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Privacy-preserving deep learning with homomorphic
encryption: An introduction

Alessandro Falcetta and Manuel Roveri

Abstract—Privacy-preserving deep learning with homomor-
phic encryption (HE) is a novel and promising research area
aimed at designing deep learning solutions that operate while
guaranteeing the privacy of user data. Designing privacy-
preserving deep learning solutions requires one to completely
rethink and redesign deep learning models and algorithms to
match the severe technological and algorithmic constraints of
HE. This paper provides an introduction to this complex research
area as well as a methodology for designing privacy-preserving
convolutional neural networks (CNNs). This methodology was
applied to the design of a privacy-preserving version of the
well-known LeNet-1 CNN, which was successfully operated on
two benchmark datasets for image classification. Furthermore,
this paper details and comments on the research challenges and
software resources available for privacy-preserving deep learning
with HE.

Index Terms—Deep learning, homomorphic encryption,
privacy-preserving computation, convolutional neural network
(CNN).

I. INTRODUCTION

Today’s world is characterized by information abun-
dance [1]. Thousands of exabytes of data are generated every
day [2] by Internet-of-Things systems, mobile devices, social
media, and industrial machinery. To extract value from these
data, intelligent “data-processing” services have increased in
number in recent years, which are based on machine and deep
learning and operate on the cloud or in mobile apps [3]. Unfor-
tunately, the processing of data acquired by users, companies,
or stakeholders by third-party software services may severely
impact privacy when sensitive data are involved (e.g., medical
diagnoses, political or personal opinions, and confidential
information) [4]. The need to combine privacy with intelligent
services sheds light on one of the most relevant scientific
and technological challenges of the coming years: How can
software services and mobile apps that provide intelligent
functionalities (through machine and deep learning solutions)
be designed while guaranteeing the privacy of user data? This
is a crucial question that research has begun to address from
several perspectives, including scientific [5], technological [6],
[7], and legislative [8]. Table I presents a comparison of
the main approaches provided in the literature for integrating
privacy constraints with intelligent processing abilities.

Interestingly, among these families of solutions, homomor-
phic encryption (HE) is the only one that guarantees both
the ability to process encrypted data as well as to operate
without requiring multiple rounds of client-server computa-
tion/communication. HE schemes represent a special type of
encryption that allows (a set of) operations to be performed
on encrypted data. Specifically [9], an encryption function E
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TABLE I
COMPARISON OF METHODOLOGIES FOR PRIVACY-PRESERVING MACHINE

LEARNING.

Ability to process
encrypted data

Processing without the need
for multiple rounds
of communication

Homomorphic
encryption Yes Yes

Multi-party
computation Yes No

Group-based
anonymity No Yes

Differential
privacy No Yes

and its decryption function D are homomorphic w.r.t. a class
of functions F if, for any function f ∈ F , one can construct
a function g such that f(m) = D(g(E(m))) for a set of input
m.

Due to HE’s ability to perform operations on encrypted data
without multiple rounds of client-server communications, it
is particularly suitable for consideration in the “as-a-service”
computing paradigm, which requires high standards of privacy
and data confidentiality. Indeed, integrating HE with machine
and deep learning solutions could lead, for example, to the
design of a cloud-based diagnosis system that is able to process
X-ray images previously encrypted by a patient. The encrypted
results (e.g., an index measuring the presence of potentially
critical health threats) would be sent back to the patient, who
would be the only one able to decrypt them.

Unfortunately, this ability comes at the expense of three
drawbacks: First, only a subset of operations (mainly addition
and multiplication) is allowed in most of HE-based processing
systems; second, the length of the processing pipeline (i.e., the
amount and type of operations to be executed) is restricted;
and third, the memory and computational demand of HE-based
processing systems are much higher than those of traditional
systems.

These three drawbacks are particularly relevant in a scenario
where deep learning solutions are considered, since deep
learning models are typically characterized by a long pipeline
of processing layers that comprises various types of nonlinear
operations. For this reason, deep learning models and solutions
must be completely redesigned and redeveloped to consider the
constraints of HE schemes. Only a few studies have proposed
addressing this issue with effective solutions in highly specific
fields [10], and a general approach to HE for deep learning is
still missing. Therefore, the aim of this study was twofold:
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TABLE II
SUMMARY OF THE NOTATIONS USED IN THIS PAPER.

Notation Meaning

m Raw message
n Polynomial modulus degree
p Plaintext coefficient modulus
q Ciphertext coefficient modulus
Θ Encryption parameters (n, p, q)
Φn Cyclotomic polynomial (xn + 1)

Rp = Zp[x]/Φn(x) Plaintext polynomial ring
Rq = Zq [x]/Φn(x) Ciphertext polynomial ring

m Encoded message (plaintext)
m̃ Encrypted message (ciphertext)

m = ΓΘ(m) Encoding
m = Γ−1

Θ (m) Decoding
ks, kp Secret and public keys

m̃ = EΘ(m, kp) Encryption
m = DΘ(m̃, ks) Decryption

b. . .c Floor operator
b. . .e Round operator

[. . .]Φn,p Modulo xn + 1, modulo p

• To introduce HE for machine and deep learning by
describing HE encoding/encryption mechanisms and the
operations on plaintexts/ciphertexts;

• To provide a methodology for the step-by-step design of
privacy-preserving convolutional neural networks (CNNs)
based on HE. The goal of this methodology is to trace the
path in the design of HE-based machine and deep learn-
ing solutions for supporting privacy-preserving intelligent
processing in cloud-based services or mobile apps.

