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We developed and used a deep learning tool to process biplanar radiographs of

9,832 non-surgical patients suffering from spinal deformities, with the aim of

reporting the statistical distribution of radiological parameters describing the

spinal shape and the correlations and interdependencies between them. An

existing tool able to automatically perform a three-dimensional reconstruction

of the thoracolumbar spine has been improved and used to analyze a large set

of biplanar radiographs of the trunk. For all patients, the following parameters

were calculated: spinopelvic parameters; lumbar lordosis; mismatch between

pelvic incidence and lumbar lordosis; thoracic kyphosis; maximal coronal Cobb

angle; sagittal vertical axis; T1-pelvic angle; maximal vertebral rotation in the

transverse plane. The radiological parameters describing the sagittal alignment

were found to be highly interrelated with each other, as well as dependent on

age, while sex had relatively minor but statistically significant importance.

Lumbar lordosis was associated with thoracic kyphosis, pelvic incidence and

sagittal vertical axis. The pelvic incidence-lumbar lordosis mismatch was found

to be dependent on the pelvic incidence and on age. Scoliosis had a distinct

association with the sagittal alignment in adolescent and adult subjects. The

deep learning-based tool allowed for the analysis of a large imaging database

which would not be reasonably feasible if performed by human operators. The

large set of results will be valuable to trigger new research questions in the field

of spinal deformities, as well as to challenge the current knowledge.
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Introduction

Spinal deformities are common diseases that may have a

major impact on the quality of life of affected patients.

Prevalences of spinal deformities are relatively high (0.5–5.2%

for adolescent idiopathic scoliosis (Kamtsiuris et al., 2007;

Konieczny et al., 2013), up to 32% for adult deformities

(Schwab et al., 2005)); symptoms depend on the type and

severity of the deformity and may include pain, weakness,

numbness, dysfunction, breathing disorders, and delayed

development. Cosmetic impairments and related psychosocial

distress are also common, especially in younger patients (Reichel

and Schanz, 2003).

In the last decade, the management of spinal deformities

has been largely impacted by the commercial availability of

radiographic systems able to capture calibrated, simultaneous

biplanar images of the trunk or even of the whole body, such as

for example the EOS Imaging System (EOS Imaging, Paris,

France). Biplanar radiography allows for an accurate three-

dimensional (3D) measurement of quantities that are most

commonly assessed in two-dimensional (2D) images (Pasha

et al., 2016) such as the spinopelvic parameters (Duval-

Beaupere et al., 1992), the sagittal alignment (Barrey et al.,

2011; Le Huec et al., 2011) as well as the Cobb angle in the

coronal plane (Cobb, 1948), as well as purely 3D parameters not

accessible by means of 2D imaging such as vertebral rotations

and vectors (Illés et al., 2011; Illés et al., 2019). Such added

knowledge of the 3D aspect of the spine shape and curvature is

nowadays deemed as crucial for correct pre-operative planning

the surgical treatment of the deformity (Illés et al., 2017; Illés

et al., 2019). While approximate methods to determine

vertebral rotations from simple planar radiographs have

been available for decades (Nash and Moe, 1969; Stokes

et al., 1986; Perdriolle and Vidal, 1987) and refined similar

methods have been recently introduced (Ebrahimi et al., 2019),

biplanar imaging offers significantly higher accuracy and

reproducibility, even in complex cases (Ilharreborde et al.,

2011).

In recent years, the publication of several papers which used

machine learning methods to automatically or semi-

automatically extract parameters from biplanar radiographs of

the spine (Galbusera et al., 2019; Gajny et al., 2019; Vergari et al.,

2019; Aubert et al., 2019; Zhang and Li, 2019; Yang et al., 2019)

demonstrated the rising interest in the topic and these novel

techniques, as well as the need for automatizing a manual process

which is time-consuming and relatively user-dependent

(Somoskeöy et al., 2012; Bagheri et al., 2018). Our own deep

learning tool (Galbusera et al., 2019) proved to be able to perform

a fully automated 3D reconstruction of the spine shape as well as

to estimate quantities such as spinopelvic parameters, kyphosis

and lordosis angles, and coronal Cobb angle with perceptually

convincing outcomes for a wide range of clinical scenarios

including mild and severe deformities.

In this work, we present an improved version of our deep

learning tool, and we used it to process a large dataset of

biplanar radiographs of 9,832 non-surgical patients with the

aim of describing in detail the statistical distribution of

radiological parameters describing the spinal shape and

deformities, as well as the correlations and interdependencies

between them.

