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Abstract—This paper studies secrecy-capacity of an n-
dimensional Gaussian wiretap channel under the peak-power
constraint. This work determines the largest peak-power con-
straint R̄n such that an input distribution uniformly distributed
on a single sphere is optimal; this regime is termed the low
amplitude regime. The asymptotic of R̄n as n goes to infinity is
completely characterized as a function of noise variance at both
receivers. Moreover, the secrecy-capacity is also characterized in
a form amenable for computation. Furthermore, several numer-
ical examples are provided, such as the example of the secrecy-
capacity achieving distribution outside of the low amplitude
regime.

I. INTRODUCTION

Consider the vector Gaussian wiretap channel with outputs
Y1 = X+N1, (1)
Y2 = X+N2, (2)

where X ∈ Rn and where N1 ∼ N (0n, σ
2
1In) and N2 ∼

N (0n, σ
2
2In), and with (X,N1,N2) mutually independent.

The output Y1 is observed by the legitimate receiver whereas
the output Y2 is observed by the malicious receiver. We are
interested in the scenario where the input X is limited by a
peak-power constraint or amplitude constraint and assume that
X ∈ B0(R) = {x : ∥x∥ ≤ R}, i.e., B0(R) is an n-ball centered
at 0 of radius R. For this setting, the secrecy-capacity is

Cs(σ1, σ2,R) = max
X∈B0(R)

I(X;Y1)− I(X;Y2) (3)

= max
X∈B0(R)

I(X;Y1|Y2), (4)

where the last step holds due to the degraded nature of the
channel. It can be shown that Cs(σ1, σ2,R) = 0 for σ2

1 ≥ σ2
2 .

Therefore, in the remaining, we assume that σ2
1 < σ2

2 .
We are interested in studying the input distribution PX⋆ that

maximizes (4) in the low (but not vanishing) amplitude regime.
Since closed-form expressions for secrecy-capacity are rare,
we derive the secrecy-capacity in an integral form that is easy
to evaluate. We also argue in Section II-C the solution to the
secrecy-capacity can shed light on other problems unrelated
to security.

A. Notation
The modified Bessel function of the first kind of order v ≥ 0

will be denoted by Iv(x), x ∈ R. The following ratio of the
Bessel functions will be commonly used in this work:

hv(x) =
Iv(x)

Iv−1(x)
, x ∈ R, v ≥ 0. (5)

We denote the distribution of a random variable X by PX.
The support set of PX is denoted and defined as

supp(PX) = {x : for every open set D ∋ x

we have that PX(D) > 0}. (6)

The minimum mean squared error is denoted by

mmse(X|X+N) = E
[
∥X− E[X|X+N]∥2

]
. (7)

B. Literature Review

The wiretap channel was introduced by Wyner in [1], who
also established the secrecy-capacity of the degraded wiretap
channel. The wiretap channel plays a central role in network
information theory; the interested reader is referred to [2]–[5]
and reference therein for an in-detail treatment of the topic.

The secrecy-capacity of a scalar Gaussian wiretap channel
with an average-power constraint was shown in [6] where the
optimal input distribution was shown to be Gaussian. The
secrecy-capacity of the MIMO wiretap channel was charac-
terized in [7] and [8] where the Gaussian input was shown to
be optimal. An elegant proof of optimality of Gaussian input,
via the I-MMSE relationship [9], is given in [10].

The secrecy-capacity of the Gaussian wiretap channel under
the peak-power constraint has received far less attention. The
secrecy-capacity of the scalar Gaussian wiretap channel with
an amplitude and power constraint was considered in [11]
where the authors showed that the capacity-achieving input
distribution PX⋆ is discrete with finitely many support points.
Recently, the result of [11] was sharpened in [12] by providing
an explicit upper bound on the number of support points of
PX⋆ of the following from:

|supp(PX⋆)| ≤ ρ
R2

σ2
1

+O(log(R)), (8)

where ρ = (2e+1)2
(

σ2+σ1

σ2−σ1

)2

+
(

σ2+σ1

σ2−σ1
+ 1

)2

. The secrecy-
capacity for the vector wiretap channel with a peak-power
constraint was considered in [13] where it was shown that
the optimal input distribution is concentrated on finitely many
co-centric shells.