To achieve these aims, this study complemented theory with
examples and code by applying the proposed methodology to
the design of a privacy-preserving version of the well-known
LeNet-1 CNN [11]. Experimental results are presented regard-
ing the effectiveness and efficiency of the privacy-preserving
LeNet-1 on two benchmark datasets for image classification.
Furthermore, the research challenges and the software re-
sources available for the design of privacy-preserving deep
learning solutions are detailed and commented on. In addition,
all of the codes used in this study have been made available
to the scientific community as a public repository.1

The remainder of this paper is organized as follows. Section
II introduces the Brakerski–Fan–Vercauteren (BFV) scheme
for HE together with the encoding/decoding mechanisms
and privacy-preserving operations. Section III introduces the
proposed methodology for the design of privacy-preserving
CNNs with HE, and then Section IV details the application of
this methodology to the well-known LeNet-1 CNN. Finally,
the research challenges and software resources available for
privacy-preserving deep learning are presented in Sections V
and VI, respectively, before the conclusions of the study are
drawn in Section VII.

II. HOMOMORPHIC ENCRYPTION: THE BFV SCHEME

This section illustrates the main characteristics of HE
schemes and provides concrete examples of its algebraic pecu-
liarities. An HE scheme is an encryption scheme that supports

1https://github.com/AlexMV12/Introduction-to-BFV-HE-ML

the computation of a set of operations directly on encrypted
data. This goal is achieved thanks to the HE scheme’s ability
to maintain the algebraic structure of the data during the
encrypted processing. In other words, HE allows a party to
compute operations between ciphertexts, guaranteeing that the
obtained result, when decrypted, will be equal (under certain
assumptions, which are detailed as follows) to that obtained
by computing the same operations between the corresponding
plaintexts.

HE schemes can generally be classified into four categories,
which are characterized by increasing complexity in terms
of the number and type of operations. First, partially HE
schemes are HE schemes that can support the homomorphic
computation of only one class of operations. An example of a
partially HE scheme is Rivest–Shamir–Adleman (RSA) [12].
Second, somewhat HE schemes support the homomorphic
computation of an unbounded number of additions and a
single multiplication. A notable example in this category is
the Boneh–Goh–Nissim (BGN) scheme [13]. Third, leveled
HE schemes are schemes that support the homomorphic com-
putation of a predetermined number of additions and multi-
plications. The BFV scheme [14] (which is the reference HE
scheme considered in this paper) and the Cheon–Kim–Kim–
Song (CKKS) scheme [15] belong to this category. Finally,
fully HE schemes support the homomorphic computation of
an unbounded number of operations, often binary ones (AND,
NOT...). While the HE schemes in this category provide the
greatest flexibility in terms of processing abilities, configuring
and managing them is very difficult. An example of a fully
HE scheme is Torus–Fully–HE (TFHE) [16]. As previously
mentioned, this paper focuses on the BFV scheme [14], which
is a popular leveled HE scheme based on the ring learning with
errors (RLWE) problem [17].

A deep learning solution that implements the BFV scheme
is summarized in Figure 1, where the raw message m (i.e., the
message to be processed in an encrypted manner) is a vector
of numbers representing, for instance, an image or an audio
clip according to the considered deep learning task. The raw
message m is initially transformed into an encoded message m
(called plaintext) by means of the encoding step ΓΘ(·) which
transforms every number in m into a BFV polynomial. The
plaintext m is then encrypted into the encrypted message m̃
(called ciphertext) by means of the encryption step EΘ(·).
Encoding and encryption, detailed in Sections II-B and II-C,
respectively, depend on the BFV parameters Θ, which are
detailed in Section II-A.

The core of the BFV scheme is its ability to support
the computation of additions and multiplications between
ciphertexts and ciphertexts as well as between ciphertexts and
plaintexts. Additions and multiplications in the BFV scheme
are detailed in Section II-D. Then, in Section II-E, the “noise
budget” is described, which is an integer value that measures
the number and type of operations that can be executed while
guaranteeing that input data are correctly processed. Table II
summarizes notations that appear throughout this paper.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Raw message Plaintext

Public key ( )

Private key ( )

Ciphertext

Optimal 

Processed 
Ciphertext

Processed 
Plaintext

Raw result

Encoding Encryption

DecryptionDecoding

HE Deep Learning 
User

HE Deep Learning 
Processor

Fig. 1. Machine and deep learning processing chain based on the BFV homomorphic encryption scheme.

A. Encryption parameters of the BFV scheme

The BFV scheme relies on the following set Θ = [n, p, q]
of encryption parameters:
• n: Polynomial modulus degree;
• p: Plaintext coefficient modulus;
• q: Ciphertext coefficient modulus.
As detailed in Section II-B, ciphertexts and plaintexts

are represented by polynomials in the BFV scheme; these
parameters define the order of the BFV polynomials and
the range of values for their coefficients. Specifically, the
parameter n must be a positive power of 2 and represents
the degree of the cyclotomic polynomial Φn(x). In particular,
the polynomial Φn(x) = xn + 1 represents the polynomial
modulus. The plaintext modulus p is a positive integer that
represents the module of the coefficients of the polynomial
ring Rp = Zp[x]/Φn(x) (on which the RLWE problem is
based). Finally, the parameter q is a large positive integer
(larger than p) that results from the product of distinct prime
numbers. It represents the modulo of the coefficients of the
polynomial ring in the ciphertext space.

The setting of these parameters as well as their effect on
the noise budget are described and commented on in the rest
of the section.

B. Encoding and decoding

Throughout the remainder of this section, raw messages
ms are considered unsigned integers. Each number can be
transformed into a BFV polynomial by means of the encoding
step. Formally, in the BFV scheme the encoding step

m = ΓΘ(m)

aims to transform m into an n-degree polynomial defined as
follows:

m = cn−1x
n−1 + . . .+ c1x

1 + c0 (1)

whose coefficients cis are modulus p, that is, ci ∈ N \ p,
i = 0, . . . , n− 1, where n and p are the polynomial modulus
degree and the plaintext coefficient modulus, respectively, as
defined in Section II-A. Several methods for encoding numbers
into polynomials are available in the literature (e.g., integer
encoding and fractional encoding [18]); however, this section
focuses on encoding based on binary representation [19],
which is a widely used encoding mechanism for natural

numbers. The basis of the method is the ability to initially
encode m into an n-bit binary representation. These n bits
are considered the n coefficients [cn−1, . . . , c0] of the n-
degree polynomial defined in Eq. (1). Hence, ci = {0, 1} with
i = 0, . . . , n− 1.

