
MCS-SLAM: Multi-Cues Multi-Sensors Fusion SLAM

Matteo Frosi1, Matteo Matteucci2 Member, IEEE

Abstract— Simultaneous localization and mapping (SLAM)
is one fundamental topic in robotics due to its applications
in autonomous driving. Over the last decades, many systems
have been proposed, working on data coming from different
sensors, such as cameras or LiDARs. Although excellent results
were reached, the majority of these methods exploit the data
as is, without extracting additional information or considering
multiple sensors simultaneously. In this paper, we present
MCS-SLAM, a Graph SLAM system that performs sensor
fusion by exploiting multi-cues extracted from sensor data:
color/intensity, depth/range and normal information. For each
sensor, motion estimation is achieved through minimization
of the pixel-wise difference between two multi-cue images.
All estimates are then collectively optimized to achieve a
coherent transformation. Point clouds received as input are
also used to perform loop detection and closure. We compare
the performance of the proposed system with state-of-the-
art point cloud-based methods, LeGO-LOAM-BOR, LIO-SAM,
HDL and ART-SLAM, and show that the proposed algorithm
achieves less accuracy than the state-of-the-art, while needing
much less computational time. The comparison is made by
evaluating the estimated trajectory displacement, using the
KITTI dataset.

I. INTRODUCTION

To accurately navigate through the environment, robots
must perform trajectory estimation and map construction,
as these are essential tasks in many real-world applications,
such as autonomous driving or re-localization. Over the last
decades, many systems have been proposed, to solve the
simultaneous localization and mapping (SLAM) problem.
These methods can be classified into three categories, de-
pending on the main sensor(s) used: vision-based, if the
considered sensor is a camera; point cloud-based, or LiDAR-
based, if data comes from a laser rangefinder; and hybrid
systems, if the input has multiple origins.

Vision-based systems exploit visual information, either
sparse or dense, contained in consecutive images, to track the
position of the robot and easily detect loops in the estimated
trajectory. Among them, one can find DSO-SLAM [1],
ProSLAM [2] or the very recent ORB-SLAM3 [3], which
handles data coming from monocular, stereo, or RGB-D
cameras, using pin-hole and fish-eye lens models. Although
Visual SLAM systems provide very good results, they are
prone to errors due to their sensitivity to light changes, low
textured environments and weather conditions.

*This work was not supported by any organization
1Matteo Frosi (corresponding author) is a Ph.D. student at the Di-

partimento di Elettronica, Informazione e Bioingegneria of Politecnico di
Milano, Milan, Italy matteo.frosi@polimi.it

2Matteo Matteucci is Full Professor at the Dipartimento di Elettron-
ica, Informazione e Bioingegneria of Politecnico di Milano, Milan, Italy
matteo.matteucci@polimi.it

On the other hand, LiDAR-based methods can capture and
represent the environment with a high level of detail, because
of the density of collected points, and they are not affected
by the issues of vision-based systems. Tracking performed
with point clouds is more accurate and stable than its visual
counterpart and it consists in matching two consecutive point
clouds to find the best alignment between them, procedure
also known as scan matching. Some systems, such as LeGO-
LOAM [4] and LIO-SAM [5], perform scan matching by
comparing 3D features extracted from point clouds, including
edges, planes or clusters, with the latter also requiring high
frequency IMU data. Other methods, including HDL [6]
and the very recent ART-SLAM [7], perform, instead, scan
matching on full point clouds (or a downsampled version),
evaluating the point-to-point alignment. Feature-based sys-
tems are less accurate than full point cloud-based meth-
ods, although they are faster. Nevertheless, achieving real-
time performance in LiDAR-based SLAM algorithms, while
maintaining high accuracy, remains an open quest.