C. Contributions and Outline

The contributions and outlines of the paper are as follows.
Section II discusses our assumptions and provides connections
of the secrecy-capacity to other problems unrelated to security.



Section III presents our main results. Section IV is dedicated to
numerical results and discusses structure of the optimal input
beyond low amplitude regime. Section III and Section VI are
dedicated to proofs. Section VII concludes paper. Due to space
limitations, some of the proofs are omitted and can be found
in the extended version of the paper [14].

II. ASSUMPTIONS AND MOTIVATIONS

A. Assumptions

Consider the following function: for y ∈ R+

Gσ1,σ2,R,n(y)

=
E
[

R
∥y+W∥hn

2

(
R
σ2
2
∥y +W∥

)
− 1

]
σ2
2

−
R
y hn

2

(
R
σ2
1
y
)
− 1

σ2
1

,

(9)

where W ∼ N (0n+2, (σ
2
2−σ2

1)In+2). Notice that the function
Gσ1,σ2,R,n(y) is related to the derivative of the secrecy-density.

In this work, in order to make progress on the secrecy-
capacity, we make the following conjecture about the ratio of
the Bessel functions: for all R ≥ 0, σ2 > σ1 ≥ 0 and n ∈ N,
the function y 7→ Gσ1,σ2,R,n(y) has at most one sign change.

In general, proving that Gσ1,σ2,R,n(y) has at most one sign
change is not easy. However, extensive numerical evaluations
show that this property holds for any n,R, σ1, σ2.

Therefore, the problem boils down to showing that there is
at most one sign change for y > 0. Using this, we can give a
sufficient condition for this conjecture to be true. Note that

Gσ1,σ2,R,n(y) ≥ − 1

σ2
2

+
1

σ2
1

− R

σ2
1y

hn
2

(
R

σ2
1

y

)
(10)

≥ − 1

σ2
2

+
1

σ2
1

− R2

σ4
1n

, (11)

which is nonnegative, hence has no sign change for y > 0, if

R < σ2
1

√
n

(
1

σ2
1

− 1

σ2
2

)
. (12)

The inequality in (10) follows by hn
2
(x) ≥ 0 for x ≥ 0;

and (11) follows by hn
2
(x) ≤ x

n for x ≥ 0 and n ∈ N.

B. Low Amplitude Regime

In this work a low amplitude regime is defined as follows.

Definition 1. Let XR ∼ PXR
be uniform on C(R) = {x :

∥x∥ = R}. The capacity in (4) is said to be in the low
amplitude regime if R ≤ R̄n(σ

2
1 , σ

2
2) where

R̄n(σ
2
1 , σ

2
2) = max

{
R : PXR

= arg max
X∈B0(R)

I(X;Y1|Y2)

}
.

(13)
If the set in (13) is empty, we set R̄n(σ

2
1 , σ

2
2) = 0.

The quantity R̄n(σ
2
1 , σ

2
2) represents the largest radius R for

which PXR
is secrecy-capacity-achieving.

One of the main goals of this work is to find R̄n(σ
2
1 , σ

2
2).

C. Connections to Other Optimization Problems

The distribution PXR
occurs in a variety of statistical and

information-theoretic applications. For example, consider the
following two optimization problems:

max
X∈B0(R)

I(X;X+N), (14)

max
X∈B0(R)

mmse(X|X+N), (15)

where N ∼ N (0n, σ
2In). The first problem seeks to char-

acterize the capacity of the point-to-point channel under the
amplitude constraint, and the second problem seeks to find the
largest minimum mean squared error under the assumption
that the signal has bounded amplitude; the interested reader
is referred to [15]–[17] for a detailed background on both
problems.

Similarly to the wiretap channel, we can define the low
amplitude regime for both problems as the largest R such that
PXR

is optimal and denote these by R̄ptp
n (σ2) and R̄MMSE

n (σ2).
We now argue that both R̄ptp

n (σ2) and R̄MMSE
n (σ2) can be seen

as a special case of the wiretap solution. Hence, the wiretap
channel provides and interesting unification and generalization
of these two problems.