Noteworthily, the corresponding decoding step Γ−1
Θ (m)

based on binary representation simply refers to the evaluation
of the polynomial m for x = 2:

m = Γ−1
Θ (m) = m(2).

For example, consider a BFV scheme with the parameters
n = 16, p = 7 and q = 874 and assume that one wishes
to encode the following two raw messages: m1 = 7 and
m2 = 2. The binary representation of m1 = 7 over n = 16
bits is [0000000000000111]; hence the corresponding plaintext
becomes

m1 = ΓΘ(m1) = x2 + x+ 1.

Similarly, when considering m2 = 2, the corresponding
plaintext is

m2 = ΓΘ(m2) = x.

C. Encryption and decryption

In the BFV scheme, a plaintext m is transformed into a
ciphertext m̃ by means of the encryption step EΘ(m, kp),
where kp is the public key. The corresponding decryption step
DΘ(m̃, ks) transforms the ciphertext m̃ into a plaintext m with
the private key ks.

The public and private keys, which are crucial for the
encryption and decryption steps of the BVF scheme, are
generated by the user before the encryption phase. Specifically,
the secret key ks corresponds to an n-degree polynomial
whose coefficients are randomly selected in the set {−1, 0, 1}.
Given ks, the public key kp is a couple (kp0 , kp1) of n-degree
polynomials, which are defined as follows:

kp = (kp0 , kp1) =
(

[−(aks + e)]Φn,q
, a
)

(2)

where a is an n-degree polynomial whose coefficients are
randomly selected in the set {0, . . . , q − 1} and e is an n-
degree polynomial whose coefficients are randomly selected
from a discrete and bounded Gaussian distribution N (µ =
0, σ = 3.2) over the integers [20].
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The encryption step

m̃ = EΘ(m, kp)

aims to transform the plaintext m into the ciphertext m̃, which
is a couple (m̃0, m̃1) of n-degree polynomials defined as
follows:

m̃ = (m̃0, m̃1) =

=

([
kp0u+ e1 +

⌊
q

p

⌋
·m
]

Φn,q

, [kp1u+ e2]Φn,q

)
(3)

where e1, e2 are n-degree polynomials computed as e, while
u is an n-degree polynomial computed as ks. Notably, in
Eq. (3), the sum operator “+” refers to the sum between
polynomials, whereas the operator “·” represents the pointwise
multiplication between a scalar value and a polynomial (i.e.,
all of the coefficients of m are multiplied by the factor

⌊
q
p

⌋
,

which represents the floor of the division between q and p).
Note that this factor is larger than one since q is larger than p.
The two polynomials representing m̃ are of order n and with
coefficients that are modulus q.

Some noise is injected into the ciphertext by e1, e2, and u. In
particular, u is a “mask” that actually hides the message in the
ciphertext. Notably, these noise terms are randomly selected
every time the encryption step is activated, and thus, they
are responsible for guaranteeing the probabilistic encryption
ability of the encryption scheme, which is a relevant property
from a security point of view [21].

The decryption step of a ciphertext m̃ operates as follows
[14], [19]:

DΘ (m̃, ks) = m =

[⌊
p

q
[m̃0 + m̃1ks]Φn,q

⌉]
p

(4)

where b•e is the round operation. In the decryption phase,[
m̃0 + m̃1ks

]
Φn,q

is scaled by the factor p
q . All of the coeffi-

cients are modulus p (after being rounded).
For the sake of clarity, the role of the secret key in the

decryption step requires further elaboration. Expanding Eq. (3)
w.r.t. the public key ks leads to:

m̃ =

([
−aksu− eu+ e1 +

⌊
q

p

⌋
·m
]

Φn,q

, [au+ e2]Φn,q

)
.

The encoded message m, multiplied by
⌊
q
p

⌋
, is included in the

first term of the ciphertext, suitably hidden by a mask (−aksu),
and perturbed by noise (−eu+ e1). The mask is also present
in the second term (i.e., au) of the ciphertext together with
the noise (e2). The core of the decryption phase resides in the
ability of the user to encrypt m by means of ks and by the
fact that ks can be multiplied for the second term m̃1 of the
ciphertext. Intuitively, multiplying m̃1 with ks and summing
with m̃0 removes the mask u from the raw message m, as
long as the error terms—accumulated during the pipeline of
homomorphic operations—are not too big. An example of this
encryption/decryption phase is presented in Section II-F.

D. Homomorphic operations in the BFV scheme

The BFV scheme allows the computation of additions and
multiplications between ciphertexts, between ciphertexts and
plaintexts, and between plaintexts. The addition and multipli-
cations in the BFV scheme are as follows:
• “modulus xn + 1”, where the polynomial that is the

outcome of the operation is modulus the cyclotomic
polynomial Φn(x) = xn + 1;

• “coefficient modulus” p;
where the operands are plaintexts;
• “modulus xn + 1”, where the polynomial that is the

the outcome of the operation is modulus the cyclotomic
polynomial Φn(x) = xn + 1;

• “coefficient modulus” q;
where at least one of the two operands is a ciphertext.

Now, this example continues with m1 = 7 and m2 = 2 con-
sidering the addition and multiplication of these two plaintexts
in the BFV scheme. In particular, the addition of m1 + m2

becomes, in polynomial form,[
m1 +m2

]
Φ16,7

= x2 + 2x+ 1,

while the corresponding decoding of m1 + m2 becomes
Γ−1

Θ (m1 + m2) = 9. Similarly, the multiplication of m1 and
m2 becomes [

m1 ∗m2

]
Φ16,7

= x3 + x2 + x,

while the decoding of m1 ∗m2 leads to Γ−1
Θ (m1 ∗m2) = 14.

