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Abstract: During the last years, several research activities and studies have presented the possibility
to perform manufacturing control using distributed approaches. Although these new approaches
aim to deliver more flexibility and adaptability to the shop floor, they are not being readily adopted
and utilised by the manufacturers. One of the main challenges is the unpredictability of the proposed
solutions and the uncertainty associated with these approaches. Hence, the proposed research aims
to explore the utilisation of Digital Twins (DTs) to predict and understand the execution of these
systems in runtime. The Fourth Industrial Revolution is leading to the emergence of new concepts
amongst which DT stand out. Given their early stage, however, the already existing implementations
are far from standardised, meaning that each practical case has to be analysed on its own and
solutions are often created from scratch. Taking the aforementioned into account, the authors
suggest an architecture that enables the integration between a previously designed and developed
agent-based distributed control system and its DT, whose implementation is also provided in detail.
Furthermore, the digital model’s calibration is described jointly with the careful validation process
carried out. Thanks to the latter, several conclusions and guidelines for future implementations were
possible to derive as well.

Keywords: Cyber-Physical Production System; Digital Twin; distributed control systems; industrial
agents; Multi-Agent System; simulation

1. Introduction

As a result of the German government’s pioneer effort to innovate manufacturing
systems [1], the Fourth Industrial Revolution was designated Industry 4.0 (I4.0) for the
first time in 2011, on the occasion of the Hannover Fair [2].

Despite the term’s extensive nature, a widely accepted definition can be found in [3],
where it is described as “a set of technologies based on digitisation and interconnection of
all production units present within an economic system”.

In order to improve the efficiency and profitability of manufacturing systems [4] by
integrating activities involving human beings, machines and data [2], I4.0 relies on enabling
technologies such as big data, Internet of Things (IoT) and simulations. Therefore, factories
are progressively becoming smart factories, the main features of which are the capacity to
accept on-the-fly changes to the ongoing manufacturing processes, provide remote access
to every single resource and autonomously organise production tasks [5].

Nevertheless, in spite of I4.0’s indisputable benefits, the high initial investments, the
uncertainty about its profitability and the risk of cyber-attacks, still prevent companies
from embracing the transition [2].

Tightly related to I4.0 is the concept of Cyber-Physical System (CPS) [6], coined by
Helen Gill at a workshop on CPSs, hosted by the National Science Foundation (NSF) in
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2006 [7]. According to [8], “CPSs are systems of collaborating computational entities which are in
intensive connection with the surrounding physical world and its on-going processes, providing
and using, at the same time, data-accessing and data-processing services available on the internet”.

Whenever applied for manufacturing purposes, CPSs are referred to as Cyber-Physical
Production Systems (CPPSs) [9]. Most of the proposed CPPSs aim to bring dynamic and
flexible solutions using adaptable and reconfigurable distributed control systems [10,11].
Usually, these distributed control systems are modelled as modular components and
designed using Multi-Agent Systems (MASs) approaches [12]. Although the benefits
and improvements introduced by these solutions are known and understandable by the
manufacturers, it is still difficult for these approaches to be adopted and used in real
industrial environments. In the literature, some authors already identified barriers as
critical in adopting these approaches [13]. One of the main obstacles is the difficulty to
predict the self-organised behaviour of such systems and the impossibility to understand
how the system will evolve [14]. Hence, this research aims to study the utilisation of Digital
Twins (DTs) to mitigate this aspect. The authors believe that a simulation-based DT can
be used to predict the system’s behaviour and performance. To do that, it must use the
production line’s current status and the production plan in order to simulate the system to
different time horizons.

The main innovation associated with the previous concepts is related to the digital
world and its components. On this regard, an identical concept to what is now referred to as
DT was originally suggested by Michael Grieves on the occasion of an industry lecture on
Product Lifecycle Management (PLM). According to him, a DT was no more than a virtual
entity capable of mirroring its physical counterpart [15]. It is worth mentioning that, in spite
of this definition still being suitable, a considerable amount of authors mistakenly insist on
stating that a DT includes the components from both the cyber and the physical worlds.

According to [16], three designations are possible depending on the integration level
between the physical asset and its digital corresponding. In case the data exchange between
both entities is manually performed, the term Digital Model is adopted. If only the physical
device is able to automatically update its counterpart, the term Digital Shadow is used
instead. The full DT level implies that the cyber entity is capable of influencing its physical
twin and vice versa.