To combine the advantages of Visual and LiDAR SLAM,
the focus shifted to hybrid systems, which couple the data
coming from different sensors, with the goal of achieving
accurate results in real-time. The work in [9] presents an
RGB-D camera with LiDAR EKF SLAM, with the purpose
of tackling the issue of unsuccessful visual tracking. If
visual tracking fails, the LiDAR pose is used to localize
the point cloud data of the RGB-D camera, to build a 3D
map. In Limo [10], LiDAR measurements are used for depth
extraction, as 3D points are projected on the corresponding
RGB images, which are employed later in keyframe-based
bundle adjustment. Zhu et al. [11] developed a 3D laser
SLAM system associated with a visual method to perform
loop detection through a keyframe-based technique, using
visual bags-of-words. The work in [12] proposed to use both
visual and LiDAR measurements by first running in parallel
SLAM for each modality, and then coupling the data.

Hybrid systems give accurate results, but they do not truly
target sensor fusion, as one type of data is often used to
improve the quality of an existing system based on another
type of data (e.g., point clouds to aid Visual SLAM methods
or images to improve LiDAR SLAM efficiency). The closest
work to sensor fusion is [13], where graph optimization is
performed using a specific cost function, considering both
laser and feature constraints. Graph-based approaches are
widely used in SLAM literature, due to their advantages.
The estimated trajectory is modeled as a graph, as described
by Grisetti et. al. in [14], where relationships between sensor
data and/or observations from the environment can be mod-
eled as edges. Moreover, a great number of frameworks for



Fig. 1. From top to bottom: intensity, range and normal images extracted from a point cloud of the KITTI odometry dataset [8]. The images cover the
field of view of the LiDAR sensor used to scan the environment, i.e., 360 degrees horizontally and 26.8 degrees vertically.

efficient graph optimization currently exist, which translates
in the optimization of the estimated trajectory.

Not only sensor fusion is hardly achieved in literature, but
tracking, i.e., data association, is most of the time explicit, as
it heavily depends on the type of data used: feature detection
and extraction for images and 3D point or feature scan
matching for point clouds. Della Corte and Bogoslavskyi
et al. [15] recently proposed a general algorithm for multi-
cue photometric registration of 3D point clouds, designed
without considering a specific sensor, nor a particular cue,
which represents information about sensor data. The method
they proposed, to perform odometry estimation rather than
SLAM, uses multiple cues from input data (either RGB-
D images or LiDAR point clouds), namely color, range or
depth, and normals direction, as in Fig. 1. By doing this, the
algorithm avoids an explicit point-to-point data association
and is able to compute the transformation between view
points under realistic disturbances from an initial motion
guess. However, as the length of the trajectory increases, the
method drifts, being for odometry estimation only. Moreover,
the approach can only handle one sensor at a time (e.g.,
RBG-D camera or LiDAR), and it is not able to exploit
common sensor suites installed on autonomous vehicles.

For these reasons, in this paper we propose an extension
of the work in [15] to multiple sensors, and we integrate
it into a Graph SLAM framework to perform fast and
accurate multi-sensor and multi-cue SLAM, with the fol-
lowing contributions. The proposed system, named MCS-
SLAM (Multi-Cues Multi-Sensors Fusion SLAM) performs
tracking by integrating data coming from multiple sensors,
while avoiding explicit data association. The method is also
capable of efficiently detecting and closing loops, using
a multiple step algorithm, and it optimizes the estimated
trajectory through the g2o optimization framework, allowing
for the inclusion of corrective data, such as GPS or IMU.
MCS-SLAM presents a high degree of modularity, due to
its architecture, described in Section II, which can be easily
integrated and improved.

II. MCS-SLAM

A high-level overview of the system architecture of the
proposed system can be seen in Fig. 2. MCS-SLAM is made
up of distinct modules, the gray boxes in the figure, which
represent the core of the system. The current implementation

Fig. 2. High-level architecture of the proposed system.

of MCS-SLAM requires point clouds as mandatory input,
as loop closure involves scan matching between a pair of
clouds. Nevertheless, the proposed method can be extended
to perform a different type of loop detection, thus removing
the need for LiDAR data as a whole.

Given an incoming laser scan, the first step is to process it,
in the pre-filterer and in the cloud projector. The first reduces
the size of the cloud, downsampling it, and it removes noisy
elements. The filtered point cloud is used later for efficient
loop detection, to correct the estimated trajectory. The cloud
projector, instead, converts the 3D point cloud into two 2D
images. One represents the ranges of all elements of the point
cloud, while the other displays their intensities.

