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Abstract: This paper aims at presenting a novel effective approach to probabilistic analysis of
distribution power grid with high penetration of PV sources. The novel method adopts a Gaussian
Mixture Model for reproducing the uncertainty of correlated PV sources along with a piece-wise-linear
approximation of the voltage-power relationship established by load flow problem. The method
allows the handling of scenarios with a large number of uncertain PV sources in an efficient yet
accurate way. A distinctive feature of the proposed probabilistic analysis is that of directly providing,
in closed-form, the joint probability distribution of the set of observable variables of interest. From
such a comprehensive statistical representation, remarkable information about grid uncertainty can
be deduced. This includes the probability of violating the safe operation conditions as a function of
PV penetration.

Keywords: multivariate piece-wise linear approximation; power distribution grid; photovoltaic;
probabilistic load flow; sensitivity analysis

1. Introduction

The growing penetration of photovoltaic (PV) generators in power distribution grid is
expected to greatly increase the statistical uncertainty of power balance problem from the
supply side [1]. Such an uncertainty can jeopardize the power grid operation health [2].
For such reasons, there is today great interest in innovative and efficient simulation tools
for power grid probabilistic analysis [3–5]. Such novel tools should be able to predict the
many potential adverse effects that massive distributed PV injection can bring with it, e.g.,
over voltage, unacceptable voltage or current variations.

To this aim, simulation tools should own some relevant features. First, they have to
rely on realistic statistical models of PV uncertainty and be able to exploit the information
supplied by measurements and historic data set [6]. Several approaches to PV modeling
have been proposed in the literature [7], some of which are focused on reproducing metere-
ological conditions variability [8,9] while some others directly exploit PV delivered power
data [10].

Evidences gained from such data-driven approaches show that: (a) PV delivered
power follows non-standard statistical distributions [10,11], (b) geographically close PV
plans tend to exhibit a certain degree of correlation. Techniques for including sources
correlations are mostly based on Copula Method (CM) [12,13], or on Gaussian Mixture
Models (GMM) [14,15]. These latter are particularly attractive since they provide a closed-
form model for approximating the joint statistical distribution of many PV sources with
arbitrary precision [16].

A second desirable feature of envisaged simulation tools is they should employ numer-
ically effective probabilistic methods, allowing rapid explorations of several scenarios with
power sources connected at different potential injection points. The basic and reference
probabilistic method is still the iterative Monte Carlo (MC) simulation for the flexibility and
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accuracy it can ensure. The main limitation of MC is the slow convergence of its iterative
scheme and the long computational times it can require. Several probabilistic acceleration
techniques have be proposed that approximate the input-output relationship between PV
injected powers and node voltages variations. Many of such techniques rely on polynomial
chaos expansions [17–19] and have been proved to supply excellent results. Unfortunately,
they suffer of the curse of dimensionality and loose much of their effectiveness when the
number of statistical parameters involved grows to much [20]. This can just be the case for
grid with high penetration PV generators.

To cope with such issues, in this paper we present an original methodology exploit-
ing the evidence that, in the Load Flow (LF) problem, the dependence of node voltages
on injected PV powers is almost linear for small relative power variations [21,22]. As a
consequence, the multivariate voltage-power relationship can be accurately approximated
through local piece-wise linear (PWL) approximations. To improve accuracy, the hyper-
planes forming PWL approximation are centered at those points in the statistical space
where the joint Probability Density Function (PDF) of the PV sources is large.

The original contributions of this paper include:

1. A method for modeling with arbitrary precision the joint PDF of many correlated
PV sources starting from data sets of PV delivered power. The method relies on a
Gaussian Mixture Model (GMM) and produces a clusterization of injected power
values. In fact, each Gaussian component identifies a data cluster while the Gaussian
mean value vectors determine the centers of the clusters.

2. An accurate PWL approximation of the multivariate voltage-power relationship in
the grid. This is determined by exploiting the typical computational flow of a LF
simulation tool. More specifically, we show how the voltage sensitivity calculation
provides the information required to build the local hyperplane approximation at
each cluster center.

