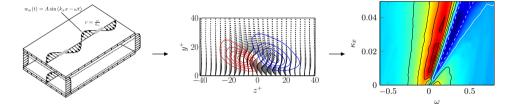
"Joint ERCOFTAC/EU-CTFF European Drag Reduction and Flow Control Meeting – EDRFCM 2022"

Coherent near-wall structures and drag reduction by spanwise forcing


<u>E. Gallorini¹</u>, M.Quadrio¹, D.Gatti²

¹ Dept. of Aerospace Science and Technology (DAER), Politecnico di Milano, Italy

² Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology, Karlsruhe, Germany

Aim of the work

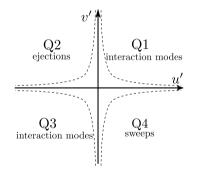
Aim of the work: determine the effect of spanwise forcing on the quasi-streamwise vortices (QSV).

- Yakeno et al., PoF 2014 \rightarrow oscillating walls (OW)
- What happens for streamwise travelling waves of spanwise wall velocity (TW)?

5 high-resolution DNS (CPG) for turbulent channel flow at $Re_{\tau} = 200$, the control maximum wall velocity is $A^+ = 7$:

- 1. REF: No control applied
- 2. OW1: $\Delta U_b^+ = +2.43 \rightarrow \text{High DR} \ (k_x^+ = 0.00, \ \omega^+ = 0.0840);$
- 3. OW2: $\Delta U_b^+ = +1.15 \rightarrow \text{Low DR} (k_x^+ = 0.00, \omega^+ = 0.0250)$;
- 4. TW1: $\Delta U_{b}^{+} = +4.07 \rightarrow \text{High DR} (k_{x}^{+} = 0.01, \omega^{+} = 0.0238)$;
- 5. TW2: $\Delta U_b^+ = -1.44 \rightarrow \mathsf{DI}$ $(k_x^+ = 0.01, \, \omega^+ = 0.1200)$;
- The effect of the control is known (drag variation)
- How this happens?

When pressure gradient is constant (CPG) drag reduction result in an increase in the bulk velocity U_b :

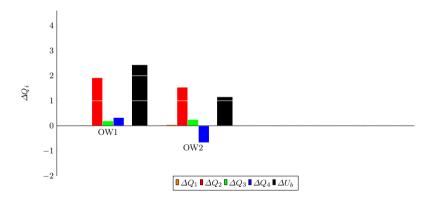

$$\Delta U_b = U_b - U_{b,REF} = \frac{1}{2h} \int_0^{2h} \overline{u} - \overline{u}_{REF} \, dy$$

From Marusic et al., JFM 2007:

$$U_b = \frac{Re_{\tau}}{3} + \int_0^{Re_{\tau}} \left(1 - \frac{y}{Re_{\tau}}\right) (-\overline{u'v'}) \, dy^+ = \frac{Re_{\tau}}{3} + \sum_{i=1}^4 Q_i$$

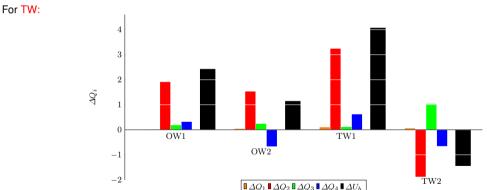
Being Q_i the *i*-th quadrant contribution of the Reynolds shear stresses. As a consequence:

$$\Delta U_b = \sum_{i=1}^4 \Delta Q_i$$



Reynolds stresses balance

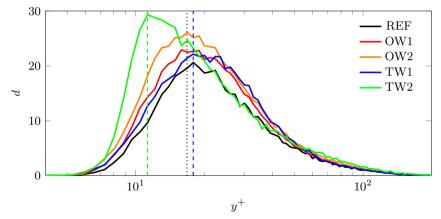
For OW two mechanisms were highlighted, considering the quadrant contribution of $\overline{u'v'}$:


- Q₂ suppression;
- Q₄ enhancement-suppression;

Reynolds stresses balance

For OW two mechanisms were highlighted, considering the quadrant contribution of $\overline{u'v'}$:

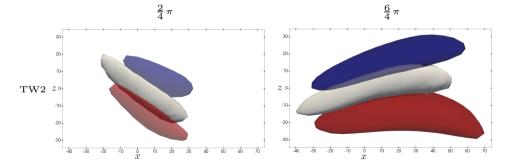
- Q_2 suppression;
- Q_4 enhancement-suppression;



Vortices extraction

(QSV) are extracted using the swirling-strenght (Zhou et al., JFM 1999).

- Swirling-strenght: intensity of the imaginary part of the complex eigenvalues of ∇u .
- Control \rightarrow Modification of QSV number and distribution in wall-normal direction:

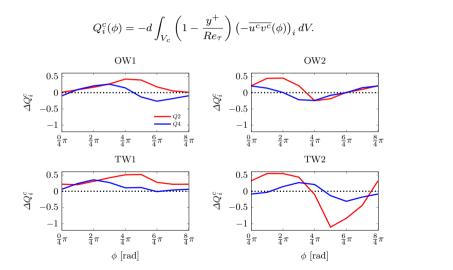


Conditional average

After the extraction, QSV

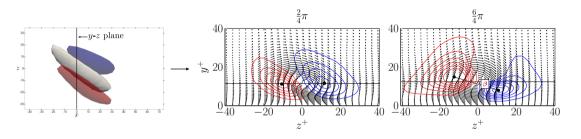
- at the same control phase:
- with the same sense of rotation;
- located at the same distance from the wall:

are averaged together obtaining conditionally-averaged structures.