The two images are used by the core components of the
system, the tracker, which estimates the current displacement
of the robot by performing two consecutive steps. First, pairs
of images derived from one or multiple sensors (e.g., two
LiDARs, a LiDAR and a camera, an RGB-D camera and
a LiDAR) are processed in parallel and independently one
from the other, to obtain a rough estimate of the current
motion. Then, these estimates are jointly optimized to get the
transformation which best satisfies the constraints imposed
by the multiple sensors.

The current pose estimate is sent, along with its corre-
sponding filtered point cloud, to the loop detector module,
which tries to efficiently find loops between new and pre-
vious point clouds, via scan-to-scan matching. Poses and
loops are used to build the pose graph, which represents



the estimated trajectory of the robot. Lastly, the pose graph
is optimized to increase the poses accuracy. IMU and GPS
data (pink boxes in Fig. 2) can also be integrated both in the
tracker module, to give it an initial guess for improving the
estimated motion, and in the pose graph builder module, to
increase the accuracy of the estimated trajectory of the robot.

A. Pre-filtering

The purpose of the pre-filterer module is to reduce the
number of elements of a point cloud, while also removing
noisy data and outliers. In LiDAR SLAM systems, pre-
filtering is almost a mandatory step, performed to avoid
scan matching between large point clouds, which would
be computationally intensive. Downsampling can reduce the
input size by a factor of five or even more, if necessary,
while retaining the spatial structure of the initial scan. In
MCS-SLAM, pre-filtering is not used for tracking, where
having dense and large point clouds is, instead, a benefit,
but for loop closure. Indeed, scan-to-scan matching is one
of the steps followed to detect loops, and it is essential to
have reduced clouds, to achieve detection in reasonable time.

B. Cloud projection

As the name implies, the cloud projector module has the
purpose of converting a point cloud in 2D images, repre-
senting range and intensity. Projection is achieved through
the spherical projection model, which best captures the
characteristics of laser rangefinder sensors, such as LiDARs.

Let K be a camera matrix in the following form:

K =

fx 0 cx
0 fy cy
0 0 1

 (1)

where fx and fy specify, respectively, the resolution of
azimuth and elevation, and cx and cy their offset in pix-
els. Then, the spherical projection of a 3D point P =
[px, py, pz]

T is given by:

proj(P ) = K

 atan2(py, px)

atan2(pz,
√
p2y + p2x)

1

 (2)

C. Tracking

Tracking, also known as short term data association, is the
task of finding the relative motion between two consecutive
poses of the robot. The tracker module operates in two con-
secutive phases: standalone motion estimation and collective
motion optimization.

The standalone motion estimation phase is performed
on all data coming from multiple sensors, independently
from each other. In particular, for each sensor, the pipeline
described in [15] is executed, to obtain multiple, independent,
rough estimates of the robot motion. As a consequence,
considering S sensors, we are able to obtain S estimates
by running the algorithm presented in [15], in parallel.

This approach seeks to register either two observations
with respect to each other or an observation against a
3D model. Sensor observations are normalized into a 2D

representation, e.g., an image from a regular camera, or
a range image from a LiDAR (as explained previously in
Subsection II-B). This representation consists in a multi-
cue image, where each pixel contains different types of
information, i.e., light intensity, depth information of surface
normals, as represented in Fig. 1.

Each measurement is aligned to a model M = {Pi, i =
0 . . . N}, for which 3D information is available in the form
of a point cloud, enriched with data associated to the different
cues. As in photometric error minimization approaches, the
method tries to iteratively minimize the pixel-wise difference
between the current multi-cue image I and the predicted
image Î(M,X), the latter being a multi-cue image obtained
by projecting the model M onto a virtual camera located at
the estimated pose PX . X is the transformation matrix that
transforms the points of M from the global into the local
camera coordinate system.