3. The demonstration of how the proposed PWL method allows the computing of closed-
form expressions, i.e., a GMM, for the joint PDF of a set of observable variables of
interest, i.e., a set of node voltages at critical buses in the grid.

The joint PDF can be used to calculate the uncertainty intervals of node voltages as well
as the probability of violating safe operation conditions. Such computational capabilities
are crucial in order to assess the PV hosting capacity of a given distribution grid.

The methodology is shown only for the case of PV system, but can be generalized to
other renewable energy sources.

The remainder of this paper is organized as follows: Section 1 briefly reviews LF
formulation and voltage sensitivity computation. Sections 2–4 illustrate the novel contribu-
tions of this paper. In fact, in Section 2, we describe the data-driven GMM of correlated
PV sources while, in Section 3, the rational behind PWL probabilistic analysis and its
implementation details are outlined. Finally, in Section 4, we present several numerical
experiments which prove the accuracy and efficiency of the proposed PWL method along
with its many potentialities as uncertainty quantification tool.

2. Power Flow Analysis and Sensitivity Computation

We consider a generic power distribution network composed of N nodes. The power
flow problem consists in calculating the node voltage values producing the desired power
flow at the network terminals. The problem is formulated mathematically by a set of
nonlinear equations of the type:

fn(~V) = V∗n In − S∗n = 0 (1)

for n = 1, . . . , N, where Vn, In are voltage and current phasors at node n, vector
~V = [V1, . . . , VN ] collects all voltages, while Sn = Pn + jQn denotes complex power
at node n with Pn and Qn being the active and reactive power, respectively. Furthermore,
node currents are related to node voltages by means of
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In =
N

∑
s=1

Yns Vs (2)

where Yns are the entries of the node admittance matrix. This one is determined by node-
interconnection elements, such as grid lines, transformers and phase shifters, which are
described by their admittance matrix. Power specification at the terminal nodes are given
by loads and generators [22]. In this paper, the complex electrical quantities appearing
in the power flow problem (1) are described in Cartesian coordinates (i.e., by their real
and imaginary parts) and the resulting nonlinear equations are solved with Newton–
Raphson (NR) method. Adopting vector-based notation, the nth voltage phasor Vn ∈ C, is
represented by the 2× 1 vector

V̄n = vect(Vn) =

[
VR

n

V I
n

]
(3)

collecting its real and imaginary parts VR
n = Re{Vn} and V I

n = Im{Vn}, respectively.
Similarly, the power flow Equations (1) and (2) can be transformed into the associated
vector form

f̄n =

[
VR

n V I
n

−V I
n VR

n

]
·
[

IR
n

I I
n

]
+

[ −Pn

Qn

]
=

[
0

0

]
(4)

and [
IR
n

I I
n

]
=

N

∑
s=1

[
Gns −Bns

Bns Gns

]
·
[

VR
s

V I
s

]
, (5)

respectively, where Yns = Gns + jBns and Gns and Bns are the conductance and the suscep-
tance, respectively. In [23] it has been shown how vector forms (4), (5) and their derivatives
allow efficient implementation through complex array operations. In this paper, instead,
we describe how the power flow equations can be exploited to compute the sensitivity of
some observable electric variables in the power grid (e.g., node voltages at critical buses)
versus a set of parameters xd, for d = 1, . . . , D, representing uncertainty. To this aim, we
observe that the power flow Equations (4) and (5), collected for n = 1, . . . , N, form a system
of 2× N nonlinear real equations that can be denoted in compact form as:

F(~V,~x) = 0 (6)

where ~V = [VR
1 , V I

1 , . . . , VR
N , V I

N ]
T is the column vector assembling node voltages real and

imaginary parts while ~x = [x1, . . . , xD]
T denotes the parameters vector. In the subsequent

Section 2, we will select as uncertainty parameters the (normalized) active power Pn
injected in a set of actor nodes where PV generators are expected to be inserted. However,
the sensitivity analysis that we are going to present is general and can be applied to any set

of electrical parameters in the grid. Let us call ~̃V the solution of the power flow problem (6)
for a given value ~̃x of parameters vector. A small perturbation δ~x of parameters will
produce a small perturbation δ~V of node voltages such that the power flow problem (6)
can be written as:

F(~V,~x) = F(~̃V,~̃x) +
∂F
∂~V

δ~V +
∂F
∂~x

δ~x + O(δ2) = 0 (7)

where O(δ2) are second-order terms. In the limit that perturbation goes to zero, neglecting
second-order terms, we derive the matrix system:

∂F
∂~V
· ∂~V

∂~x
= −∂F

∂~x
(8)
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The term
∂F
∂~V

is the 2N × 2N Jacobian matrix, while
∂~V
∂~x

is the 2N × D sensitivity

matrix that contains the unknown (partial) derivatives of real and imaginary parts of node

voltages versus parameters, i.e.,
∂VR

n
∂xd

and
∂V I

n
∂xd

. Finally, the 2N × D right-hand side matrix

−∂F
∂~x

collects the derivatives of power flow equations versus parameters. For instance,
when the parameters are the active powers injected at nodes, i.e., xd = Pn, from (4) we

see that the columns of −∂F
∂~x

are vectors with a single 1 at Pn position and all zero the
other terms.

It is worth observing how the solution of the sensitivity problem (8) requires little
extra computation compared to the solution of nonlinear problem (6) since from this last
one the Jacobian matrix and its LU decomposition are already available.

Finally, from
∂VR

n
∂xd

and
∂V I

n
∂xd

, the sensitivity of voltage magnitudes Vn = |Vn| can be

deduced as follows:
∂Vn

xd
=

1
Vn

(
VR

n
∂VR

n
xd

+ V I
n

∂V I
N

xd

)
(9)

3. Gaussian Mixture Model of Correlated PV Sources

We are interested in reproducing, in a realistic way, the statistical uncertainty associated
with the power delivered by representative PV installations distributed along the grid.
The technique that we propose is general and can be applied to any available data set
independently of the way it has been obtained (e.g., through measurements, historic data
set or simulations).

The values of the power delivered by D PV sources, during a given daily time window
(e.g., during the central hours of the day) are collected over several days and normalized

xi
d = Pi

d/PMax
d , (10)

to the maximum installed power PMax
d for the dth source. For such a PV source, the

values xi
d supply the (simultaneously-detected) samples data set from which the (empirical)

statistical distribution of random variable xd can be determined. Variables xd are distributed
over the interval (0, 1).

Common features exhibited by the PV delivered active power are: (a) normalized
powers xd follow non-standard statistical distributions; (b) geographically close power
sources show a certain degree of correlation that should be properly reproduced into
the model.

To handle such a general case, we adopt a Gaussian Mixture Model (GMM), i.e., the
joint PDF of random variables xd is approximated by a model of the type [16,24]:

PDF(~x) =
K

∑
k=1

πkN (~x|~µk, Σk). (11)

Each component N (~x|~µk, Σk) is a multi-variate Gaussian density defined by its mean
~µk and covariance matrix Σk [25]. The weighting parameters πk are the mixing coefficients
satisfying the conditions to be probabilities:

0 ≤ πk ≤ 1,
K

∑
k=1

πk = 1 (12)

As a result, in the expression (11), the mixing coefficients can be seen as the prior
probability of picking the kth component. i.e, πk = p(k), while each componentN (~x|~µk, Σk)
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reduces to the probability of ~x conditioned to k, i.e., p(~x|k). With this interpretation, (11)
can be rewritten as

PDF(~x) =
K

∑
k=1

p(k) p(~x|k) (13)

For a given data set ~xi, with i = 1, . . . , Ns, formed by Ns samples, the parameters πk,
~µk and Σk in (11) can be extracted with an elegant and powerful iterative technique referred
to as Expectation Maximization (EM) [24]. The main computational steps of EM algorithm
are reported in the Appendix A, while an efficient implementation of EM can be found in
the Matlab routine fitgmdist.m.

In the rest of this Section 2, we illustrate some features of the EM algorithm by
exploiting a freely-available data set of PV measurements [26]. This dataset presents data
from several PV plants installed in the same site, so the ground irradiance and weather
conditions are the same. The only difference is in the panel technologies, their exposure, and
the type of power control. The active power delivered by ten PV plants over the considered
daily time window, i.e., from 12:00 p.m. to 1:00 p.m., after normalization to the maximum
installed power, provide the samples of the random variables xd, with d = 1, . . . , D = 10 of
type (10).