First, note that the point-to-point solution can be recovered
from the wiretap by simply specializing the wiretap channel
to the point-to-point channel, that is

R̄ptp
n (σ2) = lim

σ2→∞
R̄n(σ

2, σ2
2). (16)

Second, to see that the MMSE solution can be recovered from
the wiretap recall that by the I-MMSE relationship [9], we
have that

max
X∈B0(R)

I(X;Y1)− I(X;Y2)

= max
X∈B0(R)

1

2

∫ σ2
2

σ2
1

mmse(X|X+
√
sZ)

s2
ds (17)

where Z is standard Gaussian. Now note that if we choose
σ2
2 = σ2

1 + ϵ for some small enough ϵ > 0, we arrive at

max
X∈B0(R)

I(X;Y1)− I(X;Y2) (18)

= max
X∈B0(R)

ϵ

2

mmse(X|X+
√
σ2
1Z)

σ4
1

. (19)

Consequently, for a small enough ϵ > 0,

R̄MMSE
n (σ2) = R̄n(σ

2, σ2 + ϵ). (20)

III. MAIN RESULTS

A. Characterizing the Low Amplitude Regime

Our first result characterizes the low amplitude regime.

Theorem 1. Consider a function

f(R)

=

∫ σ2
2

σ2
1

E
[
h2n

2

(
∥
√
sZ∥R
s

)
+ h2n

2

(
∥R+

√
sZ∥R

s

)]
− 1

s2
ds (21)



TABLE I: Values of R̄ptp
n (1), R̄n(1, σ

2
2), and R̄MMSE

n (1).

n 1 2 4 8 16 32

R̄
ptp
n (1) 1.666 2.454 3.580 5.158 7.367 10.472

R̄n(1, 1000) 1.664 2.450 3.575 5.151 7.357 10.458
R̄n(1, 10) 1.518 2.221 3.229 4.646 6.632 9.424
R̄n(1, 1.5) 1.161 1.687 2.444 3.513 5.013 7.124
R̄n(1, 1.001) 1.057 1.535 2.224 3.196 4.561 6.481
R̄MMSE
n (1) 1.057 1.535 2.223 3.195 4.560 6.479

where Z ∼ N (0n, In). The input XR is secrecy-capacity
achieving if and only if R ≤ R̄n(σ

2
1 , σ

2
2) where R̄n(σ

2
1 , σ

2
2)

is given as the zero of

f(R) = 0. (22)

Proof. See Section V.

Remark 1. Note that (22) always has a solution. To see this
observe that f(0) = 1

σ2
2
− 1

σ2
1
< 0, and f(∞) = 1

σ2
1
− 1

σ2
2
> 0.

Moreover, the solution is unique, because f(R) is monotoni-
cally increasing for R ≥ 0.

The solution to (22) needs to be found numerically.1

Since evaluating f(R) is rather straightforward and not time-
consuming, we opted for a binary search algorithm. In
Table I, we show the values of R̄n(1, σ

2
2) for some values

of σ2
2 and n. Moreover, we report the values of R̄ptp

n (1) and
R̄MMSE
n (1) from [15] in the first and the last row, respectively.

As predicted by (16), we can appreciate the close match of
the R̄ptp

n (1) row with the one of R̄n(1, 1000). Similarly, the
agreement between the R̄MMSE

n (1) row and the R̄n(1, 1.001)
row is justified by (20).

B. Large n Asymptotics

We now use the result in Theorem 1 to characterize the
asymptotic behavior of R̄n(σ

2
1 , σ

2
2).

Theorem 2.

lim
n→∞

R̄n(σ
2
1 , σ

2
2)√

n
= c(σ2

1 , σ
2
2), (23)

where c(σ2
1 , σ

2
2) is the solution of

∫ σ2
2

σ2
1

c2(√
s

2 +
√

s
4+c2

)2 + c2(c2+s)(
s
2+

√
s2

4 +c2(c2+s)

)2 − 1

s2
ds = 0.

(24)

In Fig. 1, for σ2
1 = 1 and σ2

2 = 1.001, 1.5, 10, we show the
behavior of R̄n(1, σ

2
2)/

√
n and how its converges to c(1, σ2

2).

