# A CFD-augmented machine-learning approach for the classification of nasal pathologies

A. Schillaci<sup>1</sup>, G. Boracchi<sup>2</sup>, C. Pipolo<sup>3</sup> & M. Quadrio<sup>1</sup>

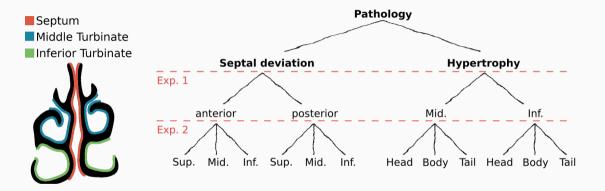
<sup>1</sup>DAER, Politecnico di Milano <sup>2</sup>DEIB, Politecnico di Milano <sup>3</sup>ASST Santi Paolo e Carlo, Milano

### The workflow: form CT scan to...

- 1. Segment the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS)

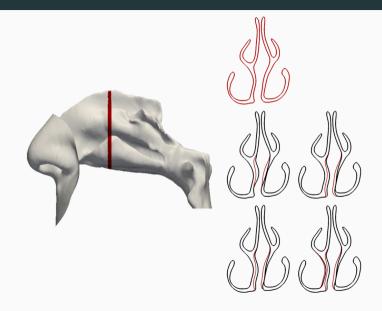
Resort to Machine Learning

### The workflow: form CT scan to...


- 1. Segment the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS)

Resort to Machine Learning  $\downarrow$  Need for a dataset!

- Use real anatomies
- The same pathology for different patients
- Avoid ambiguity of labels


- 1. Define a set of pathologies with ENT surgeons
- 2. Pick one healthy patient
- 3. Inject the pathologies (one or more at the time, with different severities)
- 4. GO TO 2

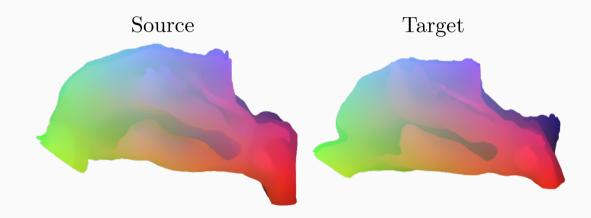
# Define the pathologies



7 healthy patients - 270 unique geometries

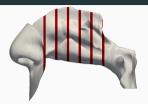
# The cost of $(virtual surgery)^{-1}$

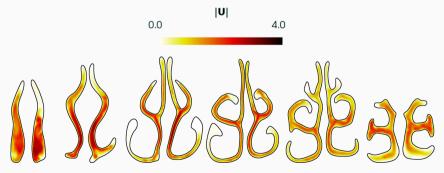



Is there a way to propagate the information?

- Computational geometry tool
- Generalization of Fourier basis on surfaces
- Basis: eigenfunction of the Laplace-Beltrami operator
- Compare real valued function on surfaces



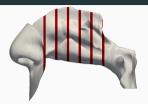

$$T_F \approx \phi_{\mathbf{N}} \mathbf{C} \phi_{\mathbf{M}}^+$$

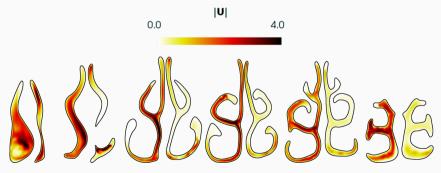

Ovsjanikov M., et al. Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics 2012



# The CFD setup

- Meshes of around 13 Millions cells without sinuses
- LES simulations, WALE turbulence model
- Constant flow rate 266.66 ml/s
- 0.6 *s* simulated (excluding transient)

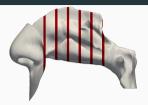


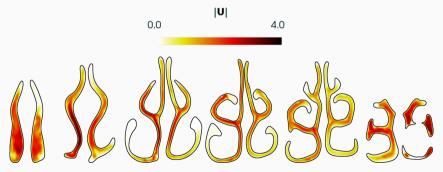




Schillaci A. & Quadrio M. Importance of the numerical schemes in the CFD of the human nose Journal of Biomechanics 2022