The goal is to find the best transformation

X∗ = argmin
X

∑
u,v,c

∥∥∥Îcu,v(M,X)− Icu,v

∥∥∥2
Ωc

= argmin
X

∑
u,v,c

ecu,v(M,X)T Ωc ecu,v(M,X) (3)

where ecu,v is the error at pixel (u, v) between the predicted
value Îcu,v and the measured value Icu,v for a particular index
c associated to a cue, and Ω = diag({Ωc}) is a block
diagonal information matrix used to weight the different cues
of the image. Instead of solving the problem in Eq. 3, the
approach in [15] re-formulates it as a linear system, where,
instead of finding the transformation X∗ that yields the best
result, a perturbation ∆x is calculated iteratively, such that

X∗ = X ⊕∆x (4)

where X is an initial guess of the transformation and ∆x is
a vector with six elements, corresponding to the difference
in translation and orientation.

This formulation comes from the Taylor expansion of the
error described above, combined with Eq. 4:

ecu,v(X ⊕∆x) ⋍ ecu,v(X) +
δecu,v(X ⊕∆x)

δx

∣∣∣∣
x=0

∆x (5)

= ecu,v(X) + Jc
u,v(X)∆x (6)

The minimization problem then becomes

∆x∗ = argmin
∆x

∑
u,v

wu,v

∑
c

∥∥ecu,v(X) + Jc
u,v(X)∆x

∥∥2
Ωc

(7)
with wu,v being a regularization weight. This, in turn, is
equivalent to solve the linear system H∆x∗ = b, with the
terms H and b, respectively given by

H =
∑
u,v

wu,v

∑
c

Jc
u,v(X)TΩcJc

u,v(X) (8)

b =
∑
u,v

wu,v

∑
c

Jc
u,v(X)TΩcecu,v(X) (9)



This procedure is done incrementally and on multiple scales
of the input 2D images, to accurately find the best ∆x∗,
while avoiding falling into local minima.

As stated in the introduction of this subsection, in MCS-
SLAM, this pipeline is executed once for each sensor, in
parallel, such that data coming from sensor i, e.g. a LiDAR,
generates a motion estimate transi. Once all estimates are
computed, the tracker proceeds to the next phase, namely the
collective motion optimization, taking also into account the
rotational offsets of the various sensors. We do not consider
the translation part of each offset, as we are working in
the field of autonomous driving and all sensors are rigidly
attached to the robot/vehicle (meaning that the motion is the
same for all sensors).

First, all motion estimates associated to the multiple sen-
sors are weighted and summed, with each weight wi being
inversely proportional to the re-projection error previously
computed as part of the procedure to find transformation
transi, described above. In this way, a unique motion of
the robot is obtained, combining the tracking information
associated to each sensor. This value is then fed again to
each standalone motion estimation pipeline, as initial guess,
and optimized only for one iteration. These two steps form a
single iteration of the collective motion optimization, and are
continuously repeated, until convergence, or up to N times.

The standard approach to perform a sort of sensor fusion
is to adopt a Kalman Filter-based solution. Although easy
to implement, a Kalman Filter does not perform any kind
of post-optimization. This is usually needed, as the poses
estimated, associated to each sensor, may differ from each
other, especially if coming from data gathered by unreliable
sensors. A Kalman Filter would give more weight to the
reliable estimates, and it would compute a new pose (and
relative motion), which, fed to the tracking modules of the
unreliable sensors, would lead to convergence problem and
increasing inaccuracies. In MCS-SLAM, instead, the combi-
nation of standalone motion estimation and collective motion
optimization allows to obtain motion estimates smoothed
among all sensors, taking into account their overall accuracy
and also avoiding abrupt changes in the estimated poses,
independently from the sensor considered.

The tracker of MCS-SLAM adopts a keyframe-based
approach to estimate the trajectory of the robot. Keyframes
are data structures that describe the motion of the robot
in particular locations of its trajectory, and they contains
multiple useful quantities. MCS-SLAM, differently from the
majority of SLAM systems in literature, works using two
types of keyframes: one for tracking and one to be used for
loop closure and pose graph construction and optimization.

Keyframes associated to the tracker hold the current es-
timated position of the robot and the corresponding multi-
cue images. For each sensor i, we keep track of the current
keyframe Ktracker

i , as it has no other purpose than to avoid
useless computations. Keyframes related to the other mod-
ules (i.e., loop closure detection and pose graph building and
optimization) contain a point cloud and the pose (odometry)
estimated by the tracker, along with timestamp of the cloud,

accumulated distance from the beginning and, if available,
camera images. We refer to these keyframes with Kgraph

j ,
since they are computed following the collective optimization
phase and are mainly used in the pose graph.

