
Bayesian Optimization with Machine Learning
for Big Data Applications in the Cloud
Ottimizzazione Bayesiana Integrata col Machine
Learning per Applicazioni Big Data su Cloud

Bruno Guindani, Danilo Ardagna and Alessandra Guglielmi

Abstract Bayesian Optimization is a promising method for efficiently finding op-
timal cloud computing configurations for big data applications. Machine Learning
methods can provide useful knowledge about the application at hand thanks to their
predicting capabilities. In this paper, we propose a hybrid algorithm that is based on
Bayesian Optimization and integrates elements from Machine Learning techniques
to tackle time-constrained optimization problems in a cloud computing setting.
Abstract L’ottimizzazione bayesiana è un metodo promettente per trovare config-
urazioni ottimali di applicazioni big data eseguite su cloud. I metodi di machine
learning possono fornire informazioni utili sull’applicazione in oggetto grazie alle
loro capacità predittive. In questo articolo, proponiamo un algoritmo ibrido basato
sull’ottimizzazione bayesiana che integra tecniche di machine learning per risolvere
problemi di ottimizzazione con vincoli di tempo in sistemi di cloud computing.

Key words: acquisition function, cloud computing, Gaussian Process

1 Introduction

Big data analytics are employed in several industries to allow organizations and
companies to make better decisions. The most suitable execution environment of
big data analytic applications is a cluster of virtual machines (VMs) which allows
the adjustment of the allocated resources (CPU, memory, disk, network) to match
the application current needs. Choosing the right cloud configuration to minimize
execution times and reduce costs is essential to service quality and business com-
petitiveness. However, due to the diverse behavior and resource requirements of
analytic jobs, choosing the best configuration for a broad spectrum of applications
is a challenging process [1].

Bayesian Optimization (BO) has recently gained notoriety as a powerful tool to
solve global optimization problems in which expensive, black-box functions are in-
volved; see the recent paper [6] or the popular tutorial paper [3]. BO is a sequential
design strategy that requires few steps to get sufficiently close to the true optimum,

Bruno Guindani1, Danilo Ardagna1 and Alessandra Guglielmi2
1 Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
2 Department of Mathematics, Politecnico di Milano, Milano, Italy
e-mail: {bruno.guindani, danilo.ardagna, alessandra.guglielmi}@polimi.it

1

1479

2 Bruno Guindani, Danilo Ardagna and Alessandra Guglielmi

while requiring no derivative information on the optimized function. Most com-
monly, it is initialized by choosing and evaluating a small handful of starting points,
then fitting a Gaussian process (GP) using these points. The posterior distribution of
the fitted GP provides an estimate of both the function value at each point and the
uncertainty around the estimate. BO then iteratively chooses new points at which to
evaluate the function in a such a way to balance exploration (high uncertainty) and
exploitation (best estimated function value), as explained in [4], for instance.

The goal of this work is to integrate Bayesian optimization algorithms with Ma-
chine Learning (ML) techniques in the context of cloud computing optimization.
The former have proven to be successful [1, 7] in exploring and finding optimal
or near-optimal cloud configurations after a small amount of exploratory runs. On
the other hand, the latter can provide useful information to be incorporated into the
BO mechanism in several ways to improve its performance, for instance in the form
of cheap estimates of target quantities to guide the exploration process. This work
builds on previous results found in [1], in which the CherryPick system is success-
fully applied to benchmark applications on cloud computing frameworks such as
Apache Spark. This system exploits pure BO to find optimal cloud configurations.
Our work is motivated by the belief that ML can lend their predicting capabilities to
BO to further improve its effectiveness. This topic has been explored in [5], which
examines the performance of several ML models in carrying out predictions of exe-
cution times of Spark cloud jobs with different types of workloads. The hybrid BO
algorithm we propose here is promising since it shows the usefulness of ML in the
context of cloud computing configuration.

The setup of this paper is as follows. Section 2 describes the mathematical for-
mulation of the problem, Section 3 presents our proposal of a BO algorithm, while
Section 4 collects some preliminary experimental results.

2 Background and mathematical formulation

The goal of BO is to approximate, e.g., the minimum of a given function f , called
objective function, by using as few iterations as possible. Namely, we want to find x̂
where x̂= argminx∈A f (x). Strong assumptions on f or on the minimization domain
A are not required, and BO algorithms are derivative-free, i.e., they do not require
any knowledge about the derivatives of f . For these reasons, BO is often used to
optimize expensive black-box objective functions (see [2]), that is, functions for
which little to no information is available, and whose evaluation has significant time,
resource, and/or monetary costs.