Note that, with modulus xn + 1 and p, the following two
operations

7∑
i=1

m1, (5)

16∏
i=1

m2 (6)

introduce an “overflow” in the processing, thereby leading to
incorrect results. In fact, when one of the coefficients of the
polynomial becomes equal to or larger than p at the end of
the processing, an incorrect result will be obtained due to
the modulo p operation. In particular, in Eq. (5), all of the
coefficients of the polynomial become 7 at the end of the
processing. Hence, when the modulo 7 operation is applied,
the coefficients become 0 leading to the following incorrect
result: [

7x2 + 7x+ 7
]
7

= 0x2 + 0x+ 0.

By contrast, in Eq. (6), the problem is related to the modulo
Φn operation performed on the polynomial. Indeed, the degree
of the polynomial becomes 16 during the last multiplication,
leading to the following loss of information:[

x16
]
Φ16

= −1.

When an overflow occurs in the processing, the final de-
crypted value will differ from the correct one. The overflow
issue, described here on additions and multiplications between
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two plaintexts, also affects the operations that comprise cipher-
texts, which are described as follows.

The addition between two ciphertexts (e.g., m̃1 and m̃2) is
as simple as computing their element-wise sum (recall that a
ciphertext is a couple of polynomials):

m̃1 + m̃2 =

([
m̃10 + m̃20

]
Φn,q

,
[
m̃11 + m̃21

]
Φn,q

)
. (7)

By contrast, the multiplication between two ciphertexts
produces a three-term ciphertext:

m̃1 ∗ m̃2 =

([⌊
p

q
m̃10

m̃20

⌉]
Φn,q

,[⌊
p

q
(m̃10

m̃21
+ m̃11

m̃20
)

⌉]
Φn,q

, (8)[⌊
p

q
m̃11

m̃21

⌉]
Φn,q

)
.

Having a three-term ciphertext is not a problem, given that
all of the procedures (decryption, addition, and multiplica-
tion) can be modified to work on ciphertexts of arbitrary
dimensions. However, the larger the ciphertexts, the larger
their memory and computational footprint. To address these
problems, the BFV scheme supports an operation called re-
linearization [14] which receives as input a ciphertext with
size k and returns a ciphertext with size k−1, 2 the minimum
dimension allowed. Although relinearization slightly increases
the noise in the ciphertext and requires some additional keys,
relinearizing the ciphertext after every ciphertext–ciphertext
multiplication is generally recommended.

E. Noise budget

As detailed in Eq. (3), the BFV scheme (similar to other HE
schemes presented in the literature) injects noise into cipher-
texts during the encryption step. This is necessary to guarantee
the probabilistic encryption property of the BFV scheme since
encrypting the same plaintext through two different activations
of the encryption step would lead to two different ciphertexts.
The drawback is that, during homomorphic addition and
multiplication on the ciphertext, noise is added as well as
multiplied. This might lead to a critical scenario where, during
processing, one of the coefficients of the ciphertext is rounded
to an incorrect value during decryption (as in Eq. (4)), hence
failing the decryption phase.

Noise handling is a crucial point in the BFV HE scheme.
A correct evaluation of the number (and type) of operations
allowed on the ciphertexts is crucial in the design of HE-based
processing systems. This is exactly where the noise budget
(NB) comes into play. While providing a formal definition of
the NB is outside of the scope of this paper (see [19] for
details), one can intuitively define it as an indicator of the
number of operations that can be performed on a ciphertext
before its decryption will fail.

Interestingly, the NB is a property of a ciphertext that varies
during the processing pipeline. It is measured as a positive
integer and depends on the parameters Θ of the BFV scheme.

TABLE III
NOISE BUDGET (NB) CONSUMPTION, ON THE BASIS OF THE COMPUTED

HOMOMORPHIC OPERATION.

Operation NB consumption

Ciphertext-ciphertext
multiplication High

Ciphertext-ciphertext
addition Medium

Ciphertext-plaintext
multiplication Low

Ciphertext-plaintext
addition Very low

TABLE IV
EXAMPLE OF NB CONSUMPTION, USING TWO DIFFERENT

CONFIGURATIONS OF Θ = (n, p). THE VALUE FOR q IS SET
AUTOMATICALLY ACCORDING TO THE SEAL LIBRARY [19].

Ciphertext Noise Budget
Θ = (2048, 15162) Θ = (4096, 151262)

Freshly encrypted m̃1 30 81
Freshly encrypted m̃2 30 81

m̃1 + m̃2 29 80
m̃1 ∗ m̃2 5 52
m̃1 + m2 30 81
m̃1 ∗m2 29 81

The NB is initially allocated to the ciphertext immediately
after the encryption step. In general, increasing n will increase
the amount of NB available in a freshly encrypted ciphertext.
By contrast, increasing p and q will increase NB consumption
during homomorphic operations. Identifying the values of Θ
that guarantee the correct processing of the ciphertexts while
reducing computation and memory complexity is crucial for
HE-based systems, particularly for those that implement deep
learning solutions. This aspect is addressed in Section III.

HE operations (additions and multiplications) applied on
the ciphertext decrease the NB. As presented in Table III,
the types of operations and operands significantly affect the
amount of reduction to the NB. It is crucial to highlight that the
decryption step on ciphertexts must be conducted before the
NB reduces to 0; otherwise the decryption will fail. Computing
the NB is highly complex, but specific HE tools are available
for its estimation (see [19] for details).

Table IV depicts the effects of Θ, operations, and operands
on NB consumption. As previously mentioned, the initial NB
increases with n, thus increasing the number of subsequent
operations that can be computed on the ciphertexts. On the
other hand, increasing p will increase the NB consumption of
the HE operations.

F. Example

This section presents an example application of the BFV
scheme. The basic operations of the scheme are imple-
mented in Python through the scientific computation library
NumPy [22]. The code used in this example has been made
available to the scientific community in the public repository
specified in the Section I.

First, this study defines the encryption parameters Θ of the
BFV as follows:
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n = 16
p = 7
q = 124112
theta = (n, p, q)

To create polynomials the function POLY is used; it accepts
a dictionary of coefficients, and returns the corresponding
NumPy polynomial. NumPy polynomials implement the ba-
sic operations of polynomial additions, multiplications, and
evaluation among others.