The EM algorithm is then applied to this data set assuming a growing number K of
Gaussian components. Figure 1 shows the scattered plot of variables x5, x6 samples along
with the projection of the mean values ~µk onto the x5, x6 subspace. Such variables exhibit a
high degree of correlation since their samples tend to concentrate along the plane diagonal.

Version May 25, 2022 submitted to Energies 5 of 15

reduces to the probability of ~x conditioned to k, i.e. p(~x|k). With this interpretation, (11)
can be rewritten as

PDF(~x) =
K

∑
k=1

p(k) p(~x|k) (13)

For a given data set ~xi, with i = 1, . . . , Ns, formed by Ns samples, the parameters πk, ~µk 104

and Σk in (11) can be extracted with an elegant and powerful iterative technique referred 105

to as Expectation Maximization (EM) [24]. The main computational steps of EM algorithm 106

are reported in the Appendix A, while an efficient implementation of EM can be found in 107

the Matlab routine fitgmdist.m. 108

In the rest of this Section 2, we illustrate some features of the EM algorithm by ex- 109

ploiting a freely-available data set of PV measurements [26]. The active power delivered 110

by ten PV plants over the considered daily time window, i.e., from 12:00 PM to 1:00 PM, 111

after normalization to the maximum installed power, provide the samples of the random 112

variables xd, with d = 1, . . . , D = 10 of type (10). 113

The EM algorithm is then applied to this data set assuming a growing number K of 114

Gaussian components. Fig. 1 shows the scattered plot of variables x5, x6 samples along 115

with the projection of the mean values ~µk onto the x5, x6 subspace. Such variables exhibit a 116

high degree of correlation since their samples tend to concentrate along the plane diagonal. 117

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x5

x 6

Figure 1. (Blue Dot): Scattered plot of variables x5, x6 samples; (Red Circles) the projection of the
mean values ~µk calculated by EM algorithm.

118

Fig. 2 reports, as a second example, the scattered plot of variables x5, x1 samples 119

and the projection of mean values ~µk on the subspace they define. Variables x5, x1 are 120

less correlated among them and their samples are distributed over a larger portion of the 121

plane. 122

Some observations are in order. 123

1. As it is well known in the literature, the EM works as a clustering algorithm where 124

the mean values ~µk represent the centers of the clusters [24]. 125

2. EM tends to place the cluster centers where the samples are more dense that is where 126

the joint PDF(~x) is large. As a result, in the regions with high samples density the 127

centers are close among them while they are spaced apart in those regions with low 128

sample density. 129

The aforementioned observations will be exploited in the PWL probabilistic analysis im- 130

plementation presented in next Section 4. 131

In the rest of this section, it remains to see how, given a data set ~xi, an adequate num-
ber K of Gaussian components can be fixed. Even though some techniques for selecting
K are available in the literature [24], we preferred to adopt the following eurism that re-
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Figure 2 reports, as a second example, the scattered plot of variables x5, x1 samples
and the projection of mean values ~µk on the subspace they define. Variables x5, x1 are less
correlated among them and their samples are distributed over a larger portion of the plane.

Some observations are in order.

1. As it is well known in the literature, the EM works as a clustering algorithm where
the mean values ~µk represent the centers of the clusters [24].

2. EM tends to place the cluster centers where the samples are more dense that is where
the joint PDF(~x) is large. As a result, in the regions with high samples density the
centers are close among them while they are spaced apart in those regions with low
sample density.
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The aforementioned observations will be exploited in the PWL probabilistic analysis
implementation presented in next Section 3.