Variation of Reynolds stresses

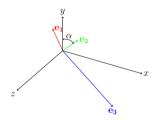
(1)



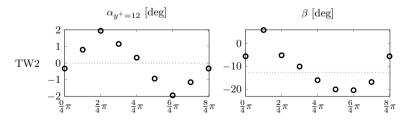
E. Gallorini, M. Quadrio, D. Gatti - "Coherent near-wall structures and drag reduction by spanwise forcing"

Bouncing (1/2)

We observe a "bouncing" of Q_2 and Q_4 events for TW $\rightarrow \beta$:

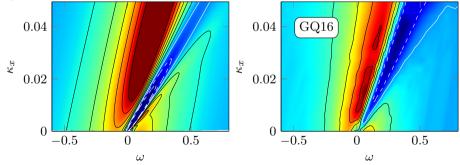

The bouncing is:

- high when drag increase (TW2) is present,
- low for drag reduction (TW1).
- We link this phenomenon with the modification to the stress state due to x-dependency of \tilde{w} for TW.


Bouncing (2/2)

Principal stresses for TW:

 α and β shows a similar phase evolution:

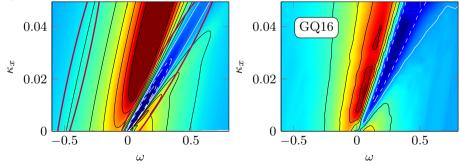


Scaling of drag Reduction (1/2)

In Yakeno et al., PoF 2014, Q_2 suppression and Q_4 enhancement has been linked with the spanwise shear at $y^+ = 10$ and $y^+ = 15$:

$$\Delta U_b = a \left(\frac{\partial \tilde{w}}{\partial y} \Big|_{y^+ = 10} \right)_{rms} - b \left(\frac{\partial \tilde{w}}{\partial y} \Big|_{y^+ = 15} \right)_{rms}$$
(2)

Since similar phenomena were observed for TW, we extend the relation to the new control:

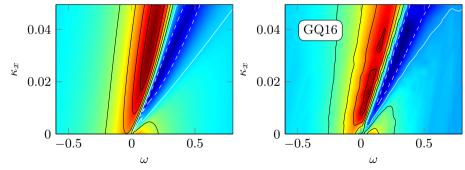


Scaling of drag Reduction (1/2)

In Yakeno et al., PoF 2014, Q_2 suppression and Q_4 enhancement has been linked with the spanwise shear at $y^+ = 10$ and $y^+ = 15$:

$$\Delta U_b = a \left(\frac{\partial \tilde{w}}{\partial y} \Big|_{y^+ = 10} \right)_{rms} - b \left(\frac{\partial \tilde{w}}{\partial y} \Big|_{y^+ = 15} \right)_{rms}$$
(2)

Since similar phenomena were observed for TW, we extend the relation to the new control:


Scaling of drag Reduction (2/2)

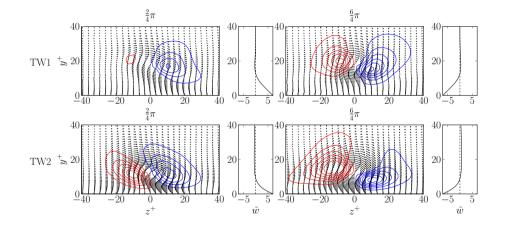
$$\Delta U = S' \left(a\tau_z |_{y^+=10}^{rms} + b\tau_z |_{y^+=15}^{rms} \right) - c\alpha_{y^+=12}^{rms}.$$
(3)

being:

- τ_z : spanwise component of the principal stress state associated with the phase-averaged strain-rate tensor $\langle S \rangle$;
- S': mean acceleration in the Generalized Stokes Layer, $S' = a'_m \frac{\ell}{A}$ and $a'(\omega, \kappa_x) = \frac{1}{\ell} \int_0^\ell a_m(\omega_{eq}, \kappa_x, y) dy;$
- α : represents the "bouncing".

The effect of OW and TW on QSV has been analyzed:

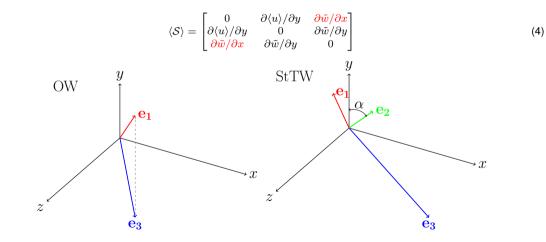
- Q_2 and Q_4 variation are the dominant mechanism of drag variations;
- The control affects QSV's distribution and intensity;
- TW involves phenomena ("bouncing", different velocities of structures and control wave) that, when correctly scaled, are in agreement with the drag-reduction map;


What has to be done?

- This work is based on observations of physical phenomena;
- $\bullet\,$ empirical scaling \rightarrow physical interpretation.

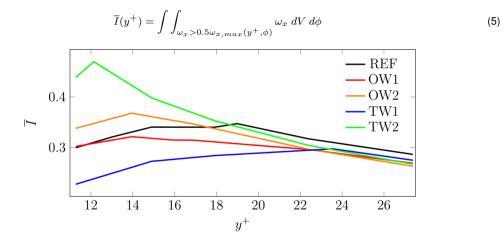
Thank you for your attention!

contact: emanuele.gallorini@polimi.it

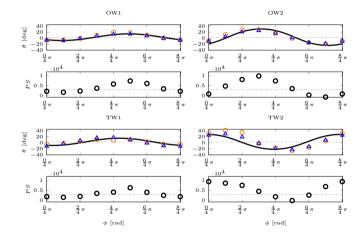

Phase-evolution of conditionally averaged QSV

14/14

Stress state



Vortex intensity



TW2 involves high phase shifts of Q_2 and Q_4 , this can be explained by the high intensity of the structures:

Tilt angle