Materials and methods

Deep learning model

An existing tool able to automatically perform a 3D

reconstruction of the anatomy and shape of the

thoracolumbar spine based on biplanar radiographs

acquired with the EOS Imaging System has been used as

the basis for the current study (Galbusera et al., 2019). The

deep learning model has been extended by increasing the

number of recognized vertebral landmarks from 2 to 10

(Figure 1) and implementing the self-supervision paradigm

to improve its performance. In particular, using 10 landmarks

allowed for a greater precision in the calculation of the

endplate orientation with respect to the previous version,

in which we simply considered the line orthogonal to the

spline interpolating the two endplate centers. The self-

supervised approach allowed exploiting also a set of

unlabelled images in the training process in order to

increase the model understanding on images. In detail,

following the approach presented in Honari et al. (2018)

the model produced landmarks localizations equivariant

with respect to a set of transformations (rotations and

translations) applied to the image. So, for the unlabelled

images, if a transformation is applied to an image, the

transformed landmarks should be very close to the points

obtained by applying the same transformation to landmark

coordinates in the original image. In brief, g(T(I)) ≈ T(g(I))

where g is the network, T the transformation and I the

image. As regards the model architecture, while the

Differentiable Spatial to Numerical Transform (DSNT) top

layer for the regression of the landmark coordinates was kept

unaltered from the previous version, the backbone was

changed from a simple 7-layer convolutional neural

network to a ResNet-34. The size of the training set was

extended from 443 to 810.

Validation

The accuracy of the tool was quantitatively assessed by

comparing the automated prediction of various relevant

radiological angles with measurements performed by four

human observers with an in-house computer-aided tool. The
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comparison was conducted on three sets of biplanar images of

30 patients which were not included in the training data. The first

set referred to patients with no spinal deformity (age 25–70), the

second set to patients with adolescent idiopathic scoliosis (age

11–18, coronal Cobb angle 20–65°), while the third set included

patients suffering from adult spinal deformities (age 66–85,

coronal Cobb angle 3–80°, SVA 1–12 cm). To validate the

tool, we counted the number of cases for which the parameter

values estimated by the tool fell within the range of the

measurements of the four observers, as well as those with an

error greater than 5°.

Patients and radiological parameters

A large set of biplanar radiographs of the full trunk or whole

body of 16,228 patients consecutively acquired between 2015 and

2019 at IRCCS Istituto Ortopedico Galeazzi was retrospectively

analyzed (Figure 1). All images were acquired in standing in a

raised-arm posture to allow for an optimal visualization of the

spine in both planes. Non-relevant images were excluded based

on the following criteria: 1) age of the subject below 10 years; 2)

presence of spinal implants in the images or evidence of non-

instrumented spine surgery; 3) neuromuscular and congenital

spinal deformities. Patients were stratified based on sex, age

group (10–18 years old; 19–44; 45–64; 65–79; 80 or more) as

well as on the presence of a spinal deformity, which was defined

as a maximal Cobb angle in the coronal plane in the

thoracolumbar spine greater than 10° (Lonstein, 1994) and/or

a sagittal vertical axis (SVA) greater than 5 cm (Glassman et al.,

2005).

For all patients, after using the deep learning model for the

prediction of the three-dimensional position of the

vertebral landmarks, the values of the following radiological

parameters were automatically calculated: spinopelvic

parameters (pelvic incidence (PI), pelvic tilt (PT),

sacral slope (SS)); lumbar lordosis between L1 and L5 (LL)

as well as based on Roussouly’s definition (Roussouly et al.,

2003); mismatch between pelvic incidence and lumbar

lordosis; thoracic kyphosis between T1 and T12 and

between T4 and T12 (TK); maximal Cobb angle in the

coronal plane between T1 and L5; SVA; T1-pelvic angle

(TPA); in case of scoliosis, maximal vertebral rotation in

the transverse plane.

Data analysis

Scatter plots representing potential correlations of clinical

interest between the radiographic parameters were built; linear

regression analysis was performed for the same correlations.

Analysis of covariance (ANCOVA) was employed to test

differences between sexes and age groups in terms of LL,

TK, PI, SVA and pelvic incidence-lumbar lordosis mismatch

(PI-LL), considering various covariates (age, maximal coronal

Cobb angle, PI, LL). Besides, the matrix describing the pairwise

Spearman correlation coefficients between various relevant

parameters (age, maximal coronal Cobb angle, PI, SS, LL,

TK, SVA, TPA, maximal axial rotation) was computed.

