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We propose an efficient, accurate and robust IMEX solver for the compressible Navier-
Stokes equations describing non-ideal gases with general cubic equation of state and 
Stiffened-Gas EOS. The method is based on an h-adaptive Discontinuous Galerkin spatial 
discretization and on an Additive Runge Kutta IMEX method for time discretization. It is 
specifically tailored for low Mach number applications and allows to simulate low Mach 
regimes at a significantly reduced computational cost, while maintaining full second order 
accuracy also for higher Mach number regimes. The method has been implemented in the 
framework of the deal.II numerical library, whose adaptive mesh refinement capabilities are 
employed to enhance efficiency. Refinement indicators appropriate for real gas phenomena 
have been introduced. A number of numerical experiments on classical benchmarks for 
compressible flows and their extension to real gases demonstrate the properties of the 
proposed method.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The efficient numerical solution of the compressible Navier-Stokes equations poses several major computational chal-
lenges. In particular, for flow regimes characterized by low Mach number and moderate Reynolds number values, severe 
time step restrictions may be required by standard explicit time discretization methods. The use of implicit and semi-
implicit methods has a long tradition in low Mach number flows, see for example the seminal papers [15,16,48], as well as 
many other contributions in the literature on numerical weather prediction, see e.g. [7,24,26,27,36,47,49,55] and the reviews 
in [52,9]. Other contributions have been proposed in the literature on more classical computational fluid dynamics, see e.g. 
[6,5,11,13,17,41,54]. Many of these contributions focus exclusively on the equations of motion of an ideal gas and their ex-
tension to real gases is not necessarily straightforward. Stability concerns are even more critical in these particular regimes 
for spatial discretizations based on the Discontinuous Galerkin (DG) method (see e.g. [25,32] for a general presentation of 
this method), which is the spatial discretization used in many of the above referenced papers. In this work we propose a 
discretization approach for the equations of non-ideal compressible gas dynamics which allows to employ a generic cubic 
equation of state (EOS), as well as other simpler models such as the stiffened gas equation. The use of a general cubic 
EOS presents numerical challenges that allows in principle to handle more general cases of tabulated or analytical EOS. We 
discuss in detail the implications of this more physically realistic model of gas behavior for the numerical solution proce-
dure, generalizing and extending previous proposals in this direction such as [17]. The functional dependency of the EOS on 
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each thermodynamic variable has been carefully analyzed, in order to identify a practical procedure to handle it within an 
implicit solver. We use an accurate and flexible discontinuous DG space discretization and a second order implicit-explicit 
(IMEX) time discretization, see e.g. [33,45,10], combined to obtain an efficient method for compressible flow of real gases 
at low to moderate Mach numbers. In this way, we aim to derive a method that can then be easily extended to handle 
multiphase compressible flows, where a number of coupling and forcing terms arise that cannot be dealt with efficiently 
by straightforward application of conventional solvers. More specifically, we extend to second order in time the approach 
of [15,17], coupling implicitly the energy equation to the momentum equation, while treating the continuity equation in 
an explicit fashion. Our treatment also provides an outline of how a generic IMEX method based on a Diagonally Implicit 
Runge Kutta can be extended along the same lines. Notice that, with respect to the IMEX approach proposed for the Euler 
equations in [57], the technique presented here does not require to introduce reference solutions, does not introduce in-
consistencies in the splitting with respect to a reference solution and only requires the solution of linear system of a size 
equal to that of the number of discrete degrees of freedom needed to describe a scalar variable, as in [17]. A conceptually 
similar approach has been used in [36,49] for the discretization employed in the IFS-FVM atmospheric model. In order to 
obtain a formulation that is efficient also in presence of non negligible viscous terms, we resort to an operator splitting 
approach, see e.g. [39]. As commonly done in numerical models for atmospheric physics, we split the hyperbolic part of 
the problem, which is treated by an IMEX extension of the method proposed in [17], from the diffusive terms, which are 
treated implicitly. Second order accuracy can then be obtained by the Strang splitting approach [39,53].

For the spatial discretization, we rely on the DG approach implemented in the numerical library deal.II [3], which is 
a very convenient environment to develop a reliable and easily accessible tool for large scale industrial applications, as 
we have already shown in [44] for the case of the incompressible Navier-Stokes equations. This software also provides h-
refinement capabilities that are exploited by the proposed method. For the specific case of real gases, novel physically based 
refinement criteria have been proposed and tested, which allow to track accurately convection phenomena also for more 
general equations of state. The numerical experiments reported below show the ability of the proposed scheme and of its 
adaptive implementation to perform accurate simulations in a range of different settings appropriate to describe non-ideal 
gas dynamics.

The model equations and their non-dimensional formulation are reviewed in Section 2. The time discretization approach 
is outlined and discussed in Section 4. The spatial discretization is presented in Section 5. The validation of the proposed 
method and its application to a number of significant benchmarks is reported in Section 6. Some conclusions and perspec-
tives for future work are presented in Section 7.

2. The compressible Navier-Stokes equations

Let � ⊂ Rd, 2 ≤ d ≤ 3 be a connected open bounded set with a sufficiently smooth boundary ∂� and denote by x
the spatial coordinates and by t the temporal coordinate. We consider the classical unsteady compressible Navier-Stokes 
equations, written in flux form as:

∂ρ

∂t
+ ∇· (ρu) = 0

∂(ρu)

∂t
+ ∇· (ρu ⊗ u) + ∇p = ∇·τ + ρf (1)

∂(ρE)

∂t
+ ∇· [(ρE + p)u] = ∇·(τu − q) + ρf · u

for x ∈ �, t ∈ [0, T f ], along with suitable initial and boundary conditions to be discussed later. Here T f is the final time, ρ
is the density, u is the fluid velocity, p is the pressure, q denotes the heat flux and f represents volumetric forces. ρE is the 
total energy, which can be rewritten as ρE = ρe + ρk, where e is the internal energy and k = ‖u‖2/2 is the kinetic energy. 
At this stage, no more specific assumptions are made on the fluid and the choices of equations of state will be specified in 
the following. We also introduce the specific enthalpy h = e + p/ρ and remark that one can also rewrite the energy flux as

(ρE + p)u =
(

e + k + p

ρ

)
ρu = (h + k)ρu.

We assume that q = −κ∇T , where T denotes the absolute temperature and κ the thermal conductivity. Furthermore, we 
assume that the linear stress constitutive equation holds and we neglect the bulk viscosity and we denote the shear viscosity 
as μ, so that

τ = μ
(
∇u + ∇uT

)
− 2μ

3
(∇ · u)I.

For the sake of simplicity, we also assume constant values for both μ and κ . This choice can be justified by considering that 
we aim to simulate regimes with limited variations of temperature and density and, moreover, we are mainly interested in 
time scales where diffusive effects play a less relevant role. The equations can then be rewritten as
2
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∂ρ

∂t
+ ∇· (ρu) = 0

∂(ρu)

∂t
+ ∇· (ρu ⊗ u) + ∇p = μ∇·

[(
∇u + ∇uT

)
− 2

3
(∇ · u)I

]
+ ρf (2)

∂(ρE)

∂t
+ ∇· [(h + k)ρu] = μ∇·

[(
∇u + ∇uT

)
u − 2

3
(∇ · u)u

]
+ κ�T + ρf · u.

We now introduce reference scaling values L, T , U for the length, time and velocity, respectively, as well as reference values 
P, R, �, E, I for pressure, density, temperature, total energy and internal energy, respectively. We assume unit Strouhal 
number St = L/UT ≈ 1. This choice is the standard one in the case of advection dominated problems, see e.g. [34,41]. We 
also assume that the enthalpy scales like I +P/R and that

I ≈ P
R

E ≈ I + U2.

The model equations can then be written in non-dimensional form as

∂ρ

∂t
+ ∇· (ρu) = 0

∂ρu

∂t
+ ∇· (ρu ⊗ u) + P

RU2
∇p = μ

RUL
∇·
[(

∇u + ∇uT
)

− 2

3
(∇ · u)I

]
+ T

U
ρf (3)

∂ρE

∂t
+ ∇·

[(
h
I +P/R

E
+ k

U2

E

)
ρu
]

= μU
REL

∇·
[(

∇u + ∇uT
)

u − 2

3
(∇ · u)u

]
+ κ�

REUL
�T + L

E
ρf · u.

Notice that, with a slight abuse of notation, we have kept the same notation for the non-dimensional variables. We then 
define the Reynolds, Prandtl and Mach numbers as

Re = RUL
μ

κ = cpμ

Pr
M2 = RU2

P
,

where cp denotes the specific heat at constant pressure, so that, for low and moderate Mach numbers,

U2

E
= 1

I
U2 + 1

= O (M2)

I +P/R
E

=
I
U2 + 1

M2

I
U2 + 1

= O (1). (4)

This justifies, in the above mentioned regimes, methods in which an implicit coupling between the pressure gradient and 
the energy flux is enforced. This strategy has been proposed in the seminal paper [15] and in the more recent works [17,41]. 
We finally assume that the only acting volumetric force is gravity, so that f = −gk, where g denotes the acceleration of 
gravity and k the upward pointing unit vector in the standard Cartesian reference frame. It follows that

T
U

ρg = gT U
U2

ρ = gL
U2

ρ = ρ

F r2
F r2 = U2

gL
L
E

ρg = gρL
I + P

R + U2
= gρL

U2

1
I
U2 + 1 + 1

M2

= ρ

F r2
O (M2). (5)

As a result, we will consider the non-dimensional model equations

∂ρ

∂t
+ ∇· (ρu) = 0

∂ρu

∂t
+ ∇· (ρu ⊗ u) + 1

M2
∇p = 1

Re
∇·
[(

∇u + ∇uT
)

− 2

3
(∇ · u)I

]
− ρ

F r2
k (6)

∂ρE

∂t
+ ∇·

[(
h + kM2

)
ρu
]

= M2

Re
∇·
[(

∇u + ∇uT
)

u − 2

3
(∇ · u)u

]
+ 1

PrRe
�T − ρ

M2

F r2
k · u,

where we have taken cp�/E ≈ 1, which can be justified at moderate values of the Mach number. Notice that these non-
dimensional equations are very similar to those derived in [41].
3
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3. The equation of state

The above equations must be complemented by an equation of state (EOS) for the compressible fluid. A classical choice 
is that of an ideal gas; in the non-dimensional variables introduced above the equation that links together pressure, density 
and internal energy is given by

p = (γ − 1)