In the rest of this section, it remains to see how, given a data set~xi, an adequate number
K of Gaussian components can be fixed. Even though some techniques for selecting K are
available in the literature [24], we preferred to adopt the following eurism that revealed to
work well with PV data. The eurism consists in increasing gradually the cluster number K
in EM algorithm till it appears one cluster containing a too small fraction of the Ns samples.
In fact, the membership degree of a given sample ~xi to the kth cluster can be calculated as:

mik = N (~xi|~µk, Σk). (14)

The sample ~xi is assigned to the cluster k̂ with the highest membership degree mik̂,
mik̂ ≥ mik for k 6= k̂. In this way, all the samples are distributed among the clusters so that
the kth cluster will contain nk samples or equivalently the fraction of samples nk/Ns. When
the fraction of samples nk/Ns within the smallest cluster goes down a given threshold (e.g.,
2%) the algorithm is stopped. Figure 3 reports the fraction of samples nk/Ns in the smallest
cluster versus the number K of Gaussian components for the example herein considered.

It is seen how passing from K = 6 to K = 7 the fraction of samples in the smallest
cluster has a knee and reduces to about 2%. This means that the Gaussian components in
excess of six account for very small fractions of samples and thus are statistically negligible.
For the considered example, K = 6 is an adequate number of Gaussian components.
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4. Piece-Wise Linear Probabilistic Analysis
4.1. The Probabilistic Problem

We consider a distribution power grid containing D PV generators whose delivered
active powers are represented by D random variables xd having a GMM joint PDF (11).

We are interested in calculating the PDF of a set of observable electrical variables yj,
with j = 1, . . . , O in the grid, for instance the module of the node voltage at some critical
buses. Observable variables are assembled in the vector ~y = [y1, . . . , yO]

T .
For any sample (i.e., any statistical realization) of vector ~x its elements xk, scaled by

the associated installed power PMax
k , provide the values of the PV powers to be injected

into the grid. A deterministic load flow analysis of the grid, with such injected PV powers,
allows the determination of the corresponding value assumed by the observable variables
in the vector ~y. Such a computational flow is the elementary mechanism which is at the
basis of Monte Carlo PLF method. A very large number of samples of ~x are generated
according to the joint PDF (11) and the related ~y are computed performing a deterministic
load flow analysis for each sample. A sufficiently large set of computed sample of ~y allows
the estimation of the statistical distribution, that is the marginal PDF(yj) of each desired
observable variable. Unfortunately, due to the slow convergence rate, MC can require
several ten of thousands samples (i.e., repeated load flow analyses) to achieve satisfactory
PDF(yj) approximations. Techniques for accelerating MC rely on the observation that the
load flow analysis establishes a deterministic vector valued relationship

~y = l(~x) (15)

between the parameters (e.g., PV injected powers) and the observable variables (e.g., the
node voltages). In other terms, the element of vector ~y are multi-variate functions yj(~x)
of the parameters. Acceleration techniques thus employ compact models, referred to as
surrogate models, for approximating such multi-variate functions yj(~x).

Stochastic Response Surface Methods (SRSM) or techniques based on generalized
Polynomial Chaos (gPC) adopt series expansions of multi-variate polynomial basis func-
tions spanning the whole statistical/parameter space to approximate yj(~x) [17–19]. The success
of such techniques in PLF analysis relies on the fact that load-flow-established relationships
yj(~x) are commonly almost linear and thus they can be accurately approximated by series
expansions of low order (commonly order ≤ 2) polynomials. For problems of small size, a
few load flow simulations are enough to build the surrogate model, i.e., to calculate the
coefficients that weight the polynomials in the series. However, such techniques suffer of
the curse of dimensionality since the number of weighting coefficients in the gPC expansion,
corresponding to the minimum number of required load flow simulations, is given by
(D+β)!

D! β! , with D being the number of statistical parameters and β the expansion order [17].
As a result, the number of required LF simulations grows super-linearly with D and β. For
instance, an order-2 gPC expansion requires (at least) 66 simulations for D = 10 parameters
whereas it requires (at least) 1326 simulations for D = 50 parameters. If an order-3 gPC
model is adopted, the required minimum number of simulations to perform grows to 286
for D = 10 and 23, 426 for D = 50.

4.2. Piece-Wise Linear Approximation

The idea behind the novel method consists in: replacing the multi-variate polynomials
spanning the whole domain/space with piece-wise linear approximations built around those points
in the parameter space where the joint probability PDF(~x) is large.