The first tracker keyframe, for each sensor, and the first
graph keyframe, correspond to the first point cloud received
by the system. Consecutive keyframes (this applies inde-
pendently from the type) must satisfy at least one of the
following criteria:

• The distance between the frames is greater than a user-
defined threshold, ∆trans, in meters

• The rotation between the frames is greater than a user-
defined angle, ∆orientation, in radians

The thresholds ∆trans and ∆orientation depend on the
dataset and the type of trajectory to be estimated. Keyframes
Ktracker

i correspond to very low thresholds, as we want
to compare images close in time, to avoid accumulating
initialization errors. In our experiments we use ∆trans
and ∆orientation of, respectively, 50 centimeters and 1
degree. The poses obtained by the tracker after the collective
optimization are then filtered through higher thresholds, to
obtain multiple graph keyframes Kgraph

j , which are stored
in the pose graph. Again, in our experiments, we set ∆trans
to 5 meters and ∆orientation to 5 degrees.

All these parameters should be tuned accordingly to the
scenario considered. For example, to handle an indoor en-
vironment, one would use low thresholds, as robots moving
through it are relatively slow. On the other hand, an outdoor
scenario would be associated to parameters with high values,
as robots navigate it at higher speed than the indoor case.

D. Loop detection

When the robot passes through a location that has been
previously visited, it forms a loop in its trajectory. Loops are
additional useful constraints to insert into the pose graph,
allowing the correction of drifts and estimation errors. In
the current MCS-SLAM implementation, detection of loops
involves a multiple step method, strictly associated to the
availability of point clouds, which are mandatory inputs in
the current implementation of the system, and it involves
only the Kgraph keyframes. In the following, we drop the
suffix graph, referring to keyframes only as Kj .

Whenever a keyframe Kquery is created, it is compared
with all the other keyframes, which are candidates for loop
closure. To make loop detection scalable, an odometry-based
filtering is performed. A pair Kquery and Kcandidate is kept
only if the two keyframes correspond to estimated odome-
tries far in time but close in location (within a threshold
range). If Kquery and Kcandidate satisfy these constraints,
they probably correspond to a loop closure.

Once all the loop candidates have been discovered, they
are further compared using the approach described in [17],
which converts the corresponding point clouds in a bird-eye
view grid and selects the pairs with most similar cells. At
the end of this step, only k candidate pairs for loop closure
remains, to be used in the next step. This few number of
candidates is then compared using scan-to-scan matching,



Fig. 3. Range images obtained through the spherical projection of a point cloud split in two, from City Sequence 05 of the KITTI raw dataset [16]. The
image on the left corresponds to the environment in front of the LiDAR acquiring the scan (180 degrees), while the image on the right represents the part
of the scene behind the sensor (again, 180 degrees).

Fig. 4. From left to right, RGB image, sparse range image obtained through LiDAR-to-camera projection and enhanced range image, from city Sequence
05 of the KITTI raw dataset [16]. The enhancement is achieved through a simple bilinear filtering, along with manual completion.

to find the alignment between the point clouds of each
pair. Then, all the transformations obtained are compared.
If found, the transformation corresponding to the smallest
distance and highest accuracy represents a loop, which is
then added to the pose graph as a new constraint.

E. Pose graph building and optimization

MCS-SLAM is a Graph SLAM [14] system, where the
poses of the robot are modeled as nodes in a graph, named
pose graph, and edges represent spatial constraints resulting
from tracking or measurements coming from different sen-
sors, e.g., IMU or GPS. Moreover, each node j is associated
to the corresponding keyframe Kgraph

j and edges can be
added also when performing loop detection and closure,
between non-consecutive nodes in the graph. Periodically,
the pose graph is optimized to best satisfy the constraints
provided by the measurements associated to each edge.