(
ρE − 1

2
M2ρu · u

)
, (7)

with γ denoting the specific heats ratio. The above relation is valid only in case of constant γ [56]. An example of non-
ideal gas equation of state is given by the general cubic equation of state, whose equation linking together internal energy, 
density and temperature, according to [56], is given in dimensional form by:

e = e# (T ) + a(T ) − T da
dT

b
U (ρ,b, r1, r2) , (8)

where e# denotes the internal energy of an ideal gas at temperature T , whereas a and b are suitable parameters that 
characterize the gas behavior. In case cv = de#

dT is constant, we can write

e = cv T + a(T ) − T da
dT

b
U (ρ,b, r1, r2) . (9)

In case the previous hypothesis does not hold, we analogously define cv (T ) = e#(T )
T , so that (8) reads as follows

e = cv(T )T + a(T ) − T da
dT

b
U (ρ,b, r1, r2) . (10)

The quantity cv (T ) should not be understood as a real specific heat, but only as a convenient way of writing the above EOS. 
The function U and the constants r1 and r2 depend on the specific equation of state. In this work, we consider the van der 
Waals EOS, for which r1 = r2 = 0 and

U = −bρ (11)

and the Peng-Robinson EOS, for which r1 = −1 − √
2, r2 = −1 + √

2 and

U = 1

r1 − r2
log

(
1 − ρbr1

1 − ρbr2

)
. (12)

The link between pressure, density and temperature for the general cubic EOS in dimensional form can be expressed as 
follows:

p = ρR g T

1 − ρb
− aρ2

(1 − ρbr1) (1 − ρbr2)
, (13)

with R g denoting the specific gas constant. Notice that for a = b = 0, the expression for the pressure of an ideal gas is 
retrieved. For the sake of clarity, we introduce the following non-dimensional variables

R̃ g = R�

P
R g ã = a

R2

P
b̃ = Rb, (14)

so that (13) can be rewritten in non-dimensional form as:

p = ρ R̃ g T

1 − ρb̃
− ãρ2(

1 − ρb̃r1

)(
1 − ρb̃r2

) . (15)

Finally, we define c̃v (T ) = cv
R�
P , so that the non-dimensional version of (10) reads as follows:

e = c̃v(T )T + ã(T ) − T dã
dT

b̃
U
(
ρ, b̃, r1, r2

)
. (16)

The last example of non-ideal gas considered is represented by the Stiffened Gas equation of state (SG-EOS) [37], which is 
interesting for its convexity property and is given in dimensional variables by:

p = (γ − 1)

(
ρE − 1

ρu · u − ρq∞
)

− γπ∞, (17)

2

4
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where q∞ and π∞ are parameters that determine the gas characteristics. Notice that, for this equation of state, the param-
eters have to be taken constant [37]. We define

q̃∞ = R
P

q π̃∞ = π

P
, (18)

so that (17) reads in terms of non-dimensional variables as follows:

p = (γ − 1)

(
ρE − 1

2
M2ρu · u − ρq̃∞

)
− γ π̃∞. (19)

Finally, the link between pressure, density and temperature for the SG-EOS can be written as:

T = p + π∞
ρ (γ − 1) cv

. (20)

We define c̃v = cv
R�
P , so that the non-dimensional version of (20) is given by:

T = p + π̃∞
ρ (γ − 1) c̃v

. (21)

More accurate and general equations of state are available in literature [51], [38], but the above choices, in particular 
the cubic EOS, are suitable for the regimes of interest, involve non trivial non-linearities and provide a sufficient level of 
complexity for the validation of the proposed numerical scheme.

An important parameter to determine the regime in which real gas effects are relevant is the so-called compressibility 
factor. In terms of dimensional variables, it is given by

z = p

ρR g T
. (22)

When z ≈ 1, the gas can be treated as an ideal one, while the ideal gas law is no longer valid for values of z very different 
from 1.

3.1. Analysis of isentropic processes for the general cubic EOS

We recall here the definition of the potential temperature θ for an ideal gas, which is commonly used in applications to 
atmospheric flows

θ = T

�
, (23)

with � =
(

p
p0

) γ −1
γ

denoting the so-called Exner pressure. Here, p0 denotes a reference pressure value and, in this work, 

we consider p0 = 105 Pa. For isentropic processes, the initial condition is typically given as a perturbation with respect to a 
constant background potential temperature. Therefore, as discussed in Section 6, the gradient of the potential temperature 
is a good candidate to drive the mesh adaptation procedure. Our goal is to employ adaptive mesh refinement also in 
the case of real gases, so as to enhance the computational efficiency, but for non-ideal gases the definition of a potential 
temperature or of quantities with similar properties is not trivial. We propose here a quantity with a simple definition, 
stemming from the analysis of isentropic processes, that is valid for the general cubic equation of state in the case da

dT = 0

and de#

dT = cv = const . For the sake of simplicity, in order to avoid the influence of reference quantities, we report the 
computations using dimensional variables. Let us recall the first law of thermodynamics

de = T ds − pdv = T ds + p

ρ2
dρ, (24)

where s denotes the specific entropy and v is the inverse of the density. Dividing both sides in the previous equation by T
we obtain

1

T
de = ds + p

ρ2T
dρ (25)

which in an isentropic process reduces to

1

T
de − p

ρ2T
dρ = 0. (26)

Under the specific assumptions made, we get
5
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cv

T
dT + a

b

1

T

∂U

∂ρ
dρ = 0. (27)

The EOS can be rewritten in the following form [56]

T =
[

p + aρ2

(1 − ρbr1) (1 − ρbr2)

]
(1 − ρb)

ρR g
. (28)

If we substitute (28) into (27), we obtain

cv

T
dT +

(
a

b

∂U

∂ρ
ρ − p

ρ

)
R

ρ (1 − ρb)

(1 − ρbr1) (1 − ρbr2)

p (1 − ρbr1) (1 − ρbr2) + aρ2
dρ = 0. (29)

In the case of van der Waals EOS, U = −bρ and ∂U
∂ρ = −b, whereas in the case of Peng-Robinson EOS one has U =

1
r1−r2

log
(

1−ρbr1
1−ρbr2

)
and ∂U

∂ρ = − b
(1−ρbr1)(1−ρbr2)

. Since, for van der Waals EOS r1 = r2 = 0, the expression

∂U

∂ρ
= − b

(1 − ρbr1) (1 − ρbr2)
(30)

can be applied for both van der Waals and Peng-Robinson EOS. Hence, (29) reduces to

cv

T
dT − R g

ρ (1 − ρb)
dρ = 0, (31)

which can then be integrated to yield

cv log(T ) − 2R g atanh (2ρb − 1) = const (32)

or, equivalently,

log(T ) − 2
R g

cv
atanh (2ρb − 1) = const. (33)

From (31), it is immediate to verify that, in the non-dimensional case, we obtain

log(T ∗) − 2
R̃ g

c̃v
atanh

(
2ρ∗b̃ − 1

)
= const, (34)

where the symbol ∗ denotes non-dimensional variables. In the more general case da
dT �= 0, it can be shown that [42]

p

ργpρ
= const, (35)

where

γpρ = c2

M2

ρ

p
. (36)

The evaluation of this quantity is less straightforward than that of (34), since it involves the computation of non trivial 
derivatives, see the discussions in Appendix B and [42]. Both the conserved quantities will be employed in Section 6 for 
adaptive simulations.

4. The time discretization strategy

In the low Mach number limit, terms proportional to 1/M2 in (6) yield stiff components of the resulting semidiscretized 
ODE system. Therefore, following as remarked above [15,17], it is appropriate to couple implicitly the energy equation to 
the momentum equation, while the continuity equation can be discretized in a fully explicit fashion. While this would be 
sufficient to yield an efficient time discretization approach for the purely hyperbolic system associated to (6) in absence of 
gravity, in regimes for which

Pr ≈ O (1), F r 
 1

thermal diffusivity and gravity terms would also have to be treated implicitly for the time discretization methods to be effi-
cient. Straightforward application of any monolithic solver would then yield large algebraic systems with multiple couplings 
between discrete DOF associated to different physical variables. To avoid this, we resort to an operator splitting approach, 
see e.g. [39], as commonly done in numerical models for atmospheric physics. More specifically, after spatial discretization, 
all diffusive terms on the right hand side of (6) are split from the hyperbolic part on the left hand side. The hyperbolic part 
6
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Table 1
Butcher tableaux of the explicit 
ARK2 method.

0 0
χ χ 0
1 1 − a32 a32 0

1
2 − χ

4
1
2 − χ

4
χ
2

Table 2
Butcher tableaux of the implicit ARK2 
method.

0 0
χ χ

2
χ
2

1 1
2
√

2
1

2
√

2
1 − 1√

2

1
2 − χ

4
1
2 − χ

4
χ
2

is treated in a similar fashion to what outlined in [17], while the diffusive terms are treated implicitly. For simplicity, the 
gravity terms will be treated explicitly in this first attempt and only a basic, first order splitting will be described, which 
can be easily improved to second order accuracy by the Strang splitting approach [39,53].