For instance, the cyclotomic polynomial Φ16, which is used
in the following operations, is generated as follows:

cyclotomic_poly = Poly({0: 1, 16: 1})
print(cyclotomic_poly)
-----------------------------------------------

X**16 + 1

The function GENERATE KEYS generates a pair of public and
secret keys (ks, kp) according to Eq. (2), given Θ.

ks, kp = generate_keys(theta)
print("Secret key: " + ks)
print("Public key: " + kp)
-----------------------------------------------

Secret key: X**15 - X**14 - X**13 - X**12 + X
**11 + X**10 - X**9 - X**8 - X**7 + X**6 -
X**5 + X**4 - X**3 - X**2 + 1

Public key: 61199X**15 + 48133X**14 + ... +
62895X**2 + 113586X + 92746, 80534X**15 +
36864X**14 + ... + 27318X**2 + 35006X +
72552

It is now possible to encode and encrypt the two values
of m1 = 7 and m2 = 2. An example of addition and
multiplication is provided as follows.

First, the two values must be encoded as specified in
Section II-B. To achieve this, the function ENCODE BINARY
takes as input an unsigned integer and returns the corre-
sponding polynomial encoded with binary encoding. The
DECODE BINARY function is defined accordingly.

m1 = encode_binary(7)
m2 = encode_binary(2)
print("m1: " + m1)
print("m2: " + m2)
-----------------------------------------------

m1: X**2 + X + 1
m2: X

After the values have been encoded in polynomial form, it
is possible to proceed with the encryption. First, the EN-
CRYPT POLY function creates a ciphertext m̃ that starts from
an encoded polynomial m. To this end, random polynomials
e1, e2, u are generated and the ciphertext is created following
Eq. (3).

enc_m1 = encrypt_poly(m1, kp, theta)
enc_m2 = encrypt_poly(m2, kp, theta)
print("enc_m1: " + enc_m1)
print("enc_m2: " + enc_m2)
-----------------------------------------------

enc_m1: 74404X**15 + 9539X**14 + ... + 27250X
**2 + 64856X + 51090, 121602X**15 + 100582
X**14 + ... + 60289X**2 + 80948X + 13677

enc_m2: 14068X**15 + 6425X**14 + ... + 23691X
**2 + 53327X + 52978, 100091X**15 + 85920X
**14 + ... + 16044X**2 + 51146X + 117168

Notably, after the encryption, the coefficients of the involved
polynomials are now modulo q, that is in the range [0, q). The
maximum degree of the polynomials is 15, as this work is
being conducted in the modulo Φ16 space.

It is now possible to sum up the two ciphertexts. The
function ADD CIPHERTEXTS simply computes the element-
wise sum of the two ciphertexts while applying the modulus
operations, as specified in Eq. (7).
enc_sum = add_ciphertexts(enc_m1, enc_m2)
print("Sum ciphertext: " + enc_sum)
-----------------------------------------------

Sum ciphertext: 88472X**15 + 15964X**14 + ...
+ 50941X**2 + 118183X + 104068, 97581X**15
+ 62390X**14 + ... + 76333X**2 + 7982X +

6733

Finally, the result of the addition can be decrypted. For this
purpose, the function DECRYPT POLY, implemented according
to Eq. (4), can be used as follows:
decrypted = decrypt_poly(enc_sum, ks, theta)
decoded = decode_binary(decrypted)

print("Decrypted encoded result: " +
decrypted)

print("Decoded result: " + decoded))
-----------------------------------------------

Decrypted encoded result: X**2 + 2X + 1
Decoded result: 9

The result is the same as the result that would have be obtained
on plain data. The same holds for multiplications. To this
end, the function MUL CIPHERTEXTS is defined. Note that
the function will return a three-terms ciphertext, as depicted
in Eq. (8).
enc_prod = mul_ciphertexts(enc_m1, enc_m2)
print("Product ciphertext: " + enc_prod)
-----------------------------------------------

Product ciphertext: 4616X**15 + 69851X**14 +
... + 70424X**2 + 108145X + 97186, 41476X
**15 + 15425X**14 + ... + 13366X**2 +
108332X + 94209, 77259X**15 + 32461X**14 +
... + 49450X**2 + 5811X + 35650

Decryption can now be used as follows:
decrypted = decrypt_poly(enc_prod, ks, theta)
decoded = decode_binary(decrypted)

print("Decrypted encoded result: " +
decrypted)

print("Decoded result: " + decoded))
-----------------------------------------------

Decrypted encoded result: X**3 + X**2 + X
Decoded result: 14

In this case, the homomorphic multiplication between the two
ciphertexts also produces a correct result. This ends the first
part of this study, which was the introduction to HE with
examples. In the next section, HE will be used for designing
privacy-preserving CNNs.
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III. DESIGNING PRIVACY-PRESERVING CNNS WITH
HOMOMORPHIC ENCRYPTION: A METHODOLOGY

The aim of this section is to detail the methodology for
designing privacy-preserving CNNs using HE, which is the
second of the two main contributions of this study. Design-
ing privacy-preserving deep learning solutions based on HE
requires one to rethink and redesign deep learning solutions
that consider the constraints on the type and number of
operations that characterize the BFV scheme. Among the wide
range of deep learning solutions, the present paper focuses on
CNNs [11], which are the state-of-the-art solution in several
application scenarios, such as object detection and sound
recognition [23].

A CNN F (·) is a deep neural network with L processing
layers η(l)

ξl
, each of which is characterized by the parameters

ξl with l = 1, . . . , L. In a privacy-preserving CNN based on
HE, the processing layers must comprise only addition and
multiplication, and the length L of the processing pipeline
must guarantee that the NB is not exhausted during processing.