1To avoid any loss of accuracy in the numerical evaluation of hv(x) for
large values of x, we used the exponential scaling provided in the MATLAB
implementation of Iv(x).
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2 = 1000
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c(1, σ2
2) (23)

R̄n(1,σ2
2)

√
n

Fig. 1: Asymptotic behavior of R̄n(1, σ
2
2)/

√
n versus n for

σ2
1 = 1 and σ2

2 = 1.001, 1.5, 10, 1000.

C. Capacity Expression in the Low Amplitude Regime

The result in Theorem 1 can also be used to establish the
secrecy-capacity for all R ≤ R̄n(σ

2
1 , σ

2
2) as is done next.

Theorem 3. If R ≤ R̄n(σ
2
1 , σ

2
2), then

Cs(σ
2
1 , σ

2
2 ,R) =

1

2

∫ σ2
2

σ2
1

R2 − R2E
[
h2n

2

(
∥R+

√
sZ∥R

s

)]
s2

ds.

(25)

Proof: See Section VI.

IV. BEYOND THE LOW AMPLITUDE REGIME

To evaluate the secrecy-capacity and find the optimal dis-
tribution PX⋆ beyond R̄n we rely on numerical estimations.
We remark that, as pointed out in [13], the capacity-achieving
distribution is isotropic and consists of finitely many co-centric
shells. Keeping this in mind, we can find the optimal input
distribution PX⋆ by just optimizing over P∥X∥ with ∥X∥ ≤ R.

Let us denote by Ĉs(σ
2
1 , σ

2
2 ,R) the numerical estimate of

the secrecy-capacity and by P̂∥X⋆∥ the optimal pmf of the
input norm. To numerically evaluate Ĉs(σ

2
1 , σ

2
2 ,R) and P̂∥X⋆∥

we adapt the algorithmic procedure described in [18] by re-
evaluating the Blahut-Arimoto recursion and the gradient of
the secrecy-information.

In Fig. 2, we show with black circles the numerical estimate
Ĉs(σ

2
1 , σ

2
2 ,R) for σ2

1 = 1, σ2
2 = 1.5, 10, and n = 2, 4.

For the same values of σ2
1 , σ2

2 , and n we also show, with
the red lines, the analytical low amplitude regime capacity
Cs(σ

2
1 , σ

2
2 ,R) from Theorem 3. Also, we show with blue

dotted lines the secrecy-capacity under the average-power
constraint E

[
∥X∥2

]
≤ R2:

CG(σ
2
1 , σ

2
2 ,R) =

n

2
log

1 + R2/σ2
1

1 + R2/σ2
2

≥ Cs(σ
2
1 , σ

2
2 ,R), (26)

where the inequality follows by noting that the average-power
constraint E

[
∥X∥2

]
≤ R2 is weaker than the amplitude
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2 = 1.5, 10 and n = 2, 4.

0 2 4 6
0

0.5

1

R̄2(1, 1.5)

R

∥X
⋆
∥/

R

a)

0 2 4 6 8
0

0.5

1

R̄8(1, 1.5)

R

∥X
⋆
∥/
R

b)

Fig. 3: Evolution of the numerically estimated P̂∥X⋆∥ versus
R for σ2

1 = 1, σ2
2 = 1.5, a) n = 2, and b) n = 8.

constraint ∥X∥ ≤ R. Finally, the dashed vertical lines show
R̄n for the considered values of σ2

1 , σ2
2 , and n.

In Fig. 3, we show the evolution of the numerically esti-
mated pmf P̂∥X⋆∥ vs. R, for σ2

1 = 1, σ2
2 = 1.5, and n = 2, 8.

The figure shows, at each R, the normalized amplitude mass
points in the estimated pmf, while the size of the circles
qualitatively shows the associated probability.

V. PROOF OF THEOREM 1

A. KKT Conditions

Lemma 1. PX⋆ maximizes (4) if and only if

Ξ(x;PX⋆) = Cs(σ
2
1 , σ

2
2 ,R), x ∈ supp(PX⋆), (27)

Ξ(x;PX⋆) ≤ Cs(σ
2
1 , σ

2
2 ,R), x ∈ B0(R), (28)

where for x ∈ Rn

Ξ(x;PX⋆) = D(fY1|X(·|x)∥fY⋆
1
)− D(fY2|X(·|x)∥fY⋆

2
)
(29)

= E [g(Y1)|X = x] , (30)

and where

g(y) = E
[
log

fY⋆
2
(y +N)

fY⋆
1
(y)

]
+ n log

(
σ2

σ1

)
, y ∈ Rn, (31)

with N ∼ N (0n, (σ
2
2 − σ2

1)In).