# The CFD setup

- Meshes of around 13 Millions cells without sinuses
- LES simulations, WALE turbulence model
- Constant flow rate 266.66 ml/s
- 0.6 *s* simulated (excluding transient)




Schillaci A. & Quadrio M. Importance of the numerical schemes in the CFD of the human nose Journal of Biomechanics 2022

# The CFD setup

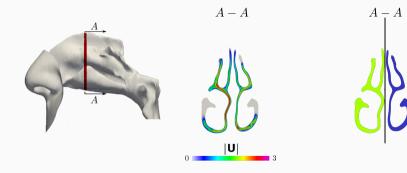
- Meshes of around 13 Millions cells without sinuses
- LES simulations, WALE turbulence model
- Constant flow rate 266.66 ml/s
- 0.6 *s* simulated (excluding transient)





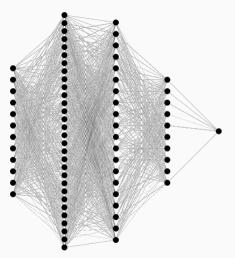
Schillaci A. & Quadrio M. Importance of the numerical schemes in the CFD of the human nose Journal of Biomechanics 2022

#### The task:


Classify 28 pathologies from 270 LES into 2 (exp. 1) or 4 (exp. 2) classes.

Challenges:

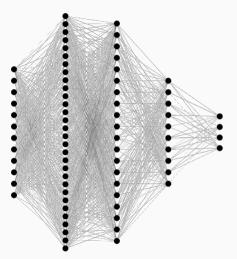
- Each CFD carries around 2 GB of information
- Need for feature engineering!


### Feature engineering example: Regional Averages

- Extract several slices of the domain
- Average the flow variables in the single fossa

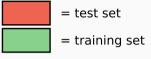


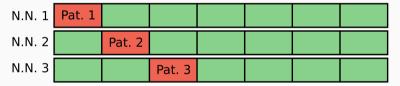
#### **Prediction model: Neural Network**


- Input layer 12 nodes
- Hidden layer: 30, 20, 10
- Loss function: Cross-entropy
- Backpropagation: Levenberg-Marquardt
- Output layer: 1 node (binary), 4 nodes (multiclass)

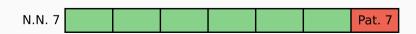


Schillaci A. etal., Inferring functional properties from fluid dynamics features International Conference on Pattern Recognition 2021


#### **Prediction model: Neural Network**

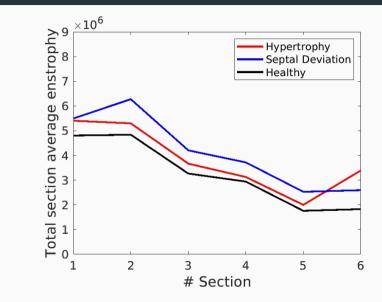

- Input layer 12 nodes
- Hidden layer: 30, 20, 10
- Loss function: Cross-entropy
- Backpropagation: Levenberg-Marquardt
- Output layer: 1 node (binary), 4 nodes (multiclass)



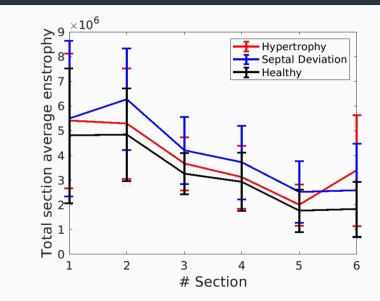

Schillaci A. etal., Inferring functional properties from fluid dynamics features International Conference on Pattern Recognition 2021

#### How we test the dataset






•

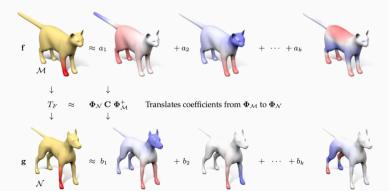



| # classes | Dataset size | Feature                           | Accuracy |
|-----------|--------------|-----------------------------------|----------|
| 2         | 270          | $ {f U}-{f U}_{\perp} $           | 0.85     |
| 4         | 154          | $ \mathbf{U}-\mathbf{U}_{\perp} $ | 0.76     |