We consider the mathematical formulation for our constrained global optimiza-
tion problem similarly to [1]. Let x ∈ A denote the d-dimensional vector represent-
ing a configuration for the cloud job, including information such as the number of
cores used for the job, with A ⊂Rd being the domain of all feasible configurations.
The objective function to be minimized is the total cost f (x) = P(x)T (x), where
T (x) is the unknown execution time and P(x) is the price per unit (it is a known,
deterministic function). We also assume the constraint that T (x)≤ Tmax, where Tmax
is a given threshold. Hence the problem is to find the minimum of f ,

1480

Bayesian Optimization with Machine Learning for Big Data Applications in the Cloud 3

min
x∈A

f (x) = P(x)T (x) s.t. f (x)≤ P(x)Tmax. (1)

In this paper, we assume the deterministic price function P(x) as being proportional
to the number of virtual machines or cores used by the application job, which is
always included in the cloud configuration vector x. Other choices of the price func-
tion are possible.

The key idea of BO comes from the Bayesian approach to statistics, in which val-
ues taken by f are treated as random variables, and a prior distribution represents the
a-priori information on the modeled phenomenon – in the case of BO, information
on the location of the minimum. The prior distribution is then iteratively updated
with information coming from the observed data, obtaining the posterior distribu-
tion. For the rest of the paper, we assume that observed data, i.e., the evaluations
of f , are noise-free. This is justified by the analysis in [5] on the data considered
for validation. In a more general context, data can be assumed to have independent,
normally distributed additive noise with variance η2.

In this context, the Gaussian process (GP) is the preferred choice for the prior for
f . This means that for any x ∈ A ,

f (x)∼ πx(·) = N (µ0(x),σ2
0 (x,x)).

Functions µ0(·) and σ2
0 (·, ·) are called mean and kernel functions, respectively, and

are the GP model hyperparameters. In this work, we assume µ0(·)≡ µ0 and we use
the Matérn kernel with smoothness parameter ν = 5/2 (see [3]):

σ2
0 (x,x

′) :=
1

23/2Γ (5/2)

(√
5∥x− x′∥

)5/2
K5/2

(√
5∥x− x′∥

)
.

Having observed values Hn = {(x1, f (x1)), . . . ,(xn, f (xn))} of the objective func-
tion, one computes the posterior distribution of each f (x), which is also Gaussian
and it is characterized by the posterior mean µn(·) and variance σ2

n (·), i.e.

f (x)|Hn ∼ πx(·|Hn) = N (µn(x),σ2
n (x))

which can be computed by well-known properties of GPs (see, for instance, [3]).
BO is an iterative algorithm that obtains a new observation at each iteration by

solving a proxy problem – the maximization of the acquisition function g(x), which
depends on the fitted GP model and measures the utility of evaluating the objective
function at a given configuration x. This function is optimized at each round of
the iterative algorithm, instead of directly optimizing the objective function itself,
since it is available in closed form and inexpensive to evaluate. See Figure 1 for a
summary of how BO works. Specifically, in the top panel, the objective function to
be minimized (in gray) is approximated by the Gaussian Process, in the form of its
posterior mean function (in dashed blue) and 95% credible interval (in light blue)
after evaluating 3 points (red dots). The bottom panel shows the acquisition function
given the current posterior distribution. The red cross indicates the maximum of the
acquisition function, i.e. the next point which will be evaluated.

1481

4 Bruno Guindani, Danilo Ardagna and Alessandra Guglielmi

In this paper, we compare different acquisition functions. The Expected Improve-
ment (EI) over the best value f ∗n found by the optimization process so far is:

EIn(x) := Eπx(·|Hn)[max(f ∗n − f (x),0)] with f ∗n = min
i≤n

f (xi).

The expectation is taken under the current posterior distribution π(· |Hn) of f (x),
given history Hn. We consider a generalization of EI to the constrained optimization
setting – the Expected Improvement with Constraints (EIC) acquisition function (see
[8]), which accounts for the probability of a point of respecting the constraints:

EICn(x) := EIn(x) ·Pπx(·|Hn)

(
f (x)≤ P(x)Tmax

)
. (2)

Fig. 1: Bayesian optimization after 3 iterations. Top panel: the objective function
and its Bayesian approximation. Bottom panel: acquisition function.