Finally, the importance of some relevant demographic and

radiological parameters (age, sex, PI, SS, LL, TK, SVA,

maximal coronal Cobb angle, maximal axial rotation) in

determining parameters describing the spinal alignment and

possible compensatory mechanisms (LL, TK, SVA, PI-LL, TPA,

maximal coronal Cobb angle, maximal axial rotation) were

determined by means of a gradient boosted decision tree

implemented with the XGBoost Python library (https://

xgboost.readthedocs.io/).

FIGURE 1
Three randomly selected representative cases of 3D reconstruction of the anatomy of the thoracolumbar spine based on biplanar radiographs
of the trunk.
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Results

Validation

On average, in 43% of the cases (range 31–72%) the

radiological parameters predicted by the automated tool were

within the range of the measurements by the four human

observers (Figure 2). The cases with error larger than 5°

ranged between 0% (pelvic tilt in patients with adult spine

deformity) and 20% (maximal coronal Cobb angle in patients

with adolescent idiopathic scoliosis).

Patient population

After the application of the exclusion criteria, biplanar

images of 9,832 patients were included in the study. Among

these, 5,122 patients had an age between 10 and 18 years,

1,246 between 19 and 44 years, 1,645 between 45 and 64,

1,579 between 65 and 79, and 240 higher than 80 years

5,006 patients were found to have scoliosis, i.e., a maximal

coronal Cobb angle higher than 10°, 2,710 of them belonging

to the 10–18 years age group. Among the 9,832 patients,

4,428 were found to have no clinically relevant spine

deformities, i.e., Cobb angle lower than 10° and SVA lower

than 5 cm. Table 1 shows range, mean and median values of

several radiological parameters within the population.

Sagittal alignment

The radiological parameters describing the sagittal alignment

of the spine were found to be highly interrelated with each other,

as well as dependent on age, while sex had relatively minor

importance (Figure 3). Nevertheless, all performed ANCOVA

analyses to test differences between age groups as well as sex in

terms of sagittal parameters showed statistical significance

regardless of the magnitude of such differences, due to high

numerosity of the sample. The full set of charts describing the

associations between the radiological parameters is reported in

the Supplementary Material.

The L1-L5 lumbar lordosis was associated with both the

thoracic kyphosis and SVA (Figure 4). While the increase in

thoracic kyphosis with respect to the change in lumbar lordosis,

i.e., the slope of the regression curve, was weakly dependent on

the age, older subjects had markedly higher kyphosis with respect

to younger ones being the lumbar lordosis equal. In contrast, the

slope of the regression curve describing SVA with respect to the

lumbar lordosis was dependent on the age, i.e., older subjects had

higher changes in SVA being the change in lumbar lordosis

equal, demonstrating the importance of age in determining how

the global sagittal balance responds to a decrease in lumbar

lordosis.

A strong association between PI and lumbar lordosis was

found, while the thoracic kyphosis showed a less clear

correlation with PI (Figure 5). Regarding the lumbar

lordosis, while all age groups showed a positive correlation,

the slope of the regression lines was higher for younger subjects,

with minimal differences between the 10–18 and 19–44 age

groups as well as for subjects older than 65 years. The thoracic

kyphosis tended to decrease with increasing PI, with a greater

effect for the younger subjects.

FIGURE 2
Percentage of cases within the three validation sets (no deformity, adolescent idiopathic scoliosis (AIS), adult spine deformity (ASD)) which were
within the range of the manual measurements of four human observers, as well as those with an error greater than 5°.

TABLE 1 Range, mean andmedian values of radiological parameters of
the population.

parameter unit range mean median

PI degrees 3–89 49 49

SS degrees 2–75 37 37

L1-L5 lordosis degrees -15–74 40 42

T4-T12 kyphosis degrees -17–79 39 38

SVA cm -9.7–27.6 0.3 -0.6

maximal coronal Cobb angle degrees 1–106 15 10

maximal axial rotation degrees 0–47 7 6
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The pelvic incidence-lumbar lordosis mismatch was found to

be dependent on PI, as well as on age (Figure 6). In general, PI-LL

values increased with increasing PI, with the slope of the

regression line showing only minor differences among the age

groups. The same trend was observed even after excluding

subjects with spinal deformities.