In any case, Key Performance Indicators (KPIs) may be used to assess the models’
accuracy. These result from the combination of Key Result Indicators (KRIs), which are
directly measurable, and Performance Indicators (PIs), that are mathematically obtainable
using the latter [17].

Therefore, DTs have proven to be powerful tools when it comes to ensuring reasonable
proximity between the established goals and the real outcome, enhancing production
processes and quality check, as well as monitoring and making predictions related to the
manufacturing systems [18].

According to [16], more than half of the analysed articles approached DTs in a concep-
tual way. Regarding the level of integration, 35% only achieved the Digital Shadow level,
28% dealt with Digital Models and no more than 18% were considered full Digital Twins.

In [5], a semantic model was developed with the aim of tackling resource virtualisation.
For that, Ontology Web Language (OWL) was used as the ontology language and Jena as
the rule language for resource capability description. Describing a machine’s attributes
and abilities through semantic web languages allows the representation of real-world
information in a comprehensive format for computing. Furthermore, ontologies promote
the models’ scalability through their objects’ properties [19].

The practical application described in [20] consists of a high-fidelity model of a
physical object focusing on its geometry. For that, ISO 10303, or simply STEP, was used.
Besides the precise representation of geometrical objects through standardised terms, STEP
excels at the .stp files’ compatibility. Nevertheless, this application only represents the
physical shape of an object, disregarding its behaviour.
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In [21], a DT was created to monitor the energy consumption of a I4.0 laboratory.
The Open Platform Communications Unified Architecture (OPC-UA) was used for com-
munication amongst machines and data acquisition. Aside from being a step towards
standardisation, this protocol has an embedded security layer, ruling out the need for
further safety rules. In addition to Simulink, both MATLAB and its OPC Toolbox were vital
for integrating data exchange between the servers and the simulation, given that all the Pro-
grammable Logic Controllers (PLCs) were compatible with this communication protocol.

At last, in [22], the DT concept was applied to a rear lights’ production system. In order
to avoid the need for integration, two models were created using AnyLogic: the front-end,
representing the physical system which only executed tasks, and the back-end, representing
the actual DT which was responsible for giving orders to the former. After connecting
both models using a Java interface, several simulations were carried out and the following
conclusions were drawn:

• Throughput time was reduced by lower failure rates and available feedback from each
station and higher amounts of sensors along the railway.

• The amount of lost messages increases with the number of sensors due to concurrent
communications.

• In spite of delaying communications, a higher number of sensors reduces throughput
time, in particular when stations’ failure rate increases.

Overall, implementing DTs raises a number of issues related to communication speed
constraints, the data acquisition method, the lack of standards that ensure scalability of
existing solutions and unawareness of how to integrate human beings in the process.
Therefore, most applications only support workers in the decision-making process [23].

2. Simulation-Based Digital Twin Framework
2.1. Architecture

With the aim of covering the aforementioned gaps, a three-layered architecture for
a DT of a previously developed distributed control system was proposed, as portrayed
by Figure 1.

Suggested Architecture

Simulation
Layer

Integration
Layer

Distributed
Control
Layer

Simulated KPIs

System’s
Information

GET / POST
Requests

Calculated
KPIs

Manufacturing Unit Simulator
(Multi-Agent System)

API
File

(System’s State + Production Plan)

Model

Data Flow Service Call

Figure 1. Suggested three-layered architecture.

The Distributed Control Layer (DCL) contains the demonstrator from [24], controlled
by a fully working MAS capable of dynamically adapting its behaviour according to the
production requirements and the available stations.

The data model designed in [24] in order to abstract this MAS is presented in Figure 2.
According to Figure 2, this data model describes four types of entities:
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• Conveyor—each conveyor, from conveyorA (entry) to conveyorF (exit), is able to
carry one product at a time.

• Resource—each resource is capable of adding/removing a product to/from the line
or brushing it. A resource must be associated with one of the conveyors.

• Skill—corresponds to each type of action performed by a resource.
• Product—each product consumes different amounts and types of skills, i.e., products

from type one consume one BrushUp, products from type two consume one Brush-
Down and products from type three consume one BrushUp and one BrushDown.
More types can be easily added by editing the ontology.

