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Flow past bluff bodies with sharp corners: the rectangular cylinder

(a) Laminar separation at the corners
(b) Shear layers that may become unstable and reattach on the cylinder sides
(c) Several recirculating regions where flow instabilities may occur
(d) von Kàrmàn wake
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The key flow parameters are: A = L/D and Re = U∞D/ν
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The three-dimensional instability

The wake past short rectangular cylinders has been largely investigated

• A and B synchronous wake Floquet modes are
found forA = 1 (Blackburn & Lopez, PoF 2003)

• QP quasi-periodic mode is found at larger Re
(Blackburn et al., JFM 2005)

• Other synchronous and quasi-periodic wake
modes (A2 and QP2) arise forA ≤ 1
(Choi & Yang, PoF 2014)

How does the three-dimensional instability change for elongated cylinders, when the
flow reattaches over the longitudinal side?
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Two-dimensional vortex shedding

For elongated cylinders the number n of LE vortices over the cylinder side increases with
A, defining different shedding modes

This leads to jumps in StL −A

StL = fL/U∞
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Floquet multipliers
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A quasi subharmonic (QS) unstable mode
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Unstable mode

• Sign of the vorticity changes from one period to the next one
• <(ω̂x) 6= 0 over the cylinder side
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Non-linear three-dimensional Direct Numerical Simulation
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Non-linear three-dimensional Direct Numerical Simulation
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Three-dimensional flow

Pattern of staggered-arranged hairpin vortices like in a flat plate

t t + T
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Structural sensitivity Giannetti, Camarri, & Luchini JFM 2010

I(x, y, k, t) = f̂+(x, y, k, t)û(x, y, k, t)∫ t+T
t

∫
Ω
f̂+ · ûdΩdt

• Localises the wavemeaker region

over
the longitudinal sides

The QS mode is not an unstable mode of the wake
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Is this an elliptic instability of the LE vortices?

• Maximum perturbation in the
base-flow vortex cores

• ω̂z has the typical two-lobe structures
(Waleffe, 1990)

• Centres of the two lobes aligned at
approximately 45◦ w.r.t. the ellipses
axis

• The time scale of the base flow vortices
are not consistent with a
quasi-subhamronic instability

• This instability is not observed for
A ≤ 4.8 where n = 1
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Physical mechanism

• Purely inviscid mechanism that results
from the interaction between the
vortices over the side

• First identified by Pierrehumbert &
Widnall (JFM, 1982) for periodic shear
layer vortices

• When a wall is present, the fastest
growing disturbances are subharmonic
in space and three-dimensional
(Robinson & Saffman, JFM 1982)

Pierrehumbert & Widnall (JFM, 1982)
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Conclusions

• Three-dimensional instability of the flow past elongated rectangular cylinders
• A new quasi subharmonic (QS) unstable mode with λ ≈ 3D has been detected
• The triggering mechanism is inviscid and embedded in the interaction between LE
vortices simultaneously placed over the cylinder side

• The secondary instabilities found for short cylinders can not be generalised

Thanks for listening!
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Computational domain

U∞

Lx = 75D

Ly = 40D

L
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• −25D ≤ x ≤ 75D and −20D ≤ y ≤ 20D
• 1.2× 105 triangles, with 200 and 100 elements over the longitudinal and vertical sides
of the cylinder
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Methods I

Two-dimensional flow:

• FreeFem ++
• Third-order low-storage Runge–Kutta method for the nonlinear term, combined with
an implicit second–order Crank-Nicolson scheme for the linear terms

• P2 elements for the vleocity and P1 elements for the pressure
• BoostConv (Citro et al, JCP 2017) algorithm has been employed to accelerate
convergence
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Methods II

Floquet analysis:

We can write:
uk(t0 + T) = Pkuk(t0)

And the eigenvalues of Pk are the Floquet multipliers µ

• Arnoldi method to compute the eigenvalues of Pk with largest modulus
• Modified Gram-Schmidt algorithm for the orthogonalisation of the eigenvectors
• For time integration same scheme as before
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Methods III

Three-dimensional Direct Numerical Simulation:

• Second-order finite differences on a Staggered grid
• DNS code introduced by Luchini (2016)
• Fractional-step for the momentum equation with a third-order Runge–Kutta scheme
• The Poisson equation for the pressure is solved using an interative SOR algorithm
• The cylinder is considered with an immersed-boundary method
• −30D ≤ x ≤ 80D, −25D ≤ y ≤ 25D and 0 ≤ z ≤ 2πD
• Nx = 1072, Ny = 590 and Nz = 200, with 270 and 170 points over the longitudinal and
vertical sides of the cylinder

• At the corners ∆x = ∆y ≈ 0.005D
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Unstable mode
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OtherA
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3 ≤A < 4.85
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4.85 ≤A < 6
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A = 5.5 at Re = 450
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A = 5.5 at Re = 500
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Two-dimensional vortex shedding

An hyperbolic stagnation point is required for vortex splitting (Boghosian & Cassel, 2016)
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A quasi subharmonic mode

Systems with a spatio-temporal symmetry can not undergo a period-doubling
codimension-one bifurcation (Swift & Wisenfeld, PRL 1984)

Introducing a small perturbation at the inlet:{
U(y) = U∞(1+ 2δy/D)
V(y) = 0
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Floquet analysis for the three-dimensional instability

{U,P}(x, y, z, t) = {Ub,Pb}(x, y, t)︸ ︷︷ ︸
Base flow

+
ε√
2π

∫ ∞

−∞
{u,p}(x, y, k, t)eikzdk︸ ︷︷ ︸
Perturbation

The perturbation field has the functional form

{u,p}(x, y, k, t) = {û, p̂}(x, y, k, t)eσt

where
{û, p̂}(x, y, k, t) = {û, p̂}(x, y, k, t + T)

and
{u,p}(x, y, k, t + T) = {u,p}(x, y, k, t)eσT .

µ = eσT are the Floquet multipliers
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