Figure 2 presents an overview of the proposed methodology
for the design of privacy-preserving CNNs based on HE.
Let F (·) be the CNN to be encoded with HE. The goal of
the methodology is to design a privacy-preserving version
ϕΘ(·) of F (·) as well as to identify the configuration of the
encryption parameters Θ which will guarantee that the NB
does not reach 0 during processing. To achieve these goals, the
methodology has three different steps: model approximation,
model encoding, and model validation. These three steps are
detailed in the following sections.

A. Model approximation

The aim of the model approximation is to replace the
processing layers of F (·) that do not comply with the BFV
scheme with those that rely only on additions and multiplica-
tions. Doing so is crucial in a deep learning scenario where
processing layers typically comprise division, square root as
well as nonlinear activation functions. The output of this step is
an approximated model ϕ(·) that comprises processing layers
that are HE-compliant.

In more detail, the model approximation step receives as in-
put a CNN F (·) and provides the corresponding approximated
model ϕ(·) as output. In such a model each processing layer
η

(l)

ξ̂l
comprises only additions and multiplications, and hence,

is compatible with the BFV scheme. After this approximation
phase, the approximated CNN model must be retrained.

A summary of the possible approximations is presented in
Fig. 3 and detailed in the following paragraphs.

1) Pooling layers: Maximum pooling layers use the com-
parison operator, which is not available in the BFV scheme.
To address this problem, various pooling algorithms can be
used to replace the maximum pooling. The present authors
suggest replacing it with the average pooling available in the
BVF scheme since it only requires multiplication between the
sum of ciphertexts and a fixed value, which is known a priori
(i.e., 1

kw×kh , with kw, kh being the width and height of the
pooling kernel, respectively).

2) Normalization layers: Normalization layers cannot be
considered in the BFV scheme since it is impossible to
compute the mean and standard deviation of encrypted data.
By contrast, batch normalization layers are available given that
they depend on the values of the data used for training. Such
values are computed during the training and can be used during
the processing of ciphertexts.

3) Activation functions: The activation functions used in
CNNs typically comprise nonlinear functions. The ReLU ac-
tivation function, for instance, cannot be computed because it
requires the use of the comparison operator. The same holds
for the hyperbolic tangent tanh which involves division. This
study suggests replacing these nonlinear activation functions
with the square activation function f(x) = x2. Such an
approximation can be further refined using Taylor polynomial
expansions. However, increasing the accuracy of the expansion
(and thus using a larger number of polynomials) entails an
increase in the number of operations (and thus an increased
NB consumption).

B. Model encoding

Once the model has been approximated, it can be encoded
through the model encoding step, where an encoded approx-
imated model ϕΘ(·) is obtained, whose weights have been
encoded according to the BFV scheme and the parameters Θ.
Encrypted data can now be processed by ϕΘ(·) to obtain the
result of CNN processing. Notably, this result is still encrypted
and only the owner of the secret key ks will be able to decrypt
it. The proper setting parameters Θ in HE processing remains
an open research. Generally, the selection of the value of these
parameters follows a “trial-and-error” approach (see the model
validation step in Section III-C). Nevertheless, some guidelines
for the setting of Θ are provided as follows.

The most critical encryption parameter is n as it is a
relevant parameter for the setting of the initial NB and the
computational overhead of the encrypted processing. Gener-
ally, values of n smaller than 4096 are able to guarantee a
NB sufficient only for very simple machine learning models
(typically comprising two or three processing layers at most).
From a methodological point of view, n is typically initially
set to 4096 and then increased as described in Section III-C.

The parameter p affects NB consumption as well as the
precision of the homomorphic operations (i.e., p affects the
possibility that some coefficients of the decrypted polynomials
are rounded to the incorrect value). Tuning p requires a trial-
and-error process; typically, a value of p between 216 and 218

represents a good starting point for exploring the parameters
described in Section III-C. The value of q is critical for the
security of the scheme; it is suggested to rely on the helper
function provided by SEAL [19] (see Section VI for details)
to set q according to n and p.

The obtained Θ = (n, p, q) can be used to encode ϕ(·), thus
obtaining the encoded deep learning model ϕΘ(·).

C. Model validation

Once the encoding step is completed, the model validation
step is activated to evaluate the encoded model ϕΘ(·) from
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Fig. 2. A methodology for the design of privacy-preserving CNNs based on HE.
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Fig. 3. Possible approximations for typical CNN layers.

two different perspectives. First, ϕΘ(·) is evaluated to check
whether the selected configuration Θ provides a sufficient NB
in the processing of ciphertexts. Second, the loss in accuracy
of ϕΘ(·) w.r.t. F (·) is evaluated. To achieve both goals, a
(possibly large) set of raw messages ms is processed by ϕΘ(·)
with the aim of measuring the NB of the final ciphertexts
and evaluating the discrepancy between the accuracy of the
encoded model ϕΘ(·) and that of the plain model F (·).
Typically, the problems associated with a loss of NB depend
on an incorrect setting of Θ, whereas the discrepancies in the
output between ϕΘ(·) and F (·) could be associated with either
the approximations of the processing layers introduced in the
model approximation step or the fact that p and q are not
large enough for the processing pipeline defined in the encoded
approximated model ϕΘ(·).

If the constraint on the NB is satisfied and the loss of
accuracy is below a user-defined threshold (e.g., 1% or 5%),
ϕΘ(·) becomes the privacy-preserving version of F (·) to be
considered. Conversely, when either the constraint on the NB
is not satisfied (i.e., the NB of the ciphertexts decreases to
0 during the processing of ϕΘ(·)) or the loss in accuracy
is larger than the threshold, the methodology suggests three
different actions: update Θ, modify how layers in F (·) are
approximated, or change the processing pipeline of F (·).
These three actions are described in detail as follows.

First, the NB and loss of accuracy strictly depend on Θ.
In particular, increasing the parameter n increases the initial
NB but at the expense of a (potentially large) increase in
computational overhead and the memory demand of ϕΘ(·).
Conversely, increasing p and q would reduce the loss in
accuracy (by increasing the precision of the processing) but
at the expense of increased NB consumption by the HE
operations.