III. EXPERIMENTAL VALIDATION OF THE SYSTEM

The proposed system has been compared against four
methods for point cloud-based SLAM: LeGO-LOAM-BOR
(which is an improved variant of LeGO-LOAM [4]), LIO-
SAM [5], HDL [6] and ART-SLAM [7]. IMU data, which
is mandatory in LIO-SAM, is also used in ART-SLAM, to
deskew point clouds and to enforce rotational constraints in
the pose graph. We evaluate MCS-SLAM in two scenarios
coming from the KITTI dataset [8] [16], corresponding to a
short path without loops and a medium sequence with one
closure at the end of the trajectory.

To test the proposed system, we run it under five different
conditions. In the first case, from a single point cloud cover-
ing all the surrounding environment (360 degrees horizontal
field of view), we generate a single multi-cue image, having
no color information (meaning that we consider only range
and normal cues). In the second and third scenarios, we split
the point cloud in two and use only the points, respectively,
in front and behind the LiDAR, covering a horizontal field
of view of 180 degrees each, obtaining the range images
represented in Fig. 3. It should be noticed that the first three
experimental campaigns involve only a single sensor, and
they are used to evaluate the SLAM part of MCS-SLAM.

The fourth case considers the point clouds, from the
second and third scenarios, as coming from two different
sensors. This way, for each input, the standalone motion
estimation is performed, followed by the collective motion
optimization, described in Subsection II-C (differently from
the first three cases, where only the standalone motion
estimation is needed). Lastly, in the fifth scenario, we project
LiDAR data onto the corresponding RGB image, obtaining
a large multi-cue image (color and range). As it can be
seen in the central picture of Fig. 4, the projected cloud is
sparse w.r.t. the colored image. For this reason, we first apply
windowed bilateral filtering on the sparse range image, then
we fill each column with the highest range value in them,
obtaining the right picture of Fig. 4. The fourth and fifth
experimental campaigns involve two sensors (two pseudo
LiDAR and a LiDAR coupled with a camera, respectively),
and they are used to evaluate the data and sensor fusion
capabilities of MCS-SLAM.

Experiments are tested on a 2021 XMG 64-bit laptop with
Intel(R) Core(TM) i7-11800H CPU @ 2.30GHz x 8 cores,
each with 24576 of cache size.

A. Comparison and results

To evaluate the systems, we compute the absolute trajec-
tory error (ATE) and show the processing time, per frame,
of the core modules of MCS-SLAM. In particular, the ATE
measures the difference between coordinates of the points
belonging to the true and the estimated trajectory. Because
Graph SLAM systems correct only the poses associated
to keyframes, we perform a further processing step before
evaluation: we associate the keyframes to the ground truth
positions using timestamps and data indices.

Fig. 5 shows the estimated trajectories on Sequence 07 of
the KITTI odometry dataset [8]. All the evaluated methods
present a high degree of accuracy, following the ground
truth trajectory and easily detecting the loop at the end of
the path. Table I further details the obtained results, as it
represents the mean, root mean squared error (RMSE) and
standard deviation (STD) of the absolute trajectory error, in
meters. The proposed system presents an accuracy within an
acceptable threshold of about 1.8 meters, which is similar
to the LeGO-LOAM-BOR. This result was expected, as



Fig. 5. Comparison between the trajectories estimated by LeGO-LOAM-
BOR (derived from LeGO-LOAM [4]), HDL [6], ART-SLAM [7] and the
proposed system (in the multiple sensors scenarios), on Sequence 07 of the
KITTI odometry dataset [8]. The other methods considered in the evaluation
are not included, to avoid further overlapping.

TABLE I
ATE ON SEQUENCE 07 OF THE KITTI ODOMETRY DATASET [8].

