org/abs/2202.02757

[6] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun
(Eds.). 10 pages. http://arxiv.org/abs/1511.06939

[7] Mayoore S. Jaiswal, Bumsoo Kang, Jinho Lee, and Minsik Cho. 2019. MUTE: Data-
Similarity Driven Multi-hot Target Encoding for Neural Network Design. CoRR
abs/1910.07042 (2019), 9 pages. arXiv:1910.07042 http://arxiv.org/abs/1910.07042

[8] Dietmar Jannach, Gabriel de Souza PereiraMoreira, and EvenOldridge. 2020. Why
Are Deep Learning Models Not Consistently Winning Recommender Systems
Competitions Yet?: A Position Paper. In RecSys Challenge ’20: Proceedings of the
Recommender Systems Challenge 2020, Virtual Event Brazil, September, 2020. ACM,
44–49. https://doi.org/10.1145/3415959.3416001

[9] James M. Joyce. 2011. Kullback-Leibler Divergence. In International Encyclopedia
of Statistical Science, Miodrag Lovric (Ed.). Springer, 720–722. https://doi.org/10.
1007/978-3-642-04898-2_327

[10] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boost-
ing Decision Tree. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 3146–3154. https://proceedings.neurips.cc/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html

[11] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). 15 pages. http://arxiv.org/abs/1412.6980

[12] Diederik P. Kingma and Max Welling. 2019. An Introduction to Variational
Autoencoders. Found. Trends Mach. Learn. 12, 4 (2019), 307–392. https://doi.org/
10.1561/2200000056

[13] Sara Latifi, Noemi Mauro, and Dietmar Jannach. 2021. Session-aware recommen-
dation: A surprising quest for the state-of-the-art. Inf. Sci. 573 (2021), 291–315.
https://doi.org/10.1016/j.ins.2021.05.048

[14] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018
World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France,
April 23-27, 2018, Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and
Panagiotis G. Ipeirotis (Eds.). ACM, 689–698. https://doi.org/10.1145/3178876.
3186150

[15] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
Aware Recommender Systems. ACM Comput. Surv. 51, 4 (2018), 66:1–66:36.
https://doi.org/10.1145/3190616

[16] Dragomir R. Radev, Hong Qi, Harris Wu, and Weiguo Fan. 2002. Evaluating
Web-based Question Answering Systems. In Proceedings of the Third International
Conference on Language Resources and Evaluation, LREC 2002, May 29-31, 2002,
Las Palmas, Canary Islands, Spain. European Language Resources Association,
4 pages. http://www.lrec-conf.org/proceedings/lrec2002/sumarios/301.htm

[17] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI 2009,
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
Montreal, QC, Canada, June 18-21, 2009, Jeff A. Bilmes and Andrew Y. Ng (Eds.).
AUAI Press, 452–461. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=
1&smnu=2&article_id=1630&proceeding_id=25

22

https://doi.org/10.1145/3292500.3330701
https://arxiv.org/abs/1808.10664
http://arxiv.org/abs/1808.10664
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/2202.02757
https://arxiv.org/abs/2202.02757
http://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1910.07042
http://arxiv.org/abs/1910.07042
https://doi.org/10.1145/3415959.3416001
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
http://arxiv.org/abs/1412.6980
https://doi.org/10.1561/2200000056
https://doi.org/10.1561/2200000056
https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3190616
http://www.lrec-conf.org/proceedings/lrec2002/sumarios/301.htm
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25

RecSysChallenge22, September 18–23, 2022, Seattle, WA, USA Della Volpe, et al.

[18] Claude E. Shannon. 1948. A mathematical theory of communication. Bell Syst.
Tech. J. 27, 3 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[19] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I.
Nikolenko. 2020. RecVAE: A New Variational Autoencoder for Top-N Recommen-
dations with Implicit Feedback. In WSDM ’20: The Thirteenth ACM International
Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7,
2020, James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (Eds.). ACM,
528–536. https://doi.org/10.1145/3336191.3371831

[20] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In
The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-
17, 2019, Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J.

McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.). ACM, 3251–3257. https:
//doi.org/10.1145/3308558.3313710

[21] Ellen M. Voorhees and Dawn M. Tice. 2000. The TREC-8 Question Answering
Track. In Proceedings of the Second International Conference on Language Resources
and Evaluation, LREC 2000, 31 May - June 2, 2000, Athens, Greece. European Lan-
guage Resources Association, 8 pages. http://www.lrec-conf.org/proceedings/
lrec2000/html/summary/26.htm

[22] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun,
and Defu Lian. 2022. A Survey on Session-based Recommender Systems. ACM
Comput. Surv. 54, 7 (2022), 154:1–154:38. https://doi.org/10.1145/3465401

23

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/3336191.3371831
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3308558.3313710
http://www.lrec-conf.org/proceedings/lrec2000/html/summary/26.htm
http://www.lrec-conf.org/proceedings/lrec2000/html/summary/26.htm
https://doi.org/10.1145/3465401

	Abstract
	1 Introduction
	2 Problem Formulation and EDA
	2.1 Problem Formulation
	2.2 Data Analysis
	2.3 Notation

	3 Data Splitting and Pre-processing
	3.1 Interaction Weighting

	4 Features
	4.1 Item Features
	4.2 Booster Features

	5 Proposed Solution
	5.1 Candidate Selection
	5.2 Ranking

	6 Results
	7 Conclusions
	Acknowledgments
	References