Second, different model approximations could be consid-
ered for the processing layers that are not HE-compliant in
F (·). Here, a trade-off must be carefully explored. Indeed, to
reduce the loss of accuracy, a coarse-grain layer approximation
could be replaced by a finer one (e.g., by using a higher degree
of polynomial approximation); however, this would be at the
expense of an increased number of operations to be performed
for that layer (hence further reducing the NB). On the other
hand, moving from a fine-grain layer approximation to a
coarse-grain one could reduce NB consumption but possibly
increase the loss of accuracy.

Third, if the previous two actions do not succeed in satisfy-
ing the constraints on NB and accuracy, a modified version
F ′(·) of F (·) can be designed. The aim is to reduce the
number of operations to be conducted, such as by reducing
the number of processing layers or simplifying the operations
to be considered. Once F ′(·) has been redesigned, the model
approximation, encoding, and validation steps are newly acti-
vated to identify ϕΘ(·).

Having detailed the proposed methodology, the next section
will use it for the design of a privacy-preserving version of
the well-known LeNet-1 CNN.

IV. APPLICATION TO A REAL-WORLD CNN:
PRIVACY-PRESERVING LENET-1 WITH BFV

The aim of this section is to detail the application of the
methodology proposed in this study to the LeNet-1 CNN, as
well as provide numerical results to demonstrate its effective-
ness and efficiency.

LeNet-1 is a simple yet effective CNN that was introduced
by LeCun et al. [11]. Its processing pipeline F (·) is depicted
in Fig. 4(a). LeNet-1 comprises L = 5 different processing
layers: a convolutional layer with four kernels of size 5 x 5
and tanh activation; an average pooling layer with a kernel of
size 2; a convolutional layer with 16 kernels of size 5 x 5 and
tanh activation; an average pooling layer with a kernel of size
2; and a fully connected layer of size 192 x 10.

This study applied the methodology described in the previ-
ous section to LeNet-1 to design a privacy-preserving version
ϕΘ(·) compliant with the BFV scheme. The use of the
methodology and the designed model ϕΘ(·) are described
in Section IV-A, and then the performance and accuracy of
ϕΘ(·) computed on the MNIST [24] and Fashion-MNIST [25]
datasets are detailed in Section IV-B. Both datasets are com-
posed of 70,000 28 x 28 gray-scale images (60,000 for training
and 10,000 for testing), representing a 10-class classification
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problem, that is, 10 digits in MNIST and 10 fashion products
in Fashion-MNIST.

A. Applying the methodology to design the privacy-preserving
LeNet-1

This section presents the application of the methodology
from Section III to the design of the privacy-preserving
version ϕΘ(·) of the LeNet-1 CNN F (·). During the model
approximation step, this study replaced the tanh activation
function of LeNet-1 (involving non-polynomial operations)
with the square activation function. Moreover, during the
model validation step, this study determined that the NB given
by n = 4096 was not sufficient for conducting the processing
of the encoded model on encrypted data. As mentioned in
Section III-B, increasing n would have led to a higher NB
but at the expense of a relevant increase in the computational
overhead. Thus, this study explored the action of redesigning
F (·) by removing the second tanh activation: this change in
F (·) led us to consider F ′(·), that is, a simplified version
of the LeNet-1 CNN without the second tanh activation.
Interestingly, F ′(·) guaranteed a negligible loss in accuracy
w.r.t. F (·) and led to a more effective definition of ϕΘ(·)
through the methodology. This aspect will be elaborated on in
Section IV-B.

The final configuration of the parameters Θ was as follows:

Θ =

 n = 4096
p = 953983721

q = 6.49033470896967743586364154707968 ∗ 1033

 .
In particular, the value for p was obtained with the trial-and-
error procedure described in Section III-B, whereas the value
of q was automatically computed by means of the specific
SEAL function mentioned in Section III-B.

In summary, the outcome ϕΘ(·) of the methodology repre-
senting the privacy-preserving version of LeNet-1 is depicted
in Fig. 4(b). The processing pipeline of ϕΘ(·) comprises five
different layers: a convolutional layer with four kernels of size
5 x 5 and square activation; an average pooling layer with a
kernel of size 2; a convolutional layer with 16 kernels of size
5 x 5; an average pooling layer with a kernel of size 2; and a
fully connected layer of size 192x10.

The Python code of the privacy-preserving LeNet-1 ϕΘ(·)
is available in the same repository cited in Section I.

B. Performance and accuracy of the privacy-preserving
LeNet-1

To demonstrate the effectiveness and efficiency of the de-
signed privacy-preserving version of LeNet-1, we designed an
experimental campaign aimed at measuring and comparing the
accuracy, memory occupation (in MB) and computation time
(in s) of the original LeNet-1 F (·), the simplified LeNet-1
F ′(·) (without the second tanh activation), the approximated
version ϕ(·) of F ′(·), and the outcome ϕΘ(·) of the method-
ology. The experiments were conducted on a machine with
an Intel i7-4770K 64-bit CPU and 16 GB of RAM. The
experimental results, computed on the testing images from the
MNIST and Fashion-MNIST datasets, are detailed in Table V.

LeNet-1  -  

Conv.  
layer tanh FC 

layer
Avg.  
Pool. tanh Avg.  

Pool.
Conv.  
layer

Approximated LeNet-1  -  

Conv.  
layer square FC 

layer
Avg.  
Pool.

Avg.  
Pool.

Conv.  
layer

(a)
The original LeNet-1 convolutional neural network

(b)
The privacy-preserving version of the LeNet-1 convolutional neural network

Fig. 4. (a) The original LeNet-1 CNN and (b) its privacy-preserving version
based on HE.

TABLE V
EXPERIMENTAL RESULTS ON THE MNIST AND FASHION-MNIST

DATASETS. MEMORY OCCUPATION (MB) AND COMPUTATION TIME (S)
REFER TO THE PROCESSING OF A SINGLE IMAGE. NO PARALLELIZATION

OF THE CODE IS CONSIDERED.