When the joint probability is given by model (11), the means ~µk of the Gaussian
components can be used to build the piece-wise approximation. In fact, in view of the
analysis presented in Section 2, we know that the Gaussian means are the centers of the
clusters where samples density is large.
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Thus, in a neighborhood of the kth center ~µk, the vector valued relationship (15) can
be linearized as:

~y = l(~µk) +
∂l
∂~x

∣∣∣∣
~x=~µk

· (~x−~µk). (16)

The term

S~x(~µk) =
∂l
∂~x

∣∣∣∣
~x=~µk

(17)

is a O× D matrix containing the sensitivities of observable variables yj versus parameters
xd computed at ~µk. Once, the load flow problem ~yk = l(~µk) has been solved, the com-
putation of sensitivities requires little extra time. The rational behind piece-wise linear
approximation can be qualitatively illustrated with the help of Figure 4 showing the case of
a single parameter x problem.
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In this example, the PDF(x) is given by the superposition of the three scaled Gaussian
components reported in Figure 4. According to EM algorithm described in Section 2, the
two centers µ2 and µ3 are placed where the PDF(x) is large and are close one each other.
On the contrary, the center µ1 is placed at a greater distance apart where the PDF(x) is
much smaller. As a result, the linearizations around µ2 and µ3, where the majority of x
samples will indeed occur, match tightly the load flow relationship y = l(x) while for
x << µ1, the linearization accuracy can be relaxed. In this way, the inaccuracy due to
local linearization involves a few samples eventually producing a negligible effects on
PDF(y) calculation.

Thanks to linearization (16), the PDF(~y|k), i.e., conditioned to the fact that the kth
Gaussian component has been selected, is a multi-variate Gaussian distribution too whose
mean vector ~µy

k and covariance matrix Σy
k are easily computed [25]. In fact,

~µ
y
k = 〈~y〉 = l(~µk) (18)

and
Σy

k = 〈~y−~µ
y
k ,~y−~µ

y
k〉 = S~x(~µk) · Σk · S~x(~µk)

T (19)

where 〈·〉 denotes the expectation operator. Finally, exploiting conditional probability
properties, we derive the GMM for the observable variables vector ~y:

PDF(~y) =
K

∑
k=1

p(k)PDF(~y|k) =
K

∑
k=1

πkN (~y|~µy
k , Σy

k). (20)

In conclusion, the GMM describing the joint statistics of uncertain PV powers~x is propagated
through the load flow problem to describe the joint statistics of uncertain observable variables ~y.
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5. Numerical Experiments

The simulation experiments are performed on a modified three-phase version of the
IEEE 69 bus test case [27]. This case is a single phase equivalent that we make three-phase
in our simulation software [23]. For our simulation we use the same loads of the original
case and the distribution grid topology, with the buses numbering reported in Figure 5.
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Figure 5. The IEEE 69 bus distribution grid. In red the PV and in Blue the point of observation.

The single-phase IEEE 69, bus grid is first extended to a three-phase network by
replicating the deterministic single-phase loads (i.e., the nominal active and reactive powers
they absorb) at the three phases of each bus. Second, uncertainty is reproduced into the
three-phase grid by injecting random PV generators distributed along the feeders. PV
generators are connected to the three phases of fifteen buses as highlighted in Figure 5 and
this results in an unbalanced three-phase network. Table 1 lists the injection bus numbers
along with their nominal active power Pn.

Table 1. Injection Buses.

Bus N. Pn [p.u.]

11 0.145
12 0.145
16 0.045
17 0.060
18 0.060
21 0.114
24 0.028
53 0.0043
54 0.0264
55 0.0240
59 0.1000
61 1.2440
62 0.0320
64 0.2270
65 0.0590

PV injected active powers PVn are determined from nominal active power Pn
as follows:

PVn = α Pn xn, (21)

where α here denotes the PV penetration level, i.e., the ratio between the installed PV power
and the nominal active one, while xn are normalized random variables defined as (10)
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extracted from a representative wide measurement data set [26]. On the whole, the number
of random parameters xd is D = 15× 3 = 45.