For the time discretization, an IMplicit EXplicit (IMEX) Additive Runge Kutta method (ARK) [33] method will be used. 
These methods are useful for time dependent problems that can be formulated as y′ = fS (y, t) + fN S (y, t), where the S
and N S subscripts denote the stiff and non-stiff components of the system, to which the implicit and explicit companion 
methods are applied, respectively. If vn ≈ y(tn), the generic s− stage IMEX-ARK method can be defined as

v(n,l) = vn + �t
s−1∑
m=1

(
almfN S(v(n,m), t + cm�t)

+ ãlmfS(v(n,m), t + cm�t)

)
+ �t ãll fS(v(n,l), t + cl�t),

(37)

where l = 1, . . . , s. After computation of the intermediate stages, vn+1 is computed as

vn+1 = vn + �t
s∑

l=1

bl

[
fN S(v(n,l), t + cl�t) + fS(v(n,l), t + cl�t)

]
. (38)

IMEX-ARK methods are represented compactly by the following two Butcher tableaux [14].

c A

bT
c̃ Ã

b̃T

with A = {
Aij
}
, b = {bi} , c = {ci} , Ã = {

ãi j
}
, ̃b = {

b̃i
}

and c̃ = {
c̃i
}

. Coefficients alm, ̃alm, cl and bl are determined so that 
the method is consistent of a given order. In particular, in addition to the order conditions specific to each sub-method, 
the coefficients should respect coupling conditions. Here, we consider a variant of the IMEX method proposed in [26], 
whose coefficients are presented in the Butcher tableaux reported in Tables 1 and 2 for the explicit and implicit method, 
respectively, where χ = 2 − √

2. The coefficients of the explicit method were proposed in [26], while the implicit method, 
also employed in the same paper, coincides indeed for the above choice of χ with the TR-BDF2 method proposed in [4,31]. 
The TR-BDF2 has been shown to be stiffly accurate in [31] and has been very successfully employed in simulations of low 
Mach number flows with gravity in [55]. The corresponding IMEX method with this implicit part was also used successfully 
in analogous applications in [26]. A solver based on this implicit method for the incompressible Navier Stokes equations 
formulated in pseudo-compressible fashion has been proposed in [44], in which applications to cases with extremely small 
Mach numbers are presented, thus providing ample guarantees the robustness of the proposed approach in the low Mach 
number limit. Notice that, as discussed in [26], the choice of the coefficients

a32 = 7 − 2χ

6
1 − a32 = 2χ − 1

6

in the third stage of the explicit part of the method is arbitrary. In [26], the above value of a32 was chosen with the aim of 
maximizing the stability region of the method. However, if a stability and absolute monotonicity analysis is carried out, as 
discussed in detail in Appendix A, it can be seen that different choices might be more advantageous, in order to improve 
the monotonicity of the method without compromising its stability. In particular, the value of a32 = 1/2 appears to be a 
more appropriate choice, as also demonstrated by the numerical experiments reported in Section 6.
7
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Finally, even though we focus here on this specific second order method, the same strategy we outline is applicable to a 
generic DIRK method. In particular, higher order methods could be considered for coupling to high order spatial discretiza-
tion, even though the effective overall accuracy would be limited by the splitting procedure if gravity and viscous terms are 
present.

4.1. Discretization of hyperbolic and forcing terms

We now describe the application of this IMEX method and of the splitting approach outlined above to equations (6). 
Notice that, for simplicity, we first present the time semi-discretization only, while maintaining the continuous form of (6)
with respect to the spatial variables. The detailed description of the algebraic problems resulting from the full space and 
time discretization according to the method outlined here will be presented in Section 5.

For each time step, we first consider the discretization of the hyperbolic and forcing terms. For the first stage of the 
method, one simply has

ρ(n,1) = ρn u(n,1) = un E(n,1) = En.

For the second stage, we can write formally

ρ(n,2) = ρn − a21�t ∇· (ρnun)
ρ(n,2)u(n,2) + ã22

�t

M2
∇p(n,2) = m(n,2) (39)

ρ(n,2)E(n,2) + ã22�t ∇·
(

h(n,2)ρ(n,2)u(n,2)
)

= ê(n,2),

where we have set

m(n,2) = ρnun

− a21�t ∇· (ρnun ⊗ un)− ã21
�t

M2
∇pn − a21

�t

F r2
ρnk (40)

ê(n,2) = ρn En − ã21�t ∇· (hnρnun)− a21�tM2 ∇· (knρnun)
− a21

�tM2

F r2
ρnk · un.

Notice that, substituting formally ρ(n,2)u(n,2) into the energy equation and taking into account the definitions ρE = ρe +
M2ρk and h = e + p/ρ , the above system can be solved by computing the solution of

ρ(n,2)[e(p(n,2), ρ(n,2)) + M2k(n,2)]

− ã2
22

�t2

M2
∇·
[(

e(p(n,2), ρ(n,2)) + p(n,2)

ρ(n,2)

)
∇p(n,2)

]
(41)

+ ã22�t ∇·
[(

e(p(n,2), ρ(n,2)) + p(n,2)

ρ(n,2)

)
m(n,2)

]
= ê(n,2)

in terms of p(n,2) according to the fixed point procedure described in [17]. More specifically, setting ξ (0) = p(n,2), k(n,2,0) =
k(n,1) , one solves for l = 1, . . . , L the equation

ρ(n,2)e(ξ (l+1), ρ(n,2)) − ã2
22

�t2

M2 ∇·
[(

e(ξ (l), ρ(n,2)) + ξ (l)

ρ(n,2)

)
∇ξ (l+1)

]
= ê(n,2) − M2ρ(n,2)k(n,2,l) (42)

− ã22�t ∇·
[(

e(ξ (l), ρ(n,2)) + ξ (l)

ρ(n,2)

)
m(n,2)

]
and updates the velocity as

u(n,2,l+1) + ã22�t
(n,2) 2

∇ξ (l+1) = m(n,2).

ρ M

8
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In the case of SG-EOS, ρ(n,2)e 
(
ξ (l+1), ρ(n,2)

)
contains a term that only depends on the density, as evident from Equation 

(19) and, therefore, it has to be properly considered in the right-hand side of (42). On the other hand, the general cubic EOS 
(16) contains products of quantities depending on temperature and on density. For the sake of simplicity, in order to avoid 
the solution of a nonlinear equation for each quadrature node, in these cases we keep the temperature at the value in the 
previous iteration of the fixed point procedure, so as to obtain:

c̃v
(
T
(
ξ (l), ρ(n,2)

))
R̃ g

ξ (l+1)
(

1 − ρ(n,2)b̃
)

−

ã2
22

�t2

M2
∇·
[(

e
(
ξ (l), ρ(n,2)

)
+ ξ (l)

ρ(n,2)

)
∇ξ (l+1)

]
=

ê(n,2) − M2ρ(n,2)k(n,2,l) −
c̃v(T

(
ξ (l), ρ(n,2)

)
)

R̃ g

ã
(
T
(
ξ (l), ρ(n,2)

)) (
ρ(n,2)

)2(
1 − ρ(n,2)b̃r1

)(
1 − ρ(n,2)b̃r2

) (1 − ρ(n,2)b̃
)

−

ρ(n,2)

b̃

[
ã
(

T
(
ξ (l), ρ(n,2)

))
− T

(
ξ (l), ρ(n,2)

) dã

dT

(
ξ (l), ρ(n,2)

)]
U
(
ρ(n,2)

)
−

ã22�t ∇·
[(

e
(
ξ (l), ρ(n,2)

)
+ ξ (l)

ρ(n,2)

)
m(n,2)

]
. (43)

The same considerations as in [17] apply concerning the favorable properties of the weakly nonlinear system resulting from 
the discrete form of (42). Once the iterations have been completed, one sets u(n,2) = u(n,2,L+1) and E(n,2) accordingly. For 
the third stage, one proceeds in an analogous way, according to the scheme prescribed in Table 2.

4.2. Discretization of viscous terms

Let us consider now the diffusive part of the Navier-Stokes equations that, as already mentioned in Section 1, will be 
treated with an operator splitting technique. For the sake of clarity, we denote with ∼ the quantities computed in this 
part of the scheme; hence, we define ũ(n,1) and Ẽ(n,1) as the quantities obtained by applying (38) and we proceed to the 
discretization of the viscous terms, which is carried out by the implicit part of the IMEX method previously described:

ρn+1ũ(n,2) − ã22
�t

Re
∇·
[(

∇ũ + ∇ũT
)

− 2

3
(∇ · ũ)I

](n,2)

= m̃(n,2) (44)

ρn+1 Ẽ(n,2) − ã22
�tM2

Re
∇·
[(

∇ũ + ∇ũT
)

ũ − 2

3
(∇ · ũ)ũ

](n,2)

− ã22
�t

PrRe
�T̃ (n,2) = ẽ(n,2),

where we have set

m̃(n,2) = ρn+1ũ(n,1) + ã21
�t

Re
∇·
[(

∇ũ + ∇ũT
)

− 2

3
(∇ · ũ)I

](n,1)

ẽ(n,2) = ρn+1 Ẽ(n,1)

+ ã21
�tM2

Re
∇·
[(

∇ũ + ∇ũT
)

ũ − 2

3
(∇ · ũ)ũ

](n,1)

+ ã21
�t

PrRe
�T̃ (n,1).

Notice that the momentum equation in (44) is decoupled from the energy equation and can be solved independently, so that 
in a subsequent step the equation for Ẽ(n,2) can be solved using temperature as an unknown. It is worth to mention that, 
in case dã

dT �= 0 or dc̃v
dT �= 0, for the cubic EOS, we end up with a non-linear equation. The following fixed point procedure is 

considered: setting ξ (0) = T̃ (n,1) , one solves for l = 1, . . . , L

c̃v

(
ξ (l)
)

ξ (l+1) + ã
(
ξ (l)
)− ξ (l+1) dã

dT

(
ξ (l)
)

b̃

9
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−ã22
�tM2

Re
∇·
[(

∇ũ + ∇ũT
)

ũ − 2

3
(∇ · ũ)ũ

](n,2)

−ã22
�t

PrRe
�ξ(l+1) = ẽ(n,2). (45)

Again, the third stage can be expressed in a similar manner, according to the scheme in Table 2. Finally, since we are 
considering a stiffly accurate method for the discretization of the viscous terms and, therefore, the output of the last stage 
is actually equal to the update solution [12], one sets

un+1 = ũ(n,3) En+1 = Ẽ(n,3)

and the computation of the n-th time step is completed.

5. The spatial discretization strategy

We consider a decomposition of the domain � into a family of hexahedra Th (quadrilaterals in the two-dimensional 
case) and denote each element by K . The skeleton E denotes the set of all element faces and E = E I ∪ E B , where E I is the 
subset of interior faces and E B is the subset of boundary faces. Suitable jump and average operators can then be defined as 
customary for finite element discretizations. A face � ∈ E I shares two elements that we denote by K + with outward unit 
normal n+ and K − with outward unit normal n− , whereas for a face � ∈ E B we denote by n the outward unit normal. For 
a scalar function ϕ the jump is defined as

[[ϕ]] = ϕ+n+ + ϕ−n− if � ∈ E I [[ϕ]] = ϕn if � ∈ E B .

The average is defined as

{{ϕ}} = 1

2

(
ϕ+ + ϕ−) if � ∈ E I {{ϕ}} = ϕ if � ∈ E B .

Similar definitions apply for a vector function ϕ:

[[ϕ]] = ϕ+ · n+ + ϕ− · n− if � ∈ E I [[ϕ]] = ϕ · n if � ∈ E B

{{ϕ}} = 1

2

(
ϕ+ + ϕ−) if � ∈ E I {{ϕ}} = ϕ if � ∈ E B .