Symbol Model Accuracy
MNIST

Accuracy
Fashion
MNIST

Memory
Occup.

Comp.
Time

F (·) LeNet-1 98.76% 86.88% 7.6MB 0.001s

F ′(·) LeNet-1
(single tanh) 98.22% 86.23% 6.5MB 0.0009s

ϕ(·) Approximated
F ′(·) 98.18% 85.29% 6.5MB 0.0009s

ϕΘ(·) ϕ(·) on
encrypted data 98.18% 85.29% 780MB 138s

Figure 5 graphically compares the accuracy, execution time,
and memory occupation on the Fashion-MNIST dataset. The
following three main comments can be made.

First, the simplified version F ′(·) of the original LeNet-1
F (·) provided accuracies of 98.22% on MNIST and 86.23% on
Fashion-MNIST. The drop in accuracy between F (·) and F ′(·)
was approximately 0.6% in both datasets. It was therefore
crucial to verify whether the drop in accuracy induced by the
use of F ′(·) (instead of F (·)) was acceptable.

Second, as expected, the model approximation step of
the procedure, leading from F ′(·) to ϕ(·) caused a loss of
accuracy. This loss was negligible in the case of the MNIST
dataset (0.04%), whereas it was more relevant in the case of
the Fashion-MNIST dataset (0.94%). This study speculated
that the removal of non-linearities from LeNet-1 has a higher
impact when more complex tasks are considered (e.g., the
recognition of fashion products instead of simple digits). In
addition, the accuracy of ϕ(·) was equal to that of ϕΘ(·)
meaning that the privacy-preserving model applied on en-
crypted images provided the same accuracy as that obtained on
plain images. These results confirmed that, thanks to a correct
choice of Θ and an accurate approximation of nonlinear layers,
the discrepancy between the plain and encrypted results was
negligible for the considered scenario.

Third, as expected, encrypted processing introduced a cru-
cial overhead in terms of memory usage and computation time
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Fig. 5. Time, accuracy, and memory occupation of the different models for
the Fashion-MNIST dataset. The dimensions of the circles are representative
of the memory occupation (in MB).

for the classification of a single image. Currently, HE libraries
do not support parallelization; hence, GPU support for HE
is only partially available with few examples present in the
literature (e.g., [26]).

This ends the second main contribution of this study, which
was the introduction of a methodology for designing privacy-
preserving CNNs. The next section will discuss the main
challenges to be addressed in this research field.

V. HOMOMORPHIC ENCRYPTION AND DEEP LEARNING:
THE CHALLENGES

Designing privacy-preserving deep learning solutions is a
novel research area with several open research challenges
to address. This section, without aiming to be exhaustive,
discussed three main challenges in this research area that will
be relevant over the next few years:
• Automatic parameter configuration: The optimal pa-

rameter configuration Θ is currently selected using a
trial-and-error approach. The challenge here lies in the
study of optimization algorithms, theoretical solutions,
and meta-learning algorithms (e.g., AutoML) to provide
the optimal configuration of Θ given a processing pipeline
F (·) and a reference dataset describing the problem to be
addressed.

• Privacy-preserving recurrent neural networks and
transformers: Currently, the privacy-preserving deep
learning solutions in the literature have mostly focused
on CNNs, whose transformation in HE-compliant models
is easier than other deep learning solutions. One major
challenge in this field is the design of privacy-preserving
recurrent neural networks and transformers that are able
to deal with data sequences. The major issue to be ad-
dressed here is the ability to manage the NB in processing
pipelines where data are sequentially processed over time.

• Training privacy-preserving models: The literature re-
garding privacy-preserving machine and deep learning
models with HE focuses on the inference of privacy-
preserving models. The next challenge to address is the
training of machine and deep learning models directly
on encrypted data. The main issue to be addressed here

is to manage the NB consumption not only during the
inference, but also during the training of the privacy-
preserving model.

Having outlined the main challenges to be addressed in this
research area, the next section presents a collection of useful
resources for privacy-preserving deep learning with HE.

VI. AVAILABLE RESOURCES FOR PRIVACY-PRESERVING
DEEP LEARNING WITH HOMOMORPHIC ENCRYPTION

Two main frameworks for HE, which can be used to facili-
tate the design of privacy-preserving deep learning solutions,
are available in the literature: SEAL and HElib. SEAL [19]
is a Microsoft C++ library that implements the BFV and
CKKS schemes. It offers helper functions for selecting the
encryption parameters as well as provides support for basic
HE operations (e.g., encrypting and decrypting values). Python
users may refer to Pyfhel [27] and TenSEAL [28], which are
Python wrappers for SEAL. The code used in the present
study relies on SEAL and Pyfhel, while Torch [29] was used
for the training of the plain-version of the CNNs. HElib [30]
is a C++ library that implements the CKKS scheme, among
others. HElib also includes optimization mechanisms for effi-
cient homomorphic evaluation, focusing on the effective use
of ciphertext packing techniques and Gentry–Halevi–Smart
optimizations.

Concrete [31] is a Rust implementation of the TFHE
scheme, while a few examples of software libraries specifically
intended for HE-based machine and deep learning are avail-
able, such as PyCrCNN [32], nGraph-HE [9], and CHET [33].

VII. CONCLUSIONS

The aim of this study was to explore the promising but
highly challenging research area of privacy-preserving deep
learning based on HE. Specifically, the BVF scheme and
its privacy-preserving operations were introduced both theo-
retically and algorithmically through Python code examples.
A methodology for designing privacy-preserving CNNs was
also proposed, which was applied to the design of a privacy-
preserving version of the well-known LeNet-1. Experimental
results on two datasets highlighted that it is possible to design
privacy-preserving CNNs with HE, which are characterized
by a negligible loss in accuracy (w.r.t. the original version)
and relevant increases in memory and computational demand.
Finally, this paper described the research challenges to be
addressed in this field as well as the available software
resources for privacy-preserving deep learning.

The path toward privacy-preserving deep learning with HE
has now been traced. Over the next few years, great advances
will be made in this direction.
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