We want to quantify the impact that PV power injection uncertainty, with different
penetration α, can have on node voltages at some critical bus in the grid.

In the first experiment, in order to verify the effectiveness of the proposed method, we
calculate the marginal PDF of the voltage nodes in the grid by using: (1) the proposed PWL
methodology; (2) the MC method (with 10, 000) used here as a reference. To this aim, the
joint PDF(~x) of the D = 45 random normalized powers xd is approximated by a GMM of
the type (11). The GMM parameters (πk, ~µk and Σk) are determined with EM algorithm as
seen in Section 2 (and in the Appendix A) and an adequate number of Gaussian components
for the considered data set is found to be K = 18. Figure 6 shows the statistical distributions
PDF(Vn) for some node voltages module (Phase-A) along the feeder from Bus-9 to Bus-65
as computed with PWL and MC methods when a PV penetration level α = 50% is assumed.
Similarly, Figure 7 reports the PDF(Vn) for some node voltages along the feeder from
Bus-11 to Bus-27 for the same penetration level.
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Some observations are in order.

1 In all of the nodes of the grid, the PDFs calculated by PWL and MC reference
method match with excellent accuracy, the relative difference between them being
always <0.5%.
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2 Marginal PDFs represent the a priori probability distributions of node voltages and
are calculated from PV uncertainty model with no further information available (e.g.,
with no measurement information). In this condition, from Figures 6 and 7, it is seen
how voltage magnitude uncertainty interval grows moving from the internal Bus-9
towards external Bus-65 as well as from Bus-11 to Bus-27. Thus, Bus-65 and Bus-27
are the critical Buses in this grid, i.e., the ones with large voltage uncertainty.

3 Figure 8 shows the sensitivities of voltage magnitude at Bus-27 and Bus-65 (Phase-A)
versus PV power at injection Buses (Phase-A). It is seen how voltage at Bus-27 exhibits
large sensitivity with respect to injection Buses from 11 to 24 whereas voltage at Bus-65
mainly depends on power injection at Buses from 53 to 65.

It is worth observing how the sensitivity curves in Figure 8 are multi-valued functions:
the sensitivity of a given voltage versus a given injection Bus number can take several
values within an interval. This is due to the fact that sensitivity values reported in Figure 8
are computed at different cluster centers in the parameter space. Such space-varying
sensitivity values determine the local piece-wise linear (PWL) approximations of voltage-
power relationship.
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4 The knowledge of marginal PDFs allows the evaluation of the probability that voltage
magnitudes violate safe operating conditions. In fact, given PDF(Vn) and the Cumu-
lative Distribution Function (CDF), the probability that voltage Vn violates a upper
threshold V can be calculated as:

p(Vn ≥ V) =
∫ ∞

V
PDF(vn)dvn = 1− CDF(V). (22)

Thanks to the numerical efficiency of PWL simulation, we can rapidly explore several
scenarios with different PV penetrations α and evaluate threshold violation occur-
rence. Figure 9 reports the probabilities p(V65 ≥ V) for growing penetration levels.
For instance, if an upper threshold voltage V = 1.10 p.u. is fixed, voltage V65 violates
the constraint with probability ≈85% for PV penetration α = 50%. The probability
of violating the upper threshold limit V = 1.10 p.u. is of ≈92% for PV penetration
α = 80% whereas it is decisively zero for α = 40%. This means that, for the as-
sumed upper threshold voltage, a PV hosting capacity corresponding to α = 40% PV
penetration is a safe limit.
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form expression (20) for the joint PDF as determined with PWL method. For instance, from
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magnitude V9 and V65, one can calculate the conditional probability
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that is the statistical distribution of V65 at Bus-65 conditioned to the fact that voltage at 262

Bus-9 has assumed a given value V9 = V̂9. 263

Figure 9. Probability of violating upper value V for growing penetration levels α computed with
PWL method.