For vector functions, it is also useful to define a tensor jump as:

〈〈ϕ〉〉 = ϕ+ ⊗ n+ + ϕ− ⊗ n− if � ∈ E I 〈〈ϕ〉〉 = ϕ ⊗ n if � ∈ E B .

We also introduce the following finite element spaces

Q r =
{

v ∈ L2(�) : v|K ∈ Qr ∀K ∈ Th

}
Vr = [Q r]d ,

where Qr is the space of polynomials of degree r in each coordinate direction. We then denote by ϕ i(x) the basis functions 
for the space Vr and by ψi(x) the basis functions for the space Q r , the finite element spaces chosen for the discretization 
of the velocity and of the pressure (as well as the density), respectively.

u ≈
dim(Vr)∑

j=1

u j(t)ϕ j(x) p ≈
dim(Q r)∑

j=1

p j(t)ψ j(x).

The spatial discretization coincides with that described in [1] and implemented in the deal.II library, so that it does not 
introduce any particular novelty. The shape functions correspond to the products of Lagrange interpolation polynomials for 
the support points of (r + 1)-order Gauss-Lobatto quadrature rule in each coordinate direction. Given these definitions, the 
weak formulation for the momentum equation of the second stage (39) reads as follows:∑

K

∫
K

ρ(n,2)u(n,2) · vd� −
∑

K

∫
K

ã22
�t

M2
p(n,2)∇ · vd� +

∑
�∈E

∫
�

ã22
�t

M2

{{
p(n,2)

}}
[[v]] d�

=
∑

K

∫
K

ρnun · vd� −
∑

K

∫
K

a21
�t

F r2 ρnk · vd�

+
∑

K

∫
a21�t

(
ρnun ⊗ un) : ∇vd� +

∑
K

∫
ã21

�t

M2
pn∇ · vd�
K K

10



G. Orlando, P.F. Barbante and L. Bonaventura Journal of Computational Physics 471 (2022) 111653
−
∑
�∈E

∫
�

a21�t
{{

ρnun ⊗ un}} : 〈〈v〉〉d� −
∑
�∈E

∫
�

ã21
�t

M2

{{
pn}} [[v]] d�

−
∑
�∈E

∫
�

a21�t
λ(n,1)

2

〈〈
ρnun〉〉 : 〈〈v〉〉d�, (46)

where λ(n,1) = max
(∣∣∣un+ · n+

∣∣∣ , ∣∣∣un− · n−
∣∣∣). One can notice that centered flux has been employed as numerical flux for the 

quantities defined implicitly, whereas an upwind flux has been used for the quantities computed explicitly. In view of the 
implicit coupling between the momentum and the energy equations, we need to derive the algebraic formulation of (46) in 
order to formally substitute the degrees of freedom of the velocity into the algebraic formulation of the energy equation. 
We take v = ϕ i , i = 1...dim(Vr) and we exploit the representation introduced above to obtain

∑
K

∫
K

ρ(n,2)

dim(Vr)∑
j=1

u(n,2)
j ϕ j · ϕ id� −

∑
K

∫
K

ã22
�t

M2

dim(Q r)∑
j=1

p(n,2)
j ψ j∇ · ϕ id�

+
∑
�∈E

∫
�

ã22
�t

M2

dim(Q r)∑
j=1

p(n,2)
j

{{
ψ j
}} [[

ϕ i

]]
d� =

∑
K

∫
K

ρnun · ϕ id� −
∑

K

∫
K

a21
�t

F r2
ρnk · ϕ id�

+
∑

K

∫
K

a21�t
(
ρnun ⊗ un) : ∇ϕ id� +

∑
K

∫
K

ã21
�t

M2
pn∇ · ϕ id�

−
∑
�∈E

∫
�

a21�t
{{

ρnun ⊗ un}} : 〈〈ϕ i

〉〉
d� −

∑
�∈E

∫
�

ã21
�t

M2

{{
pn}} [[ϕ i

]]
d�

−
∑
�∈E

∫
�

a21�t
λ(n,1)

2

〈〈
ρnun〉〉 : 〈〈ϕ i

〉〉
d�, (47)

which can be written in compact form as A(n,2)U(n,2) + B(n,2)P(n,2) = F(n,2) , where we have set

A(n,2)
i j =

∑
K

∫
K

ρ(n,2)ϕ j · ϕ id� (48)

B(n,2)
i j =

∑
K

∫
K

−ã22
�t

M2
∇ · ϕ iψ jd� +

∑
�∈E

∫
�

ã22
�t

M2

{{
ψ j
}} [[

ϕ i

]]
d� (49)

with U(n,2) denoting the vector of the degrees of freedom associated to the velocity field and P(n,2) denoting the vector 
of the degrees of freedom associated to the pressure. Consider now the weak formulation for the energy equation of the 
second stage (39)∑

K

∫
K

ρ(n,2)E(n,2)wd� −
∑

K

∫
K

ã22�th(n,2)ρ(n,2)u(n,2) · ∇wd�

+
∑
�∈E

∫
�

ã22�t
{{

h(n,2)ρ(n,2)u(n,2)
}}

· [[w]] d� =
∑

K

∫
K

ρn En wd� −
∑

K

∫
K

a21
�tM2

F r2
ρnk · un wd�

+
∑

K

∫
K

a21�tM2 (knρnun) · ∇wd� +
∑

K

∫
K

ã21�t
(
hnρnun) · ∇wd�

−
∑
�∈E

∫
�

a21�tM2 {{knρnun}} · [[w]] d� −
∑
�∈E I

∫
�

ã21�t
{{

hnρnun}} · [[w]] d�

−
∑
�∈E

∫
�

a21�t
λ(n,1)

2

[[
ρn En]] · [[w]] d�. (50)

Notice that, while the fully discrete formulation is presented here for the case of an ideal gas, in the more general case 
it has to be modified properly as already shown in (43) for the semi discrete formulation. Take w = ψi and consider the 
expansion for u(n,2) in (50) to get
11
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∑
K

∫
K

ρ(n,2)E(n,2)ψid� −
∑

K

∫
K

ã22�th(n,2)ρ(n,2)

dim(Vr)∑
j=1

u(n,2)
j ϕ j · ∇ψid�

+
∑
�∈E

∫
�

ã22�t
dim(Vr)∑

j=1

u(n,2)
j

{{
h(n,2)ρ(n,2)ϕ j

}}
· [[ψi]] d�

=
∑

K

∫
K

ρn Enψid� −
∑

K

∫
K

a21
�tM2

F r2
ρnk · unψid�

+
∑

K

∫
K

a21�tM2 (knρnun) · ∇ψid� +
∑

K

∫
K

ã21�t
(
hnρnun) · ∇ψid�

−
∑
�∈E

∫
�

a21�tM2 {{knρnun}} · [[ψi]] d� −
∑
�∈E

∫
�

ã21�t
{{

hnρnun}} · [[ψi]] d�

−
∑
�∈E

∫
�

a21�t
λ(n,1)

2

[[
ρn En]] · [[ψi]] d�, (51)

which can be expressed in compact form as C(n,2)U(n,2) = G(n,2) , where we have set

C (n,2)
i j =

∑
K

∫
K

−ã22�th(n,2)ρ(n,2)ϕ j · ∇ψid� +
∑
�∈E

∫
�

ã22�t
{{

h(n,2)ρ(n,2)ϕ j

}}
· [[ψi]] d�.

Formally we can then derive U(n,2) = (A(n,2))−1
(
F(n,2) − B(n,2)P(n,2)

)
and obtain the following relation

C(n,2)(A(n,2))−1
(

F(n,2) − B(n,2)P(n,2)
)

= G(n,2). (52)

Taking into account that ρ(n,2) E(n,2) = ρ(n,2)e(n,2)(p(n,2)) + M2ρ(n,2)k(n,2) , we finally obtain

C(n,2)(A(n,2))−1
(

F(n,2) − B(n,2)P(n,2)
)

= −D(n,2)P(n,2) + G̃(n,2) (53)

where we have set

D(n,2)
i j =

∑
K

∫
K

ρ(n,2)e(n,2)(ψ j)ψid� (54)

and G̃(n,2) takes into account all the other terms (the one at previous stage and the kinetic energy). The above system can 
be solved in terms of P(n,2) according to the fixed point procedure described in [17]. More specifically, setting P(n,2,0) =
P(n,1), k(n,2,0) = k(n,1) , for l = 1, . . . , L one solves the equation(

D(n,2,l) − C(n,2,l)(A(n,2))−1B(n,2)
)

P(n,2,l+1) = G̃(n,2,l) − C(n,2,l)(A(n,2))−1F(n,2,l) (55)

and updates the velocity solving A(n,2)U(n,2,l+1) = F(n,2,l) − B(n,2)P(n,2,l+1) . The third stage can be described in a similar 
manner. One sets then

ρn+1 = ρ(n,3) ũ(n,1) = u(n,3) Ẽ(n,1) = E(n,3)

and proceeds to the implicit discretization of the viscous terms, which is carried out by the implicit part of the IMEX method 
described above through a Symmetric Interior Penalty (SIP) approach which was introduced in [2] (see also [44]). After 
integrating by parts on each mesh element, two stabilization terms are then added: a symmetrizing term corresponding to 
fluxes obtained after integration by parts and a penalty term imposing the weak continuity of the numerical solution [44]. 
More in detail, following [19], we set for each face � of a cell K

σ�,K = (r + 1)2 diam (�)

diam (K )

and we define the penalization constant of the SIP method as

C = 1 (
σ�,K + + σ�,K −

)

2

12
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if � ∈ E I and C = σ�,K if � ∈ E B , where we remind that r denotes the polynomial degree of the finite element spaces. For 
the sake of completeness, we report here the weak formulation for the bilinear form of the momentum balance in (44):

B
(
ũ,v

)=
∑

K

∫
K

ρn+1ũ · vd� + ã22
�t

Re

∑
K

∫
K

[
∇ũ + ∇ũT − 2

3

(∇· ũ
)

I
]

: ∇vd� (56)

− ã22
�t

Re

∑
�∈E

∫
�

{{
∇ũ + ∇ũT − 2

3

(∇· ũ
)

I
}}

: 〈〈v〉〉d�

− ã22
�t

Re

∑
�∈E

∫
�

〈〈
ũ
〉〉 : {{∇v + ∇vT − 2

3
(∇· v) I

}}
d� + ã22

�t

Re

∑
�∈E

∫
�

C
〈〈

ũ
〉〉 : 〈〈v〉〉d�.