Figure 2. Multi-Agent System’s data model.

When launched, the MAS remains idle until a suitable production plan is introduced,
by which time the first product is added to the conveyor network. The deployment of the
remaining products happens periodically, after the entry conveyor’s availability is ascer-
tained. Whenever a product is removed from the line, the KPIs are updated. These events
occur as many times as needed until the whole production plan has been processed.

The Integration Layer (IL) is responsible for making the physical system’s relevant
information available to external applications. It contains a file, that plays the role of a
database, where the demonstrator’s current state and the remaining production plan are
stored, and an Application Programming Interface (API), whose purpose is to interact with
the database. For that, the latter provides two services which endure concurrent access.
By sending a GET request with no specific message, the API is instructed to return the
production plan, after reading the file. On the other hand, through a POST request, whose
message body must contain the system’s current state and the remaining production plan,
one may ask the API to update the file. The first operation comes in handy before the
insertion of a product, as it allows the client to check the next product’s type, whereas the
second is used whenever a product is added to the production line, changes position, its
processing ends or when the production plan is first created.

Finally, the Simulation Layer (SL) contains the digital model. So as to serve its purpose,
a correct description of the system’s initial state and the remaining production plan are
required. This way, the model knows where to start simulating from and the type of
products to be inserted afterwards. Additionally, the user is expected to configure the
time interval between the insertion of two consecutive products and the delay associated
with the consumption of each type of skill, according to the data model. Similarly to its
physical twin, the digital model updates the KPIs whenever a product leaves the system,
even though the simulation only ends upon the production plan’s completion.
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The interaction between all these modules is described in the cross-functional diagram
from Figure 3.

Cross-Functional Flowchart

Simulation Model Database File API Multi-Agent System

Start

Start simulating?

Yes

Get the current state
and the production plan

Start

Execute the MAS

Has the state 
changed?

Start

Start the server

Call the updateCSV method
Yes

Start

Generate the database

Update the database

No

Run the 
Simulation Model

Simulate

Has the 
simulation 

ended?

Provide the 
predicted KPIs

No

No

Yes

Figure 3. Cross-functional flowchart.

Although the authors could use any KPIs to develop and demonstrate the proposed
approach’s utilisation and performance, some constraints needed to be considered due
to the system modelled. Since the demonstrator used for the research does not effec-
tively produce or assemble a product, it is impossible to measure waste or quality values.
Hence, only time-related KPIs could be used to evaluate the proposed research. In the liter-
ature, it is possible to find many contributions presenting KPIs commonly used to evaluate
manufacturing systems’ performance. For the proposed work, the authors selected cycle
time [25] and throughput [26] to guide the developments.

2.2. Implementation

The subsections below intend to clarify the implementation of each segment from the
architecture, following top-down approach of the architecture.

2.2.1. The Simulation Model

The digital model itself was developed using AnyLogic, a powerful and well-documented
agent-based simulation tool.

Firstly, two types of agents were created:

• Main—includes all graphical and logical elements, responsible for ascertaining the
model’s correct behaviour until the final predictions are derived.

• Product—abstracts a product and describes it through four parameters: brushUp and
brushDown, that specify the type, and entryTime and exitTime, where the respective
timestamps are stored. Unlike the Main type, there can be more than one instance
per simulation.
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Afterwards, the physical system was represented using Conveyors, Positions on
Conveyors and Transfer Tables, available at the Space Markup category from the Material
Handling Library. The result is shown in Figure 4.

Figure 4. Conveyor network’s 2D view.

With the aim of controlling the model’s overall behaviour, the blocks diagram repre-
sented in Figure 5 was designed.

Figure 5. Simulation model’s blocks diagram.

For that, the following elements from the Blocks category of the Material Handling
Library were used:

• Source—launches a new Product instance. The blocks from sourceA to sourceF deploy a
product on the respective conveyor after the initial state is read from the file, whereas
the source block launches the remaining products.

• Conveyor Enter—is placed after a source block and establishes, through Position on
Conveyor elements, the newly-created product’s initial position.
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• Queue—stacks products in case they cannot be immediately added to the
conveyor network.

• Hold—blocks the natural course of an agent. It ensures that all products, from the
initial state, were added before the conveyors start moving.

• Convey—settles the sequence of conveyors that constitute the network by defining
each segment of the path.