In the second experiment, we compare the PWL method to another state-of-the art
technique employed in probability load flow problems. The technique relies on Copula
method [28] for modeling correlated PV sources combined with generalized-Polynomial-
Chaos (gPC) approximation [17–19]. Figure 10 reports the PDF(V65) at Bus-65, in the IEEE
69 bus grid with D = 45 PV random sources and penetration level α = 50%, as computed
with reference MC (10,000 simulations), with PWL method and with Copula+gPC method
for expansion order β = 2. It is seen how the PDF shape predicted by both Copula+gPC
and PWL method fit with great accuracy that given by reference MC method.

In Table 2, we report the number of Load Flow simulations required by the three
methods, their simulation times on the same Quad-core computer, and the relative error
(in PDF calculation) with respect to reference MC. It is seen how, in this experiment, PWL
method introduces a remarkable 200× speed-up compared to MC and a 50× speed-up
compared to Copula+gPC method.

Table 2. Methods Comparison.

Reference MC PWL Copula+gPC

LF Numb. 10,000 18 1081
Sim. time [s] 161 0.8 43

Rel. Error — <0.5% <0.5%
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Finally, in the third simulation experiment, we stress the importance of the closed-
form expression (20) for the joint PDF as determined with PWL method. For instance, from
the closed-form expression (20) for the joint PDF PDF(V65, V9) of the two node voltages
magnitude V9 and V65, one can calculate the conditional probability

PDF(V65|V9), (23)

that is the statistical distribution of V65 at Bus-65 conditioned to the fact that voltage at 262
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Figure 10. Detail of the PDF(V65) at Bus-65: (Square blue marker) computed with reference MC;
(Dot red marker) computed with PWL method; (Green cross marker) computed with Copula and
gPC (for expansion order β = 2).



Energies 2022, 15, 4752 13 of 15

6. Discussion

In this paper an innovative approach to the probabilistic analysis of power grid with
high PV penetration has been illustrated. The proposed approach is able to reproduce the
uncertainty of correlated PV sources through a GMM model. The GMM method is general
and can be applied to any type of data no matter if obtained with meter measurements,
historic data set or simulations.

The proposed probabilistic analysis adopts a PWL approximation of the voltage-power
LF relationship built around the GMM centers. PWL approximation exploits the multivari-
ate information provided by voltage sensitivity calculations and allows the overcoming
of the curse of dimensionality limitation exhibited by other surrogate models. For such
reasons, it can be applied in those cases where PV injection is distributed in a large number
of nodes.

In addition, it has been shown how the PWL method allows the deriving of closed-
form expressions, for the joint PDF of a set of observable variables of interest by propagating
the input GMM to the output. Via numerical examples, it has been shown how GMM model
can be employed to identify critical buses in the grid, evaluate their a priori uncertainty
intervals as well as the probability of violating safe operation conditions as a function of
PV penetration. As a result, the numerically-efficient PWL analysis described in this paper
is expected to become a worthwhile tool in the complex problem of estimating PV hosting
capacity [29].
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Appendix A

In this Appendix, we sketch the main computational steps of the Expectation Maxi-
mization (EM) algorithm that, for a given data set ~xi, with i = 1, . . . , Ns, of Ns samples and
a given number K of Gaussian components (i.e., of clusters), calculates the parameters πk,
~µk and Σk in GMM (11). The algorithm relies on computing the probability that sample i
belongs to cluster k as follows:

γik =
πkN (~xi|~µk, Σk)

K

∑
j=1

πjN (~xi|~µj, Σj)

. (A1)

The GMM parameters are derived as:

~µk =

Ns

∑
i=1

γik ~xi

Ns

∑
i=1

γik

, (A2)

https://dkasolarcentre.com.au/
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Σk =

Ns

∑
i=1

γik (~xi −~µk) (~xi −~µk)
T

Ns

∑
i=1

γik

(A3)

and

πk =
1

Ns

Ns

∑
i=1

γik (A4)

Expressions (A2)–(A4) are not a closed-form solution for the parameters because the
terms γik depend themselves on parameters. However, the above equations can be evalu-
ated in an iterative way. Starting from an initial guess for πk, ~µk and Σk, expression (A1) is
used to estimate the terms γik that, in turn, after substitution in (A2)–(A4) provide a better
estimation for parameters. The algorithm has been proved to converge. More details can
be found in [24], Ch. 9.
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