The remaining formulations are obtained in an analogous manner. We would like to stress that the method outlined above 
does not require to introduce reference solutions, does not introduce inconsistencies in the splitting and only requires the 
solution of linear systems of a size equal to that of the number of discrete degrees of freedom needed to describe a scalar 
variable, as in [17]. This contrasts with other low Mach approaches based on IMEX methods, such as e.g. the technique 
proposed for the Euler equations in [57].

6. Numerical tests

The numerical scheme outlined in the previous Sections has been validated in a number of benchmarks. We set H =
min{diam(K )|K ∈ Th} and we define two Courant numbers, one based on the speed of sound denoted by C , the so-called 
acoustic Courant number, and one based on the local velocity of the flow, the so-called advective Courant number, denoted 
by Cu :

C = 1

M
rc�t/H, Cu = ru�t/H, (57)

where c is the magnitude of the speed of sound and u is the magnitude of the flow velocity. Notice that the definitions in 
(57) depend on the polynomial degree r. The factor 1

M is due to the scaling of the speed of sound, as reported in [41], for 
an ideal gas, and proven in Appendix B in the one-dimensional case for a general equation of state. For the tests using the 
ideal gas law, the value γ = 1.4 for the specific heat ratio is employed, unless differently stated. The fixed point loops are 
stopped at the l-th iteration such that the relative difference for the pressure is below 10−10, namely∥∥ξ (l) − ξ (l−1)

∥∥∞∥∥ξ (l)
∥∥∞

< 10−10.

6.1. Isentropic vortex

As a first benchmark, we consider for an ideal gas the two dimensional inviscid isentropic vortex also studied in [54,57]. 
For this test, an analytic solution is available, that can be used to assess the convergence properties of the scheme. The 
initial conditions are given as a perturbation of a reference state

ρ(x,0) = ρ∞ + δρ u(x,0) = u∞ + δu p(x,0) = p∞ + δp

and the exact solution is a propagation of the initial condition at the background velocity

ρ(x, t) = ρ(x − u∞t,0) u(x, t) = u(x − u∞t,0) p(x, t) = p(x − u∞t,0).

The typical perturbation is defined as

δ̃T = 1 − γ

8γπ2
β̃2e1−r̃2

, (58)

with r̃2 = (x − x0)
2 + (y − y0)

2 denoting the radial coordinate and β̃ being the vortex strength. As explained in [57], how-
ever, in order to emphasize the role of the Mach number M , we define

δT = 1 − γ

8γπ2
M2β̃2e1−r̃2

(59)

and we set

ρ(x,0) = (1 + δT )
1

γ −1 p(x,0) = M2 (1 + δT )
γ

γ −1 . (60)
13
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Table 3
Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01 with r = 1 and a32 = 7−2χ

6 for the 
explicit part. Relative errors for the density, the velocity and the pressure in L2 norm. Nel denotes the number of 
elements along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 2.00 · 10−3 1.19 · 10−2 2.79 · 10−3

20 7.86 · 10−4 1.35 3.86 · 10−3 1.62 1.11 · 10−3 1.33
40 2.55 · 10−4 1.62 1.07 · 10−3 1.84 3.61 · 10−4 1.62
80 7.15 · 10−5 1.83 2.67 · 10−4 2.00 1.01 · 10−4 1.84

Table 4
Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01 with r = 2 and a32 = 7−2χ

6 for the 
explicit part. Relative errors for the density, the velocity and the pressure in L2 norm. Nel denotes the number of 
elements along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 6.38 · 10−4 2.61 · 10−3 9.08 · 10−4

20 1.18 · 10−4 2.43 3.54 · 10−4 2.88 1.64 · 10−4 2.47
40 1.81 · 10−5 2.70 4.16 · 10−5 3.09 2.53 · 10−5 2.70
80 2.96 · 10−6 2.61 5.18 · 10−6 3.00 4.13 · 10−6 2.60

Table 5
Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01 with r = 1 and a32 = 0.5 for the explicit 
part. Relative errors for the density, the velocity and the pressure in L2 norm. Nel denotes the number of elements 
along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 2.00 · 10−3 1.19 · 10−2 2.79 · 10−3

20 7.86 · 10−4 1.35 3.86 · 10−3 1.62 1.11 · 10−3 1.33
40 2.55 · 10−4 1.62 1.07 · 10−3 1.85 3.61 · 10−4 1.62
80 7.15 · 10−5 1.83 2.67 · 10−4 2.00 1.00 · 10−4 1.85

For what concerns the velocity the typical perturbation is defined as

δ̃u = β̃

(− (y − y0)

(x − x0)

)
e

1
2

(
1−r2

)
2π

(61)

where x0 and y0 are the coordinates of the vortex center and also in this case we rescale it using M

δu = β̃M

(− (y − y0)

(x − x0)

)
e

1
2

(
1−r̃2)

2π
(62)

We apply the same reasoning also to the background velocity and therefore we define u∞ = Mũ∞ with ũ∞ = [10, 10]T . To 
avoid problems related to the definition of boundary conditions, we choose a sufficiently large domain � = (−10,10)2 and 
periodic boundary conditions and we set ρ∞ = 1, p∞ = 1, x0 = y0 = 0, β̃ = 10, the final time T f = 1 and M = 0.1. Notice 
that we refrain from investigating the properties of the method in the very low Mach number regime for this test, since 
this entails an almost constant solution. The numerical experiments have been carried out on Cartesian meshes of square 
elements with Nel elements in each coordinate direction, choosing for each spatial resolution time steps so that the Courant 
numbers remained constant (hyperbolic scaling).

We first consider the original IMEX-ARK scheme with a32 = 7−2χ
6 for the explicit part. We observe that, in general, 

convergence rates of at least r + 1
2 are observed for r = 1 and for r = 2 as reported in Tables 3 and 4.

Analogous results are shown in Tables 5 and 6 for the modified scheme with a32 = 0.5, chosen, as discussed in Ap-
pendix A, in order to increase the region of absolute monotonicity without affecting too much stability.

In further numerical experiments, we have observed that the lack of absolute monotonicity strongly affects the compu-
tation of density and, as a consequence, the stability of the whole numerical scheme. For Courant number around C ≈ 0.3
the original method becomes unstable, while the modified scheme with a32 = 0.5 is still able to recover the expected con-
vergence rates at least in the r = 1 case, as evident from Table 7, while for r = 2 reported in Table 8 we observe a small 
degradation of the convergence rates due to increasing influence of the dominant second order time discretization error. In 
order to be able to run at slightly longer time steps we have then chosen to use the a32 = 0.5 value for the IMEX scheme for 
the rest of the numerical simulations carried out in this paper. We notice also that, for both schemes, the results compare 
well with the analogous results presented in [54] and with those obtained in [57] with a higher order IMEX method.

For validation purposes, we have also tested in this case the h-adaptive version of the method. The local refinement 
criterion is based on the gradient of the density. More specifically, we define for each element K the quantity
14
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Table 6
Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01 with r = 2 and a32 = 0.5 for the explicit 
part. Relative errors for the density, the velocity and the pressure in L2 norm. Nel denotes the number of elements 
along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 6.38 · 10−4 2.61 · 10−3 9.08 · 10−4

20 1.18 · 10−4 2.43 3.54 · 10−4 2.88 1.64 · 10−4 2.47
40 1.81 · 10−5 2.70 4.16 · 10−5 3.09 2.53 · 10−5 2.70
80 2.96 · 10−6 2.61 5.18 · 10−6 3.00 4.13 · 10−6 2.60

Table 7
Convergence test for the inviscid isentropic vortex at C ≈ 0.3, Cu ≈ 0.3 with r = 1 and a32 = 0.5 for the explicit 
part. Relative errors for the density, the velocity and the pressure in L2 norm. Nel denotes the number of elements 
along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 2.32 · 10−3 1.19 · 10−2 2.78 · 10−3

20 7.63 · 10−4 1.60 3.88 · 10−3 1.62 1.06 · 10−3 1.39
40 2.43 · 10−4 1.65 1.08 · 10−3 1.85 3.41 · 10−4 1.64
80 6.84 · 10−5 1.83 2.69 · 10−4 2.01 9.55 · 10−5 1.84

Table 8
Convergence test for the inviscid isentropic vortex at C ≈ 0.3, Cu ≈ 0.3 with r = 2 and a32 = 0.5 for the explicit 
part. Relative errors for the density, the velocity and the pressure in L2 norm. Nel denotes the number of elements 
along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 6.43 · 10−4 2.71 · 10−3 9.15 · 10−4

20 1.28 · 10−4 2.33 3.89 · 10−4 2.80 1.68 · 10−4 2.44
40 2.10 · 10−5 2.61 5.78 · 10−5 2.75 2.70 · 10−5 2.64
80 4.08 · 10−6 2.36 1.13 · 10−5 2.35 4.97 · 10−6 2.44

Table 9
Adaptive simulations of the inviscid isentropic vortex at different resolu-
tions with a maximum C ≈ 0.3, Cu ≈ 0.3, relative errors for the density, the 
velocity and the pressure in L2 norm with r = 1. Ncells denotes the total 
number of cells.

Ncells L2 rel. error ρ L2 rel. error u L2 rel. error p

241 2.04 · 10−3 1.19 · 10−2 2.78 · 10−3

541 7.31 · 10−4 3.50 · 10−3 1.03 · 10−3

1951 2.09 · 10−4 9.23 · 10−4 2.92 · 10−4

7537 6.07 · 10−5 2.42 · 10−4 8.51 · 10−5

ηK = max
i∈NK

|∇ρ|i (63)

that acts as local refinement indicator, where NK denotes the set of nodes over the element K . Table 9 shows the relative 
errors for all the quantities on a sequence of adaptive simulations keeping the maximum Courant numbers fixed. The 
expected results are obtained, even though the relative errors are not significantly reduced with respect to Table 7 in view 
of the smoothness of the solution. Hence, the following results have to merely intended as a verification of the correctness 
of the h-adaptive version of the scheme. Fig. 1 shows instead the density and the adapted mesh at t = T f , from which it 
can be seen that the refinement criterion is able to track the vortex correctly.