ATE [m] MEAN RMSE STD
LeGO-LOAM-BOR 1.604 1.807 0.832

LIO-SAM (mandatory IMU) 0.509 0.675 0.351
HDL 0.954 1.253 0.767

ART-SLAM (with IMU) 0.343 0.366 0.127
MCS-SLAM (one LiDAR) 1.679 2.219 1.137

MCS-SLAM (one LiDAR, front) 1.894 2.392 1.215
MCS-SLAM (one LiDAR, back) 1.917 2.421 1.054

MCS-SLAM (two LiDAR) 1.714 1.892 0.798
MCS-SLAM (camera + LiDAR) 2.822 2.924 1.957

tracking performed through MCS-SLAM loses precision due
to the projection of point clouds in 2D images, which are
later back-projected in 3D clouds, as described in [15]. More-
over, all results associated to the five considered scenarios
behave as expected, with the one LiDAR case being the
most accurate, followed by the fusion of front and back. The
camera plus LiDAR setup is less accurate, as range image
densification is achieved through a simple bilinear filtering
and manual completion.

To evaluate the accuracy when loop closures are not
available, we also considered a short sequence. As the
dataset corresponding to raw odometries does not have a
ground truth, we use, instead, GPS data, provided along
with the point clouds and RGB images. Fig. 6 represents
the estimated trajectories on City Sequence 05 of the KITTI
raw dataset [16]. As for the medium-length sequence, all
the methods considered for evaluation tightly follow the
trajectory, even if no loop closure is available to correct drifts
and tracking problems, even though for shorter sequences
there is not enough room to accumulate such errors. Table II
shows the ATE statistics, in meters. As before, all systems
show good results, with the proposed method performing
almost as well as the method with best accuracy (with a
difference of about ten centimeters). These results are also
motivated by the fact that the trajectory is relatively simple,
almost straight with very smooth turns.

Among all the systems used for comparison, only HDL is

Fig. 6. Comparison between the trajectories estimated by LeGO-LOAM-
BOR (derived from LeGO-LOAM [4]), HDL [6], ART-SLAM [7] and the
proposed system (in the multiple sensors scenarios), on City Sequence 05 of
the KITTI raw dataset [16]. The other methods considered in the evaluation
are not included, to avoid further overlapping.

TABLE II
ATE ON CITY SEQUENCE 05 OF THE KITTI RAW DATASET [16].

ATE [m] MEAN RMSE STD
LeGO-LOAM-BOR 1.094 1.169 0.409

LIO-SAM (mandatory IMU) 0.493 0.338 0.280
HDL 0.893 0.912 0.476

ART-SLAM (with IMU) 0.746 0.814 0.326
MCS-SLAM (one LiDAR) 0.679 0.807 0.437

MCS-SLAM (one LiDAR, front) 0.561 0.639 0.305
MCS-SLAM (one LiDAR, back) 0.708 0.806 0.383

MCS-SLAM (two LiDAR) 0.578 0.659 0.317
MCS-SLAM (camera + LiDAR) 1.341 1.551 0.892

not able to run real-time, being two to three times slower
than the data acquisition rate (which is one frame every
100 milliseconds). LeGO-LOAM-BOR and LIO-SAM are
designed to perform real-time SLAM, with the latter being
even faster (the average processing time ranges from 35 to
50 milliseconds). Moreover, as described in [7], also ART-
SLAM is able to achieve real-time results, even on long
sequences. Table III shows the average processing time,
per frame, of MCS-SLAM, in all five scenarios considered
in the evaluation, for both sequences. MCS-SLAM, despite
being less or as accurate as the other methods, is able to
run more than five times faster than the data acquisition
rate. It should be noticed that tracking is performed in
parallel to the whole loop detection and graph construction
and optimization procedure, proving, once again, that MCS-
SLAM can be faster than real-time.

Intuitively, the split single-sensor scenarios (back and
front) are associated to the lowest runtime, as we are dealing
with small images (half width than the image obtained in
the one LiDAR case). The processing time associated to the
camera plus LiDAR setup may surprise, being the worst of
all, but it is due to the densification of the projected point
cloud onto the RGB image, operation that is quite intensive
due to the size of the image to fill (1242x375 pixels) and
the approach adopted (bilinear filtering). This step is not
optimized and can be sped up using other, more efficient,
algorithms. Nevertheless, it is clear that MCS-SLAM is



TABLE III
COMPARISON OF THE PROCESSING TIME [MS], PER FRAME, OF THE VARIOUS MODULES, BETWEEN THE VARIANTS OF MCS-SLAM.