• Sink—works as the endpoint of the production line, where products are dispatched.

However, the diagram is incapable of limiting the amount of simultaneous prod-
ucts per conveyor and emulating the delays associated with the processing stations.
Thus, several events (one that controls the products’ insertion and one for each con-
veyor’s station), variables (control flags, statistics data, etc.), parameters and functions
had to be used jointly with some inbuilt methods, so as to model the aforementioned
behavioural nuances.

One such example is the loadState function, the first to be invoked immediately after
the simulation starts, which is responsible for placing the due products on the respective
conveyors, according to the initial state described in the database file. Additionally, it com-
putes the remaining processing time for every suitable product and accordingly schedules
the corresponding station’s event. Given that this method is only invoked at the beginning
of the execution, the model is insensible to changes in the physical system’s configuration
during the simulation. For that reason, it is assumed that the stations’ location remains
unchanged throughout the entire execution.

The insertProduct method plays a similarly vital role. It is called whenever the in-
sertion’s event reaches the timeout condition, by which time a product is injected on the
network, provided that the entry conveyor is empty. If otherwise, the insertion’s event is
called off because the next attempt is made as soon as conveyor A becomes available.

Furthermore, some occurrences throughout the simulation require extra algorithms.
For instance, a product’s leading edge crossing a Position on Conveyor element symbolises
the arrival at a station. For that reason, each of these elements had to be endowed with the
algorithms below.

According to Figure 6, when a product arrives at a conveyor with a station, the con-
veyor is stopped and an event that emulates the processing delay is scheduled. Even if oth-
erwise, if the next conveyor is busy, the current one is equally stopped. As for conveyor F,
Figure 7 shows that the corresponding piece of logic does not ascertain the following
conveyor’s availability, since it corresponds to the network’s last conveyor.

On Leading Edge Enter Algorithm for conveyorAPos to conveyorEPos

Product reaches 
the position

Is there a 
station?

End

No

Schedule the 
station’s event

Yes

Stop the current 
conveyor

Is the next
conveyor empty?

Stop the current 
conveyor

No
Yes

Figure 6. On leading edge enter algorithm for conveyorAPos to conveyorEPos.

On Leading Edge Enter Algorithm for conveyorFPos

Product reaches 
the position

Is there a 
station?

End

No

Schedule the 
station’s event

Yes Stop the current 
conveyor

Figure 7. On leading edge enter algorithm for conveyorFPos.
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Another example is the arrival of a product at a conveyor, which entails
some operations.

According to Figure 8, when a product reaches conveyor B, if there is a product to
be inserted and the last insertion was unsuccessful, another attempt is made and the
event that controls the periodic insertions is restarted. Afterwards, conveyor B starts
moving. If otherwise, conveyor B is simply set to run. This is the most complex version
of the algorithm, due to the fact that conveyor B is placed immediately after the entry
conveyor. Thus, the algorithm for conveyors C to F does not deal with products’ insertion,
as portrayed by Figure 9. In this case, the only taken action is running the respective
conveyor. As for conveyor A, no extra logic was added to the On leading edge enter field
because products never cross its beginning.

On Leading Edge Enter Algorithm for Conveyor B

No

Product enters 
the conveyor

Is there a product to
insert and has the last attempted

insertion failed?

Yes

End
Run the current 

conveyor
Restart the 

insertion’s event

Insert product

Figure 8. On leading edge enter algorithm for conveyor B.

On Leading Edge Enter Algorithm for Conveyors C to F

Product enters 
the conveyor

End
Run the current 

conveyor

Figure 9. On leading edge enter algorithm for conveyors C to F.

Ultimately, a product leaving a conveyor is also a key-moment for the model’s be-
haviour, requiring some specific actions as well.

Once a product leaves conveyor A, it is stopped, as shown in Figure 10.
Additionally, for the other conveyors, if the previous conveyor has a product that needs
not be processed, that conveyor starts moving, as presented in Figure 11. As for conveyor
F, the On trailing edge exit field was left empty on the account of products being removed
from the line before their trailing edge crosses the exit conveyor. Hence, the equivalent
algorithm for this conveyor had to be inserted on the On enter field of end from the blocks
diagram. In this case, according to Figure 12, the KPIs’ predictions are updated as well.