6.2. 2D Lid-driven cavity

We consider now the classical 2D lid-driven cavity test case. The computational domain is the box � = (0,1) × (0,1)

which is initialized with a density ρ = 1 and a velocity u = 0. The flow is driven by the upper boundary, whose velocity is 
set to u = (1,0)T , while on the other three boundaries a no-slip condition is imposed. We set Re = 100 and M2 = 10−5 and 
we consider r = 2 as polynomial degree. The advantage of the proposed scheme is that the allowed time step is more than 
100 times larger than that of a fully explicit scheme. Indeed, the time-step chosen is such that the maximum advective 
Courant number Cu is around 0.12, while the maximum Courant number C is around 49. The streamlines are shown in 
Fig. 2 and highlight the formation of the main recirculation pattern. A comparison of the horizontal component of the 
velocity along the vertical middle line and of the vertical component of the velocity along the horizontal middle line with 
the reference solutions in [23,54] is also presented and we note that our results fit very well both the reference solutions.
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Fig. 1. Adaptive simulation of the inviscid isentropic vortex benchmark: a) computational mesh at t = T f , b) contour plot of the density at t = T f . (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Computational results for the 2D lid-driven cavity with k = 2, a) streamlines, b) comparison with the solutions in [23] and in [54]. Blue dots denote 
the results in [23], red crosses the results in [54] and black line our numerical results.

6.3. Sod shock tube problem

Even though the proposed method is particularly well suited for low Mach number flows, we have also tested its behavior
in a situation in which shock waves occur. For this purpose, we have considered the classical Sod shock tube problem 
proposed in [50] and also discussed in [17]. It consists of a right-moving shock wave, an intermediate contact discontinuity 
and a left-moving rarefaction fan. In this higher Mach number regime, as done also in [17], for further stabilization in 
presence of shocks and discontinuities, the numerical flux employed for the quantities computed explicitly in the above 
weak formulations is the classical Local Lax-Friedrichs flux (LLF), instead of the upwind flux, defined by setting

λ(n,1) = max

{∥∥∥u(n,1)+
∥∥∥+ c(n,1)+

M
,

∥∥∥u(n,1)−
∥∥∥+ c(n,1)−

M

}
λ(n,2) = max

{∥∥∥u(n,2)+
∥∥∥+ c(n,2)+

M
,

∥∥∥u(n,2)−
∥∥∥+ c(n,2)−

M

}
.

The presence of discontinuities requires the use of a monotonic scheme to avoid undershoots and overshoots. It is well 
known that using Q 0 finite elements in combination with LLF and an explicit time integration method that complies with 
the monotonicity constraints discussed in [21,30,29] guarantees the monotonicity of the solution. Hence, a way to obtain 
monotonic results is to project the numerical solution onto the Q 0 subspace for each element in which a suitable jump 
16
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Table 10
Initial left and right states for Sod shock tube problem. xd denotes the po-
sition of the initial discontinuity.

ρL uL pL ρR uR pR xd

1 0 1 0.125 0 0.1 0

Fig. 3. Sod shock tube problem with van der Waals EOS at t = 0.2, comparison with exact solution, a) density, b) velocity, c) pressure.

Fig. 4. Sod shock tube problem with Peng-Robinson EOS at t = 0.2, comparison with reference solution, a) density, b) velocity, c) pressure.

indicator exceeds a certain threshold. Similar projections onto low order components of the solution are also used in several 
monotonization approaches, see e.g. [18]. However, since in the proposed scheme only the density is treated in a full explicit 
fashion, in order to avoid an excessive complication in the structure of the resulting method we choose to apply this Q 0

projection strategy only for the density variable, without introducing monotonization for the velocity and the pressure. 
While we are aware that this is not sufficient to guarantee full monotonicity, the derivation of a fully monotonic IMEX 
scheme goes beyond the scope of this work and we do not investigate this issue further here. Therefore, the results in this 
Section are to be interpreted merely as a first stress test of the proposed scheme at higher Mach number values. In future 
work, we plan to investigate the behavior of the monotonization approach proposed in [43] for full explicit schemes, when 
applied only to the density. We use a smoothness indicator based on the jump of the density across two faces. More in 
detail, we define for each element K the quantity

ηK =
∑

�∈EK

∥∥ρ+ − ρ−∥∥2
2,�

where EK denotes the set of all faces belonging to cell K and ‖·‖ represents the standard L2 norm on �. The chosen 
threshold in this case is equal to 10−8. Table 10 defines the initial conditions and position of the initial discontinuity. We 
consider the domain � = (−0.5,0.5) and a one-dimensional mesh composed by 500 elements with a time step �t = 10−4, 
chosen in such a way that the maximum Courant number is C ≈ 0.09, while the maximum advective Courant number is 
Cu ≈ 0.06. Following [17], we have first considered the van der Waals EOS with ã = b̃ = 0.5. Fig. 3 shows the results for the 
density, the velocity and the pressure at t = 0.2 compared with the exact solution. One can easily notice that the shocks are 
located at the right position and that the values in the wake of the shocks are correct. The technique applied to guarantee 
the monotonicity introduces however an excessive amount of numerical diffusion in correspondence of contact wave, which 
is not sharply resolved, in contrast to what happens for the shock and the rarefaction waves. On the other hand, if one 
decreases the value of the threshold, an oscillating solution is obtained. While far from optimal, these results highlight 
however the robustness of the proposed approach also in the higher Mach number case.

Finally, we have analyzed the same test case for the Peng-Robinson EOS with ã = b̃ = 0.5. In this case no analytic solution 
is available and a reference solution is computed using the third order optimal SSP Runge-Kutta method derived in [28] in 
combination with Q 0 finite elements and LLF as numerical flux on a mesh with 16000 elements. Notice that, in the case of 
the van der Waals EOS, this procedure was found to provide a solution overlapping with the exact one. The good agreement 
between our numerical results and the reference ones is established also for this equation of state, as evident from Fig. 4, 
again with significant smoothing of the contact discontinuity.
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Fig. 5. Cold bubble test case, results at t = T f , a) contour plot of potential temperature perturbation for the reference explicit simulation, b) contour plot of 
the potential temperature perturbation for the simulation with IMEX scheme.

6.4. Cold bubble

In this Section, we consider a test case proposed in [46,47] for an ideal gas in which the gravity force is active. The 
computational domain is the rectangle (0,1000) × (0,2000) and the initial condition is represented by a thermal anomaly 
introduced in an isentropic background atmosphere with constant potential temperature θ0 = 303. The perturbation of 
potential temperature θ ′ defines the initial datum and it is given by

θ ′ =
⎧⎨⎩A if r̃ ≤ r0

A exp

(
−
(
r̃−r0

)2
σ 2

)
if r̃ > r0,

(64)

with r̃2 = (x − x0)
2 + (y − y0)

2 and x0 = 500, y0 = 1250, r0 = 50, σ = 100 and A = −15. Moreover, we set F r2 = 1
9.81 , M2 =

10−5 and T f = 50. The expression of the Exner pressure is given by

� = 1 − M2

F r2

y

c̃pθ
,

with y denoting the vertical coordinate and c̃p = γ
γ −1 R̃ g = 1.0045 · 10−2 denoting the non-dimensional specific heat at 

constant pressure. Notice that these values are obtained by considering R = 1 kg m−3, � = 1 K and P = 105 Pa. Moreover, 
it is to be remarked that, unlike in [46], no artificial viscosity has been added to stabilize the computation. Wall boundary 
conditions are imposed at all the boundaries. The time step is taken to be �t = 0.08, corresponding to a maximum Courant 
number C ≈ 5.6 and a maximum advective Courant number Cu ≈ 0.18.

For the purpose of a quantitative comparison, a reference solution is computed with an explicit time discretization given 
by the optimal third order SSP scheme mentioned in Section 6.3. Fig. 5 shows the contour plot of the potential temperature 
perturbation at t = T f and one can easily notice that we are able to recover correctly the shape of the reference solution. For 
a more quantitative point of view, the profile of the density at y = 1000 is reported in Fig. 6 and a good agreement between 
the reference results and those obtained with the IMEX scheme is established. The IMEX scheme allows to employ a time 
step 40 times larger compared to the fully explicit scheme with a computational saving of around 90%. Three fixed-point 
iterations were required on average for each IMEX stage.

In order to further enhance the computational efficiency, we employ again the code h-adaptivity capabilities. As men-
tioned in Section 3.1, we use as refinement indicator the gradient of the potential temperature, since this quantity allows to 
identify the cold bubble. More specifically, we set

ηK = max
i∈NK

|∇θ |i (65)

as local indicator, where NK is defined as in (63), and we allow to refine when ηK exceeds 10−1 and to coarsen below 
6 ·10−2. The initial computational grid is composed by 50 ×100 elements and we allow up to two local refinements only, so 
as to keep the advective Courant number under control and to recover the same maximum resolution employed for the non 
adaptive mesh simulation. Notice that there is no intrinsic limitation in the maximum number of refinement levels allowed 
and more refinement levels will be indeed used in the following tests with non-ideal gases. The only constraint is about the 
necessity of not having neighboring cells with refinement levels differing by more than one. However, a maximum number 
of allowed local refinements has to be set depending on the chosen time step in order to fulfill the stability of the scheme. 
As one can easily notice from Fig. 7, the refinement criterion is able to track the bubble and the one-dimensional density 
profile at y = 1000 in Fig. 8 is correctly reproduced. The final mesh consists of 6890 elements instead of the 80000 elements 
of the full resolution mesh and a further 50% reduction in computational time is achieved. Three fixed-point iterations were 
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Fig. 6. Cold bubble test case, results at t = T f , density profile at y = 1000. The continuous blue line represents the results for the reference explicit 
simulation, whereas the red dots denote the results for the IMEX scheme.

Fig. 7. Cold bubble test case, adaptive simulation, results at t = T f , a) contour plot of potential temperature perturbation, b) computational grid.

Fig. 8. Cold bubble test case, adaptive simulation, results at t = T f , density profile at y = 1000. The continuous blue line represents the results for the 
reference explicit simulation, whereas the red dots denote the results for the IMEX scheme.

required on average even with the h-adaptive version of the scheme and, therefore, no deterioration in the performances 
of the fixed-point loop occurred. We noticed instead an increase in the number of iterations required by the GMRES linear 
solver applied to (55) and to the corresponding third stage. The CPU time required for the mesh adaptation procedure 
represents less than 1% of the total CPU time.

We repeat now the same test using non-ideal equations of state. We first consider the van der Waals equation with 
a constant c̃v given by c̃v = R̃ g

γ −1 = 7.175 · 10−3, ̃a = 5 · 10−9 and b̃ = 5 · 10−4, so that the same specific heat at constant 
volume with respect to the ideal gas case is obtained and z ≈ 1. The fluid is initialized using the same pressure and the 
same density values as in the ideal gas case. Notice that dã = dc̃v = 0, therefore it is not necessary to compute explicitly 
dT dT
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Fig. 9. Cold bubble test case, van der Waals EOS with ã = 5 · 10−9 and b̃ = 5 · 10−4, results at t = T f , density profile at y = 1000. The continuous blue line 
represents the results for the reference explicit simulation, whereas the red dots denote the results for the IMEX scheme.