Scoliosis

The severity of scoliosis, as described by the maximal Cobb

angle in the coronal plane, had a distinct association with the

sagittal alignment in adolescent subjects with respect to the older

patients (Figure 7). Similar to the sagittal parameters, all

ANCOVA analyses (i.e. effect of sex and age group

considering the coronal Cobb angle as covariate) showed

statistical significance, even if the magnitude of such effects

was small. While the Cobb angle was weakly associated with a

change in lumbar lordosis in the group of young subjects, the

lordosis showed a marked decrease for more severe curves in

adults. On the contrary, the thoracic kyphosis showed a clear

tendency toward a decrease with the severity of the scoliotic curve

in both adolescents and adults, with approximately similar

behaviours.

Correlation between parameters

The matrix showing the Spearman correlation coefficients

between various parameters confirmed the strong

interdependence between them, as well as the findings widely

documented in the literature and highlighted in the previous

FIGURE 3
Scatter-regression plots describing the association between age and sagittal parameters, with patients stratified based on sex (“M”: males; “F”:
females). First row: L1-L5 lumbar lordosis (left) and T4-T12 thoracic kyphosis (right); second row: pelvic incidence (PI) (left) and sagittal vertical axis
(SVA) (right).
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paragraphs (Figure 8). Higher age is associated with lower LL,

higher TK, SVA and TPA, as well pI. Higher PI is correlated with

higher SS, LL, SVA and TPA, whereas it had a minor correlation

with TK. SS and LL show a high correlation, as well as the

maximal Cobb angle and the maximal rotation in the axial plane.

Importance of the predictors

The XGBoost model showed that the importance of the

demographic and radiological parameters in determining the

spinal alignment did not exhibit major differences between

adolescent and adult subjects (Figure 9). The spinopelvic

parameters, especially the sacral slope which includes both

anatomical and postural information, together with the lumbar

lordosis had as expected high importance in determining other

sagittal parameters. In adults, SVA (that describes the global

sagittal balance) was mostly determined by the lumbar lordosis,

while in adolescents all sagittal parameters contributed to it. The

strongest predictor for the coronal Cobb angle was the maximal

rotation in the transverse plane, while no radiological parameter

describing the sagittal alignment (with the partial exception of the

thoracic kyphosis for the adolescent subjects) seemed to play a

major role in its determination.

FIGURE 4
Scatter-regression plots describing the association between L1-L5 lordosis and: T4-T12 kyphosis (left), sagittal vertical axis (SVA) (right), with
patients stratified based on age groups.

FIGURE 5
Scatter-regression plots describing the association between pelvic incidence (PI) and: L1-L5 lordosis (left), T4-T12 kyphosis (right), with patients
stratified based on age groups.
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Discussion

This paper presented the largest retrospective analysis to

date of a database of biplanar radiographs of the full spine of

non-operated patients suffering from spinal deformities

covering a wide range of severities, which was conducted by

using automated software based on a state-of-the-art deep

learning method. The use of a tool not requiring the manual

intervention of an operator allowed the analysis of a large

number of images with high reproducibility and robustness,

and revealed findings that are difficult to observe in smaller

clinical studies.

The deep learning tool used in this paper builds on an

existing model (Galbusera et al., 2019), which was refined

from a methodological point of view and extended by

approximately doubling the number of images used to train

the neural network. To our knowledge, no other model able to

automatically extract vertebral locations and orientations of

all thoracolumbar vertebrae from biplanar images of the trunk

is currently available, but several research groups are

developing similar tools and the outlook is very promising.

Among the several papers published recently, Weng et al.

presented a tool for the automated calculation of the SVA in

lateral images (Weng et al., 2019), Yeh et al. were able to

accurately predict the location of vertebral landmarks in

lateral images (Yeh et al., 2021), and Korez and others

developed a deep learning model for the automatic

calculation of the spinopelvic parameters with

performances comparable to that of human observers

(Korez et al., 2020). As a matter of fact, while it would be

premature to conclude that software based on artificial

intelligence can replace physicians in the radiographic

analysis of spinal deformities, it is nonetheless evident

that such a possibility is rapidly becoming more and more

realistic.

The amount of information that can be revealed by the

automated analysis of a large radiographic dataset of patients

in a wide range of age and clinical scenarios is immense and

goes beyond the scope of a single research paper. Nevertheless,

we decided to release a large set of charts as Supplementary

Material, which can serve as a starting point for further studies

in the field, by triggering new research questions or

challenging existing knowledge. An example of such an

issue that deserves further investigation is the pelvic

incidence-lumbar lordosis mismatch, which has recently

gained a lot of attention as a target for the surgical

correction of sagittal imbalance in adult patients (Schwab

et al., 2013). High values of PI-LL, i.e. significant losses of

lumbar lordosis, were found to be associated with poor health-

related quality of life and disability (Glassman et al., 2005;

Merrill et al., 2017). A value of 10° is frequently considered as a

threshold indicating a high mismatch, and is therefore

considered as a target value to be achieved in order to

obtain a good surgical correction with a low risk of

complications (Schwab et al., 2010; Rothenfluh et al., 2015).