3 Our hybrid algorithm

Our algorithm is based on pure BO, but it integrates elements coming from ML tech-
niques. We use a memory queue for discrete features to prevent exploration of al-
ready visited values. The algorithm continues until the evaluated running time at the
current iteration is sufficiently close to the time threshold: T (xn) ∈ [0.9Tmax, Tmax].
Our goal is to obtain a configuration that is compliant with the time threshold, but
also uses as few resources as possible. Generally speaking, using more resources
results in a lower execution time – meaning that a time which is just under the
threshold consumes the least amount of resources for that configuration to be feasi-
ble. After termination, it is likely that we have found the true optimal configuration
because of the convergence properties of the BO algorithm. Afterwards, we execute
subsequent runs using such optimal or near-optimal configuration.

As far as the acquisition function is concerned, in this paper we use two varia-
tions of EIC (see (2)), which both integrate EIC with information coming from ML.

1482

Bayesian Optimization with Machine Learning for Big Data Applications in the Cloud 5

In particular, at each iteration, a ML model T̂ (·) is trained on the current history Hn
to accurately predict execution times T (x) for any configuration x. Then, the EIC ac-
quisition function in (2) is either multiplied by an exponential factor of T̂ (x) (variant
B), or is set to zero for values in which T̂ (x) is larger than the threshold Tmax (variant
C). The former encourages the search process towards configurations which respect
the time constraint, while the latter prevents the search outright in areas which are
predicted to violate such constraint.

4 Experiments

We present preliminary results using the techniques we have discussed in Section
3. We use variants B and C of the algorithm, as well as pure BO, on the Query26
application from the TPC-DS industry benchmark run on Apache Spark with input
data size equal to 250 GB and time threshold equal to 150 s. In this case, we optimize
the total cost in (1) on the number of cores x. The same three fixed initial points were
used for all variants. Figure 2 shows the comparison of pure BO (top row) with
variants B (middle row) and C (bottom row) at each algorithm iteration. The left
panels display the number of cores x selected by the algorithm, while the middle
panels show the cumulative costs of the selected configurations. The percentage
errors between the actual execution time and the one predicted by the ML model are
displayed on the right column. We apply Ridge regression since [5] shows that it is
the most accurate in this context, with a mean absolute error smaller than 5%.

Using our new algorithm, we are able to reduce the number of iterations which
produce unfeasible configurations from 15 to 1 or 2. Similarly, cumulative costs
associated to unfeasible runs are reduced from 11.67 to 0.80 and 1.51. At the very
first iteration, all variants explore high values of the number of cores since there
is no enough information on that part of the domain. This also explains the large
prediction errors at the same iteration. After that, our ML model is able to predict
the execution time of subsequent iterations with very good accuracy. Finally, the
termination criterion (see the vertical dotted line in Figure 2) correctly assesses the
optimality of the configuration with x = 22 cores, and stops the exploration phase.

Acknowledgments

The European Commission has partially funded this work under the Horizon 2020
Grant Agreement number 956137 LIGATE: LIgand Generator and portable drug
discovery platform AT Exascale, as part of the EuroHPC Joint Undertaking.

References

1. O. Alipourfard, H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. Cherrypick: Adap-
tively unearthing the best cloud configurations for big data analytics. In NSDI USENIX, 2017.

2. E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

1483

6 Bruno Guindani, Danilo Ardagna and Alessandra Guglielmi

Fig. 2: Comparison of pure BO (top row) with variants B (middle row) and C (bot-
tom row) at each algorithm iteration. Left panel: chosen numbers of cores x; middle
panel: cumulative costs of the chosen configuration; right panel: percentage error.
The true optimal number of cores is denoted by the green horizontal line.

3. P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.
4. B. Letham, B. Karrer, G. Ottoni, and E. Bakshy. Constrained Bayesian optimization with noisy

experiments. Bayesian Analysis, 14:495–519, 2019.
5. A. Maros, F. Murai, A. P. C. da Silva, J. M. Almeida, M. Lattuada, E. Gianniti, M. Hosseini,

and D. Ardagna. Machine learning for performance prediction of spark cloud applications. In
IEEE 12th International Conference on Cloud Computing (CLOUD), pages 99–106, 2019.

6. T. Pourmohamad and H. K. Lee. Bayesian optimization via barrier functions. Journal of
Computational and Graphical Statistics, (just-accepted):1–23, 2021.

7. B. Reagen, J. M. Hernández-Lobato, R. Adolf, M. Gelbart, P. Whatmough, G.-Y. Wei, and
D. Brooks. A case for efficient accelerator design space exploration via Bayesian optimization.
In 2017 IEEE/ACM ISLPED, pages 1–6. IEEE, 2017.

8. M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimiza-
tion of computer models. IMS Lecture Notes-Monograph Series, pages 11–25, 1998.

1484