Fig. 10. Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, results at t = T f , a) contour plot of β for the reference explicit 
simulation, b) contour plot of β for the simulation with IMEX scheme.

the temperature for (43) and for the corresponding third stage. We expect a behavior similar to that of the ideal gas, which 
is confirmed by the density profile reported in Fig. 9.

We then consider the case with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, which yield an average compressibility factor z ≈ 0.83. In 
this case, we expect more significant effects due to conditions far from the ideal ones. We first compute a reference solution 
with the explicit time discretization. The time step for the IMEX simulation is kept equal to �t = 0.08, yielding a maximum 
Courant number C ≈ 5.3 and a maximum advective Courant number Cu ≈ 0.19. Fig. 10 shows the contour plot for β at 
t = T f for both the reference explicit and the IMEX simulations. The expected behavior is retrieved and a good agreement 
with the reference results is established. Also in this case, a computational saving of around 90% with respect to the explicit 
simulation is obtained thanks to the IMEX scheme. Fig. 11 reports the profile of the density for y = 1000 at t = T f . One can 
notice the very good agreement between the IMEX results and the reference ones. Furthermore, a clear discrepancy with 
respect to the ideal gas can be observed. The higher density values are due to the large value of ã, which means that strong 
forces of attraction between the gas particles are present [42].

Concerning the adaptive simulations, since, as proven in Section 3, the quantity β = log(T ) − 2 R̃ g

c̃v
atanh

(
2ρb̃ − 1

)
is 

constant in an isentropic process with dã
dT = dc̃v

dT = 0, we define the local refinement indicator for each element as

ηK = max
i∈NK

|∇β|i . (66)

We allow to refine when ηK exceeds 4 · 10−4 and to coarsen when the indicator is below 2 · 10−4. The initial mesh is 
composed by 50 × 100 elements and we allow up to four local refinements. For this reason, in order to keep under control 
the advective Courant number, we need to reduce the time step �t = 0.02, so as to obtain a maximum acoustic Courant 
number C ≈ 5.3 and a maximum advective Courant number Cu ≈ 0.18. Fig. 12 confirms that β is an appropriate quantity 
to track the bubble and the one-dimensional density profile in Fig. 13 shows that no significant loss in accuracy occurs. The 
final mesh consists of 8876 elements.

The same analysis is carried out using the Peng-Robinson EOS. Hence, we first consider R̃ g = 2.87 · 10−3, c̃v = 7.175 ·
10−3, ã = 5 · 10−9 and b̃ = 5 · 10−4, so that z ≈ 1. The density profile reported in Fig. 14 highlights, as expected, a behavior
entirely analogous to that of the ideal gas.
20



G. Orlando, P.F. Barbante and L. Bonaventura Journal of Computational Physics 471 (2022) 111653
Fig. 11. Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, results at t = T f , density profile at y = 1000. The continuous blue 
line represents the results for the full explicit simulation, the continuous black line reports the results for the reference explicit simulation with an ideal 
gas, whereas the red dots denote the results for the IMEX scheme.

Fig. 12. Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, adaptive simulation, results at t = T f , a) contour plot of β , b) 
computational grid.

Fig. 13. Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, adaptive simulation, results at t = T f , density profile at y = 1000. 
The continuous blue line represents the results for the reference explicit simulation, the continuous black line reports the results for the reference explicit 
simulation with an ideal gas, whereas the red dots denote the results for the IMEX scheme in the non-ideal case.

Next, we take ã = 1.6 · 10−1 and b̃ = 5 · 10−4, so that z ≈ 0.83, and we perform both uniform mesh and adaptive 
simulations, using the same parameters employed for the van der Waals EOS. The results are compared with a reference 
solution computed with the explicit method. Fig. 15 shows similar contour plots for all the configurations as well as for the 
adaptive mesh at t = T f , which consists of 8888 elements and it is able to track the bubble correctly. Fig. 16 reports the 
comparison for the one-dimensional profile of the density at y = 1000 and the same considerations of the van der Waals 
EOS are still valid. We want to test in this case the refinement indicator based on (35). More specifically, we set
21
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Fig. 14. Cold bubble test case, Peng-Robinson EOS with ã = 5 · 10−9 and b̃ = 5 · 10−4, results at t = T f , density profile at y = 1000. The continuous blue line 
represents the results for the reference explicit simulation, whereas the red dots denote the results for the IMEX scheme.

Fig. 15. Cold bubble test case, Peng-Robinson EOS with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, results at t = T f , a) contour plot of β for the reference explicit 
simulation, b) contour plot of β for the constant mesh simulation with IMEX scheme, c) contour plot of β for adaptive simulation with IMEX scheme, d) 
adaptive mesh.

ηK = max
i∈NK

∣∣∣∣∇ ( p

ργpρ

)∣∣∣∣
i

(67)

and we allow to refine in case ηK is above 4 · 10−4 and to coarsen below 2 · 10−4 with the same remeshing procedure 
adopted so far for non-ideal gases. Fig. 17 shows the contour plot of (35) and the computational mesh at t = T f . The mesh 
consists of 8168 elements and one can easily notice that more resolution is added only in correspondence of the bubble.

6.5. Warm bubble

In order to test the method also in presence of heat conduction, we now consider for an ideal gas the test case of a 
rising warm bubble proposed in [13]. The domain is the square box � = (−0.5,1.5) × (−0.5,1.5) with periodic boundary 
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Fig. 16. Cold bubble test case, Peng-Robinson EOS with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, adaptive simulation, results at t = T f , density profile at y = 1000. 
The continuous blue line represents the results for the reference explicit simulation, the continuous black line reports the results for the reference explicit 
simulation with an ideal gas, the red dots denote the results for the IMEX scheme, whereas the green squares represent the results for the adaptive 
simulation with IMEX scheme.

Fig. 17. Cold bubble test case, Peng-Robinson EOS with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, adaptive simulation with criterion (67), results at t = T f , a) contour 
plot of (35), b) adaptive mesh.

conditions on the lateral boundaries and wall boundary conditions on the top and on the bottom of the domain. The initial 
temperature corresponds to a truncated Gaussian profile

T (x,0) =

⎧⎪⎨⎪⎩
386.48 if r̃ > r0

p̃0

R̃ g,air

(
1−0.1e

r̃2

σ2

) if r̃ ≤ r0, (68)

where r̃2 = (x − x0)
2 + (y − y0)

2 is the distance from the center with coordinates x0 = 0.5 and y0 = 0.35, r0 = 0.25 is the 
radius and σ = 2. In this Section, we consider unitary reference values for density, pressure and temperature and, therefore, 
we set p̃0 = 105 and R̃ g,air = 287. Moreover, following [13], we consider:

Re = 804.9 Pr = 0.71 F r ≈ 0.004 M ≈ 0.01.

The grid is composed by 120 elements along each direction and the time step is such that the maximum Courant number 
C ≈ 118 and the maximum value of advective Courant number Cu is around 0.03. Fig. 18 shows the results at t = 20 s
both in terms of contours and plots along the same specific sections along x-axis chosen in [13]. All the results are in good 
agreement with the reference ones and we are able to recover the development of the expected Kelvin-Helmholtz instability.

The same test is repeated using data for nitrous oxide (N2O) from [40], which we report here for the convenience of the 
reader. At temperature of 386.48 K and pressure of 105 Pa, μ = 1.8884 · 10−5 Pa·s and κ = 2.4855 · 10−2 W m−1 K−1, so as 
to obtain

Re ≈ 716.1 Pr ≈ 0.73.

We consider the Peng-Robinson EOS, for which the expressions of ã(T ) and b̃ are the following [20]:
23
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Fig. 18. Warm bubble test case, results at t = 20 s. From top to bottom: temperature and vertical velocity.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ã(T ) = 0.45724

R̃2
g T̃ 2

c

p̃c
α(T )2

α(T ) = 1 + �
(

1 −
√

T
T̃c

)
� = 0.37464 + 1.54226ω − 0.26992ω2

b̃ = 0.0778 R̃ g T̃c

p̃c
,

(69)

where T̃c denotes the non-dimensional critical temperature, p̃c the non-dimensional critical pressure and ω the acentric 
factor. For what concerns N2O, we find from [40] T̃c = 309.52, p̃c = 7.2450 · 106 and ω = 0.1613. Finally, the function c̃v (T )

is computed using the following polynomial from [40]:

c̃v (T ) = 1

T

[[
A

T

1000
+ 1

2
B

(
T

1000

)2

+ 1

3
C

(
T

1000

)3

+ 1

4
D

(
T

1000

)4

− E
1000

T

]
106

Mw
− R̃ g,N2OT

]
, (70)

with R̃ g,N2O = 188.91, Mw = 44.0128 and A, B, C, D, E denoting suitable coefficients whose values are reported in Table 11. 
It is worthwhile to recall once more that c̃v (T ) is not a proper specific heat at constant volume, but it denotes the non-

dimensional counterpart of e#(T )
T from (10), as shown in (16). The test is initialized with the same temperature and the 

same pressure already used for the ideal gas. The same mesh and the time step of the previous case are used, yielding 
to C ≈ 92 and Cu ≈ 0.03. Fig. 19 shows the temperature, the horizontal and the vertical velocity at t = 20 s. One can 
easily notice that a good qualitative agreement compared with the results in Fig. 18 is obtained. For a more quantitative 
point of view, since an explicit solution cannot be computed easily in view of the very large acoustic Courant number 
and considering that the compressibility factor is z ≈ 0.997, a simulation with the ideal gas law (28) is performed, using 
γ = 1.2879, which corresponds to c̃v (386.48)

R̃ g
+ 1, so that the internal energy of the ideal gas at T = 386.48 is the same as 

in the case e# (386.48). The temperature profile at y = 0.8 shown in Fig. 20 confirms the good quality of the solution, with 
only slight differences due to the different equations of state.
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Table 11
Values for polynomial (70).

A B C D E

27.67988 51.14898 −30.64544 6.847911 −0.157906

Fig. 19. Warm bubble test case for N2O with Peng-Robinson EOS, results at t = 20 s, a) vertical velocity, b) temperature.