Nevertheless, to our knowledge the statistical distribution of

PI-LL in a large population of balanced subjects (SVA <5 cm),

either in presence of compensatory mechanisms or not, has

never been conducted and therefore the selection of the

threshold value may appear to be rather arbitrary. In a

previous study, Hyun and coworkers already noted,

although on a smaller cohort of 150 elderly volunteers, that

the ideal values of PI-LL are inconsistent and positively

correlated with PI (Hyun et al., 2019), in agreement with

the current data and demonstrating that the issue deserves a

deeper investigation. It should also be noted that the present

FIGURE 6
Scatter-regression plots describing the association between pelvic incidence (PI) and pelvic incidence-lumbar lordosis mismatch (PI-LL),
considering all patients (left) and only those with no spinal deformities (right). Patients are stratified based on age groups.
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large-scale analysis would constitute a valuable basis for such a

study, for example by performing a multivariate analysis with

is indeed currently being conducted.

This study is not without limitations. First, the data

collection was retrospective and detailed information about

the indications for imaging were not accessible; the only

available data about the patients were age and sex. The

exclusion criteria (previous spine surgery, neuromuscular or

congenital deformities) were applied exclusively based on a

visual inspection of the images, which might not be obvious for

example in the case of non-instrumented surgery. While the

version of the deep learning model used in this paper includes

several improvements with respect to the original version

(Galbusera et al., 2019) and was trained on a larger dataset,

some degree of error in the localization of the landmarks cannot

be excluded especially in the case of major deformities, as

documented in the validation against human raters. Such

results should be evaluated accounting for the relative lack

of reliability of measurements performed by humans; indeed,

considering the Cobb angle of scoliosis as a reference, an

average error of 3.7–7.2° when using manual tools (Morrissy

et al., 1990; Wang et al., 2018) and of 1.7–1.9° with computer-

aided systems (Hurtado-Avilés et al., 2022) were reported,

demonstrating that further improvements are necessary prior

to a generalized clinical use of automated measurement

systems. Finally, as mentioned above detailed statistical

analyses addressing specific research questions were not

conducted, since this paper aimed at presenting the dataset

in a descriptive form with a methodological focus on the deep

learning technique used for the evaluation of the images.

In conclusion, the present deep learning-based tool allowed for

the analysis of a large imaging database which would not be

FIGURE 7
Scatter-regression plots describing the association between themaximal Cobb angle in the coronal plane and sagittal parameters, with patients
stratified based on sex (“M”: males; “F”: females). First row: L1-L5 lordosis in adolescents (left) and adults (right); second row: T4-T12 kyphosis in
adolescents (left) and adults (right).
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reasonably feasible in the frame of a research project, if performed by

human operators. The large set of results here reported will be

valuable as a reference for future studies as well as to trigger new

research questions in the field of spinal deformities, or to challenge

the current knowledge.We believe that algorithms based on artificial

intelligence will determine an enormous increase in the availability

of data extracted from radiological imaging in the next future,

benefiting both spine research and care.
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FIGURE 8
Hinton diagram showing the pairwise correlation between
various parameters (age, maximal coronal Cobb angle (Cobb), PI,
SS, L1-L5 lordosis, T4-T12 kyphosis, SVA, T1-pelvic angle (TPA),
maximal vertebral rotation in the transverse plane (rot.). Red
indicates a positive correlation, blue a negative correlation. The
size of the square indicates the strength of the correlation.

FIGURE 9
Heatmaps showing the importance of the predictors (age,
sex, pelvic incidence (PI), sacral slope (SS), L1-L5 lordosis (LL), T4-
T12 kyphosis (TK), sagittal vertical axis (SVA), maximal coronal
Cobb angle (Cobb), maximal vertebral rotation in the
transverse plane (rot.)) in determining a set of radiological
parameters (LL, TK, SVA, pelvic incidence-lumbar lordosis
mismatch (PI-LL), T1-pelvic angle (TPA), Cobb, rot.) obtained with
the XGBoost model, for the adolescent (top) and for the adult
subjects (bottom).
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