Proof. This is a vector extension of [12, Lemma 1].

B. A New Necessary and Sufficient Condition

Theorem 4. PXR
is optimal if and only if for all ∥x∥ = R

Ξ(0;PXR
) ≤ Ξ(x;PXR

). (32)

Moreover, if R < σ2
1

√
n
(

1
σ2
1
− 1

σ2
2

)
, then PXR

is optimal.

Proof. The secrecy-density Ξ(·;PXR
) is a function only of

∥x∥, thanks to the rotational symmetry of the Gaussian dis-
tribution and of PXR

. In view of this, a way to prove condi-
tion (32) is to show that the maximum of ∥x∥ 7→ Ξ(∥x∥;PXR

)
occurs at either ∥x∥ = 0 or ∥x∥ = R. Next, we show that the
derivative of Ξ(∥x∥;PXR

) makes at most one sign change,
from negative to positive. This fact will prove the claim.

From Lemma 3 in [14], the derivative of Ξ is

Ξ′(∥x∥;PXR
) = ∥x∥ E

[
M̃2(σ1Qn+2)−M1(σ1Qn+2)

]
(33)

where Q2
n+2 is a noncentral chi-square random variable with

n + 2 degrees of freedom and noncentrality parameter ∥x∥2

σ2
1

and

Mi(y) =
1

σ2
i

(
R

y
hn

2

(
R

σ2
i

y

)
− 1

)
, i ∈ {1, 2} (34)

M̃2(y) = E [M2(∥y +W∥)] , (35)

where W ∼ N (0n+2, (σ
2
2 − σ2

1)In+2).
Note that Ξ′(0;PXR

) = 0, and that Ξ′(∥x∥;PXR
) > 0 for

sufficiently large ∥x∥; in fact, we have

Ξ′(∥x∥;PXR
) > ∥x∥

(
1

σ2
1

− 1

σ2
2

)
− ∥x∥

σ2
1

E
[

R

σ1Qn+2

]
(36)

= ∥x∥
(

1

σ2
1

− 1

σ2
2

)
− ∥x∥

σ2
1

E
[

R

∥x∥
hn

2

(
∥x∥
σ1

Qn

)]
(37)

≥ ∥x∥
(

1

σ2
1

− 1

σ2
2

)
− R

σ2
1

, (38)

where (36) is by 0 ≤ hn
2
(x) ≤ 1, x ≥ 0; (37) is by a change

of measure in the expectation; and (38) is by hn
2
(x) ≤ 1.

To conclude, we need to prove that Ξ′(∥x∥;PXR
) changes

sign at most once. To that end, we will need the following
lemma shown in [19, Theorem 3].



Lemma 2. Let the pdf f(x, ω) be a positive-definite kernel
that can be differentiated n times with respect to x for all ω,
and let η(ω) be a function that changes sign n times. If

M(x) =

∫
η(ω)f(x, ω)dω, (39)

can be differentiated n times, then M(x) changes sign at most
n times.

By using (33), the fact that the chi-square pdf is a positive
defined kernel [19], and Lemma 2, the number of sign changes
of Ξ′(∥x∥;PXR

) is upper-bounded by the number of sign
changes of

M̃2(y)−M1(y) = Gσ1,σ2,R,n(y), y > 0 (40)

where Gσ1,σ2,R,n(y) was defined and discussed in Section II
and it was assumed that it has at most one sign change for
y > 0. For example, a sufficient condition is given by

R < σ2
1

√
n

(
1

σ2
1

− 1

σ2
2

)
(41)

This concludes the proof.