Fig. 20. Warm bubble test case for N2O with Peng-Robinson EOS, temperature profile for y = 0.8 at t = 20 s.

In order to consider also non-ideal effects, we focus on the more challenging conditions closer to the vapor-liquid phase 
transition curve of N2O. More in detail, we set as initial conditions p = 4 · 106 and we consider the following temperature 
profile

T (x,0) =

⎧⎪⎨⎪⎩
298 if r̃ > r0

p̃0

R̃ g,air

(
1−0.1e

r̃2

σ2

) − 88.48 if r̃ ≤ r0, (71)

which corresponds to a translation with respect to (68), yielding z ≈ 0.72. The maximum acoustic Courant is C ≈ 74.5, 
whereas the maximum advective Courant number is Cu ≈ 0.06. Fig. 21 shows the contour plots of the temperature at 
t = 15 s and t = 20 s. For these conditions of temperature and pressure, we obtain from [40] μ = 1.6680 · 10−5 Pa·s, κ =
2.1201 · 10−2 W m−1 K−1 and cp = 1.5150 · 103 J kg−1 K−1, so that one has

Re ≈ 810.7 Pr ≈ 1.19

One can easily notice the full development of the Kelvin-Helmholtz instability with the formation of secondary vortices and 
the fact that the bubble reaches a higher altitude with respect to the previous case. See also Fig. 22 for the vertical velocity.

Finally, we consider the SG-EOS with γ = 1.0936, ̃cv = 1453.91 and π̃∞ = q̃∞ = 0. The values for γ and c̃v are computed 
using the procedure described in [22]. The maximum acoustic Courant is C ≈ 67, whereas the maximum advective Courant 
number is Cu ≈ 0.04. Fig. 23 shows the contour plots of the temperature at t = 15 s and t = 20 s, whereas Fig. 24 shows 
G. Orlando, P.F. Barbante and L. Bonaventura Journal of Computational Physics 471 (2022) 111653
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Fig. 21. Warm bubble test case for N2O with Peng-Robinson EOS, a) temperature at t = 15 s, b) temperature at t = 20 s.

Fig. 22. Warm bubble test case for N2O with Peng-Robinson EOS, a) vertical velocity at t = 15 s, b) vertical velocity at t = 20 s.

Fig. 23. Warm bubble test case for N2O with SG-EOS, a) temperature at t = 15 s, b) temperature at t = 20 s.
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Fig. 24. Warm bubble test case for N2O with SG-EOS, a) vertical velocity at t = 15 s, b) vertical velocity at t = 20 s.

Fig. 25. Warm bubble test case for N2O, density deviation from background state at t = 0, a) Peng-Robinson EOS, b) SG-EOS.

the contour plots of the vertical velocity. The different behavior between the two equations of state can be readily explained 
since, in the case of Peng-Robinson EOS, the difference between the density of the bubble and the background density is 
bigger with respect to SG-EOS, as evident from Fig. 25 and, therefore, a bigger upward buoyant force is exerted on the 
bubble. For this reason, in the simulation with Peng-Robinson EOS reaches a higher level compared to that in the SG-EOS 
simulation.

7. Conclusions and future perspectives

We have proposed an efficient, h-adaptive IMEX-DG solver for the compressible Navier-Stokes equations with non-ideal 
EOS and we have shown how to apply an effective implicit adaptive procedure also to the case of general cubic equations 
of state. The solver combines ideas from the discretization approaches in [15,17,26,36] and proposes an improvement in the 
choice of the free parameter employed by the explicit part of the IMEX scheme described in [26]. The resulting method 
is implemented in the framework of the numerical library deal.II and exploits its h-adaptive capabilities on the basis of 
physically based adaptation criteria that have been proposed specifically for the non-ideal gas case. A number of numerical 
experiments validate the proposed method and show its potential for low Mach number problems. In future work, we plan 
to extend the scheme to multiphase flows and to demonstrate its potential for application to atmospheric flows.
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Appendix A. Stability and monotonicity of the explicit time discretization

In this Appendix, we study the stability and monotonicity of the explicit part of the IMEX scheme applied in the paper. 
We recall that the Butcher tableaux for the explicit part of the method is given by

0 0
χ χ 0
1 1 − a32 a32 0

1
2 − χ

4
1
2 − χ

4
χ
2

In [26], the choice a32 = 7−2χ
6 was made to maximize the stability region of the resulting scheme, but this coefficient 

is indeed a free parameter and can also be chosen in different ways, as long as stability is not compromised. In order to 
identify possible alternative choices, we perform an analysis using the concepts introduced in [35], [30], [21] (see also the 
review in [29]). A similar analysis for the implicit part of the IMEX scheme was carried out in [8], to which we refer for a 
summary of the related theoretical results. We then define

A =
⎡⎣ 0 0 0

χ 0 0
1 − a32 a32 0

⎤⎦ bT = [ 1
2 − χ

4
1
2 − χ

4
χ
2

]
with χ = 2 − √

2. We define for ξ ∈R the quantities

A(ξ) = A (I − ξ A)−1 bT (ξ) = bT (I − ξ A)−1

e(ξ) = (I − ξ A)−1 e ϕ(ξ) = 1 + ξbT (I − ξ A)−1 e (72)

where I is the 3 × 3 identity matrix and e is a vector whose all components are equal to 1. Therefore, for the specific 
scheme, we obtain

A(ξ) =
⎡⎣ 0 0 0

χ 0 0
1 + a32 (χξ − 1) a32 0

⎤⎦ bT (ξ) =
⎡⎣ 1

4 [2 + χ (−1 + ξ (4 − χ + 2a32 (χξ − 1)))]
1
4 [2 + χ (2a32ξ − 1)]

χ
2

⎤⎦
e(ξ) =

⎡⎣ 1
1 + χξ

1 + ξ + a32χξ2

⎤⎦ ϕ(ξ) = 1 + ξ + ξ2

2
+
(

3 − 2
√

2
)

a32ξ
3.

A method with tableaux 
(

A,bT
)

is absolutely monotone at ξ ∈R if A(ξ) ≥ 0, bT (ξ) ≥ 0, e(ξ) ≥ 0 and ϕ(ξ) ≥ 0 elementwise; 
moreover the radius of absolute monotonicity is defined for all ξ in −r ≤ ξ ≤ 0 as

R(a,b) = sup
[

r|r ≥ 0, A(ξ) ≥ 0,bT (ξ) ≥ 0, e(ξ) ≥ 0,ϕ(ξ) ≥ 0
]
.

Fig. 26 shows the behavior of the radius of absolute monotonicity as a32 varies, along with the behavior of the stability 
region along the imaginary axis. As already mentioned before, a32 = 7−2χ

6 was chosen originally to maximize the stability 
region, but in this case R = 2

√
2−3

2+√
2

≈ 0.05, so that the region of absolute monotonicity is quite small. It can be shown that 
the region of absolute stability is given by

S =
{

z ∈C :
∣∣∣1 + z + a32χ z2

∣∣∣< 1
}

.

The alternative value a32 = 0.5 maximizes the region of absolute monotonicity without compromising too much the stability. 
The impact of this alternative choice on numerical results is discussed in Section 6.
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Fig. 26. Analysis of the explicit part of IMEX scheme: a) Radius of absolute monotonicity as function of a32, b) Size of stability region along the imaginary 
axis as a32 varies.

Appendix B. Eigenvalues of 1D Euler equations

In this Appendix we compute the eigenvalues for the Euler equations in non-dimensional form for a general equation of 
state. For the sake of simplicity, we focus on 1D case and so the equations can be written as follows

∂ρ

∂t
+ ∂

∂x
(ρu) = 0

∂ρu

∂t
+ ∂

∂x

(
ρu2

)
+ 1

M2

∂ p

∂x
= 0 (73)

∂ρE

∂t
+ ∂

∂x
[(ρE + p) u] = 0.

This is equivalent to

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂ρ

∂t
u + ∂u

∂t
ρ + u2 ∂ρ

∂x
+ 2ρu

∂u

∂x
+ 1

M2

∂ p

∂x
= 0 (74)

∂ρ

∂t
E + ∂ E

∂t
ρ + (ρE + p)

∂u

∂x
+ u

(
∂ρ

∂x
E + ∂ E

∂x
ρ + ∂ p

∂x

)
= 0.

Thanks to the continuity equation and to the relation E = e + 1
2 M2u2, we obtain

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+ 1

ρM2

∂ p

∂x
= 0 (75)

∂e

∂t
+ p

ρ

∂u

∂x
+ u

∂e

∂x
= 0.

In general e = e(p, ρ), so that ∂e
∂t = ∂e

∂ρ
∂ρ
∂t + ∂e

∂ p
∂ p
∂t and ∂e

∂x = ∂e
∂ρ

∂ρ
∂x + ∂e

∂ p
∂ p
∂x . Hence, the system reduces to

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+ 1

ρM2

∂ p

∂x
= 0 (76)

∂ p

∂t
+
(

p
ρ − ρ ∂e

∂ρ

)
∂e
∂ p

∂u

∂x
+ u

∂ p

∂x
= 0,

which can be thought in the following vector form as ∂Q
∂t + A ∂Q

∂x = 0 with

Q =
⎡⎣ρ

u
p

⎤⎦ (77)
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and

A =

⎡⎢⎢⎣
u ρ 0
0 u 1

ρM2

0

(
p
ρ −ρ ∂e

∂ρ

)
∂e
∂ p

u

⎤⎥⎥⎦ . (78)

The eigenvalues of (78) are u − 1
M

1
ρ

√
p− ∂e

∂ρ ρ2

∂e
∂ p

, u and u + 1
M

1
ρ

√
p− ∂e

∂ρ ρ2

∂e
∂ p

. The first law of thermodynamics, already recalled in 

Section 3, provides us the following relation

T ds = de − p

ρ2
dρ =

(
∂e

∂ρ
− p

ρ2

)
dρ + ∂e

∂ p
dp, (79)

or, equivalently,

dp =
p
ρ2 − ∂e

∂ρ

∂e
∂ p

dρ + T
∂e
∂ p

ds. (80)

Hence, following [56], we have

c2 = ∂ p

∂ρ

∣∣∣∣
s
=

p
ρ2 − ∂e

∂ρ

∂e
∂ p

(81)

and, therefore, the eigenvalues of (78) are

u + c

M
u u + c

M

also for a generic equation of state, and not only in the case of an ideal gas, as already discussed in [41]. This justifies the 
definition (57) also in case of non-ideal gases.
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