#### What is the NN seeing?



#### What is the NN seeing?




- First step to apply a ML approach on the nose problem
- CFD data used as input of ML algorithm to obtain a medical label
- 2GB of information converted into 12 significant numbers
- Geometry parameterization is a crucial step
- Need for real patient testing

Eigenfunctions of the Laplace-Beltrami operator:

$$\Delta \Phi_i = \lambda_i \Phi_i \qquad \Delta(f) = -\operatorname{div} \Delta(f)$$

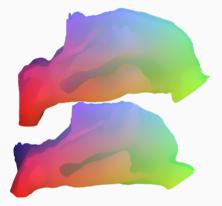
- Generalization of Fourier bases to surfaces
- Ordered by eigenvalues and provide natural scale

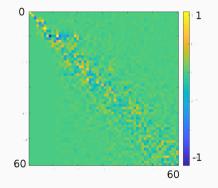


Given:

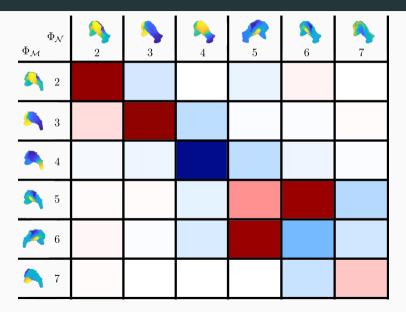
$$f: \mathcal{M} \rightarrow \mathcal{N}$$
 and  $f_{True}: \mathcal{M} \rightarrow \mathcal{N}$ 

Geodesic error defined as:

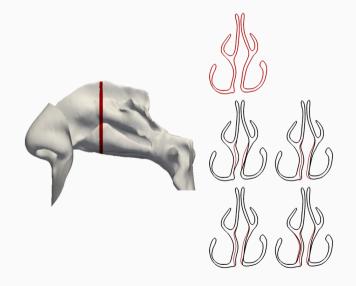

$$\textit{Err}(f, f_{\textit{True}}) = \sum_{p \in M} d_{\mathcal{N}} \Big( f(p), f(p_{\textit{True}}) \Big)$$


Where  $d_{\mathcal{N}}(f(p), f(p_{True}))$  is normalized by  $\sqrt{Area_{\mathcal{N}}}$ 

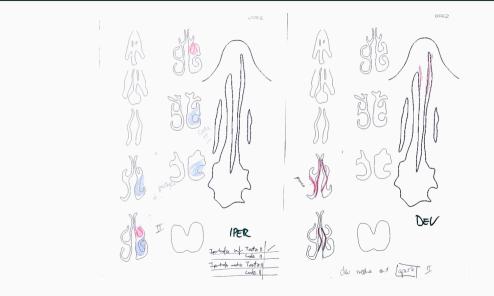



Given a pair of shapes  $\mathcal{M}, \mathcal{N}$ :

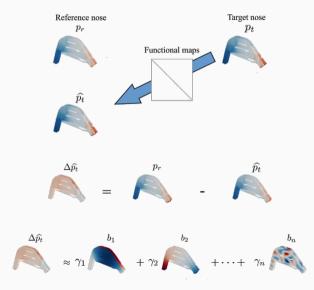
- Compute the first  $\sim 100$  eigenfunctions of Laplace-Beltrami operator:  $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$
- Compute descriptor functions (e.g. Wave kernel signature, landmarks, etc.) on M and N. Express them in Φ<sub>M</sub>, Φ<sub>N</sub> as columns: A, B
- Solve  $C_{opt} = argmin_C ||CA B||^2 + ||C\Delta_M \Delta_N C||^2$  $\mathcal{M}, \mathcal{N}$ : diagonal matrices of eigenvalues of LB operator
- Convert the functional map  $C_{opt}$  to a point to point map  $\Pi$ .



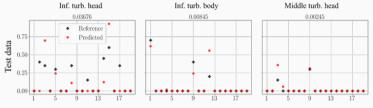




### Laplace-Beltrami on the nose

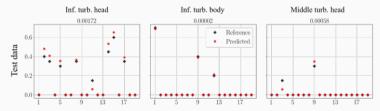



# Building pathologies with the doctors - 4 iterations




#### Building pathologies with the doctors - What is on iteration




#### Mapping thin cans



# Geometrical features



# Fluid dynamics features