C. Estimation Theoretic Representation

To complete the proof we seek to re-write the condition in
Theorem 4 in the estimation theoretic form. To that end, we
need the following representation of the relative entropy [20]:

D(PX1+
√
tZ∥PX2+

√
tZ) =

1

2

∫ ∞

t

g(s)

s2
ds, (42)

where

g(s) = E
[
∥X1 − ϕ2(X1 +

√
sZ)∥2

]
− E

[
∥X1 − ϕ1(X1 +

√
sZ)∥2

]
(43)

and where ϕi(y) = E[Xi|Xi +
√
sZ = y], i ∈ {1, 2}.

Another fact that will be important for our expression is

E
[
XR | XR +

√
sZ = y

]
=

Ry

∥y∥
hn

2

(
∥y∥R
s

)
, (44)

see, for example, [15] for the proof.
Next, using (42) and (44) note that for any ∥x∥ = R we

have that for i ∈ {1, 2}

D(P
x+

√
σ2
iZ

∥P
XR+

√
σ2
iZ

) (45)

=
1

2

∫ ∞

σ2
i

E
[
∥x− R(x+

√
sZ)

∥x+
√
sZ∥ hn

2

(
∥x+

√
sZ∥R

s

)
∥2
]

s2
ds (46)

=
1

2

∫ ∞

σ2
i

R2 − R2E
[
h2n

2

(
∥x+

√
sZ∥R

s

)]
s2

ds, (47)

and

D(P
0+

√
σ2
iZ

∥P
XR+

√
σ2
iZ

) =
1

2

∫ ∞

σ2
i

R2E
[
h2n

2

(
R∥Z∥

s

)]
s2

ds.

(48)

Now, note that by using definition of Ξ(x;PXR
) in (30),

and (47) and (48) we have that for ∥x∥ = R

Ξ(x;PXR
)

= D(P
x+

√
σ2
1Z

∥P
XR+

√
σ2
1Z

)−D(P
x+

√
σ2
2Z

∥P
XR+

√
σ2
2Z

)

=
1

2

∫ σ2
2

σ2
1

R2 − R2E
[
h2n

2

(
∥x+

√
sZ∥R

s

)]
s2

ds, (49)

and

Ξ(0;PXR
)

= D(P
0+

√
σ2
1Z

∥P
XR+

√
σ2
1Z

)−D(P
0+

√
σ2
2Z

∥P
XR+

√
σ2
2Z

)

=
1

2

∫ σ2
2

σ2
1

R2E
[
h2n

2

(
∥
√
sZ∥R
s

)]
s2

ds (50)

Consequently, the necessary and sufficient condition in
Theorem 4 can be equivalently written as∫ σ2

2

σ2
1

E
[
h2n

2

(
∥
√
sZ∥R
s

)
+ h2n

2

(
∥x+

√
sZ∥R

s

)]
− 1

s2
ds ≤ 0.

(51)
Now R̄n(σ

2
1 , σ

2
2) will be the largest R that satisfies (51),

which concludes the proof of Theorem 1.

VI. PROOF OF THEOREM 3

Using the KKT conditions in (27), we have that for x =
[R, 0, . . . , 0]

Cs(σ
2
1 , σ

2
2 ,R) = D(fY1|X(·|x)∥fY⋆

1
)− D(fY2|X(·|x)∥fY⋆

2
)

=
1

2

∫ σ2
2

σ2
1

R2 − R2E
[
h2n

2

(
∥R+

√
sZ∥R

s

)]
s2

ds

(52)

where the last expression was computed in (49).

VII. CONCLUSION

This paper focuses on the secrecy-capacity vector Gaus-
sian wiretap channel under the peak-power (or amplitude
constraint) in a so-called low (but not vanishing) amplitude
regime. In this regime, the optimal input distribution PXR

is supported on a single sphere of radius R. The paper has
identified the largest R̄n such that this distribution PXR

is
optimal. In addition, the asymptotic of R̄n has been completely
characterized as dimension n approaches infinity. As a by-
product of the analysis, the capacity in the low amplitude
regime has also been characterized in more or less closed-
form. The paper has also provided a number of supporting
numerical examples. As part of ongoing work, we are trying
to resolve the conjecture that was made regarding the number
of zeros of the function defined through the ratios of Bessel
functions. An interesting but ambitious future direction would
be to determine a regime in which a mixture of a mass point at
zero and PXR

is optimal. We finally remark that the extension
of the results of this paper to nondegraded wiretap channels
is not trivial.
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