Processing time (per frame) [ms] Sequence Pre-processing Tracking Loop detection Graph optimization
MCS-SLAM (one LiDAR)

KITTI 07

10.172 22.648 10.226 1.320
MCS-SLAM (one LiDAR, front) 8.907 13.893 10.226 1.320
MCS-SLAM (one LiDAR, back) 8.907 13.753 10.226 1.320

MCS-SLAM (two LiDAR) 9.371 16.393 10.226 1.320
MCS-SLAM (camera + LiDAR) 149.823 19.712 10.226 1.320

MCS-SLAM (one LiDAR)

KITTI SHORT

10.172 22.648 6.819 0.132
MCS-SLAM (one LiDAR, front) 8.907 13.597 6.819 0.132
MCS-SLAM (one LiDAR, back) 8.907 13.642 6.819 0.132

MCS-SLAM (two LiDAR) 9.371 17.241 6.819 0.132
MCS-SLAM (camera + LiDAR) 155.712 21.712 6.819 0.132

Fig. 7. Map obtained by MCS-SLAM with two LiDAR, on Sequence 07
of the KITTI odometry dataset [8].

definitely faster than the other methods.
Lastly, we include a visual evaluation of the results ob-

tained. Fig. 7 shows the map obtained by MCS-SLAM, in the
two LiDAR scenario, of Sequence 07 of the KITTI odometry
dataset [8].

IV. CONCLUSIONS

In this paper, we have proposed MCS-SLAM, a Graph
SLAM system that is able to perform multi-cue and multi-
sensor pose tracking faster than real-time (meaning faster
than the data acquisition rate). Differently from systems
available in literature, MCS-SLAM is able to effectively fuse
data coming from multiple sensors, and to exploit different
cues extracted from data itself, i.e., intensity, depth or range,
and normal to the surface. This is achieved through two
steps: standalone motion estimation and collective motion
optimization, involving all sensors considered. The proposed
system is improvable and extendable, due to the independent
nature of its modules. Lastly, it shows a remarkable speed
up w.r.t. state-of-the-art algorithms, making it suitable for
real-time applications.

REFERENCES

[1] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[2] D. Schlegel, M. Colosi, and G. Grisetti, “Proslam: graph slam from
a programmer’s perspective,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 3833–3840.

[3] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
2021.

[4] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4758–4765.

[5] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 5135–5142.

[6] K. Koide, J. Miura, and E. Menegatti, “A portable 3d lidar-based
system for long-term and wide-area people behavior measurement,”
IEEE Trans. Hum. Mach. Syst, 2018.

[7] M. Frosi and M. Matteucci, “Art-slam: Accurate real-time 6dof lidar
slam,” IEEE Robotics and Automation Letters, 2022.

[8] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[9] Y. Xu, Y. Ou, and T. Xu, “Slam of robot based on the fusion of vision
and lidar,” in 2018 IEEE International Conference on Cyborg and
Bionic Systems (CBS). IEEE, 2018, pp. 121–126.

[10] J. Graeter, A. Wilczynski, and M. Lauer, “Limo: Lidar-monocular
visual odometry,” in 2018 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE, 2018, pp. 7872–7879.

[11] Z. Zhu, S. Yang, H. Dai, and F. Li, “Loop detection and correction
of 3d laser-based slam with visual information,” in Proceedings of
the 31st International Conference on Computer Animation and Social
Agents, 2018, pp. 53–58.

[12] Y. Seo and C.-C. Chou, “A tight coupling of vision-lidar measure-
ments for an effective odometry,” in 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2019, pp. 1118–1123.

[13] G. Jiang, L. Yin, S. Jin, C. Tian, X. Ma, and Y. Ou, “A simultaneous
localization and mapping (slam) framework for 2.5 d map building
based on low-cost lidar and vision fusion,” Applied Sciences, vol. 9,
no. 10, p. 2105, 2019.

[14] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[15] B. Della Corte, I. Bogoslavskyi, C. Stachniss, and G. Grisetti, “A
general framework for flexible multi-cue photometric point cloud
registration,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 4969–4976.

[16] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[17] G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor
for place recognition within 3d point cloud map,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 4802–4809.