On Trailing Edge Exit Algorithm for Conveyor A

Product leaves 
the conveyor

EndStop the conveyor

Figure 10. On trailing edge exit algorithm for conveyor A.
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On Trailing Edge Exit Algorithm for Conveyors B to E

Product leaves 
the conveyor

Is the previous
conveyor not empty and has

the process finished?

Yes

End
No

Stop the conveyor

Run the previous 
conveyor

Figure 11. On trailing edge exit algorithm for conveyors B to E.

On Enter Algorithm for the End Block

Product leaves 
the conveyor

Is the previous
conveyor not empty and has

the process finished?

Yes

End

No

Stop the conveyor

Run the previous 
conveyor

Update the KPIs’ predictions

Figure 12. On enter algorithm for the End block.

The last stage of the model’s implementation consisted of designing a Graphical User
Interface (GUI) with the aim of providing the end-user with an intuitive way of interacting
with the simulation model. As soon as the application starts running, the homepage from
Figure 13 pops up.

Figure 13. Simulation model’s homepage.
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As shown, it contains a picture of the physical system and three sliders that allow
users to adjust the parameters described in the final paragraph of Section 2.1.

On the other hand, once the model is run, the main screen is presented, as shown in
Figure 14. The latter includes both the 2D and 3D live views of the simulation model, a
section for displaying global and type-focused predictions (depending on the product type
selected on the respective combo box), an output section where feedback messages are
printed and an interactive button used to start the simulation.

Figure 14. Simulation model’s main screen.

Note that this button can only be pressed once, by which time the loadState method
is invoked, every hold block is unlocked and the first attempt to insert a product is made.
For this reason, the model must be reset before running a new simulation. Furthermore, a
logbook is written during the simulation and saved when the application is stopped.

2.2.2. The Database File

According to the model’s implementation, the database file must effectively describe
the system’s current state and the remaining production plan. Thus, deciding which
information was needed in order to depict the system’s state and the next products to
be inserted was fundamental. After considering all of the system’s relevant aspects, the
following structure emerged.

The first six lines are mandatory and contain a maximum of five fields that describe
each conveyors’ initial state, sorted as follows.

• Timestamp—UNIX timestamp, in milliseconds, related to the corresponding con-
veyor’s state last update.

• Station Flag—indicates whether a conveyor has a station attached to it (1) or not (0).
• Brush Ups—amount of BrushUp skills consumed by the product which is currently

placed at a conveyor (−1 means that the conveyor is empty).
• Brush Downs—amount of BrushDown skills consumed by the product which is

currently placed at a conveyor (−1 means that the conveyor is empty).
• Process Finished Flag—indicates whether the product placed at the respective con-

veyor has already been processed (0) or not (1). This field is only inserted when the
corresponding conveyor is not empty and has a station plugged into it.

Each of the remaining lines is optional and has two mandatory fields: Brush Ups and
Brush Downs, representing one product from the production plan, sorted by
insertion priority.

In the example above, conveyor D has a station plugged into it and is carrying a
processed product of type two. Two products, of types one and three, will be inserted next.
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2.2.3. The API

The API’s development was carried out using the Flask framework. Taking into
account that its main purpose is reading or editing the csv file, the API only has two services.

On the one hand, a POST request may be sent through
localhost:5000/api/v1/updateCSV, triggering the updateCSV method with the aim of
modifying the file. The request’s body must have a JavaScript Object Notation (JSON)
message containing the fields from Section 2.2.2, as shown in Figure 15.

Figure 15. Sample JSON message.

This JSON sample, which maps each conveyor’s initial state to its name and the
product type to their order in the production plan, would generate the csv file from
Listing 1. The updateCSV method behaves as portrayed by Figure 16.

Listing 1: Sample csv file.

1600443880822;0; -1; -1
1600443877467;0; -1; -1
1600443875446;0; -1; -1
1600443880767;1;0;1;0
1600443880756;0; -1; -1
1600443872305;0; -1; -1
1;0
1;1

updateCSV Method’s Algorithm

for key in sorted(dic):

Start

End

- request.json is used to access the content of the message sent through the request
- The writerow() method writes the given content into the file

Open file in 
writing mode

dic = request.json

value = dic[key]

writerow(value)

Figure 16. updateCSV method’s algorithm.

After opening the file for writing, the content of the message is stored in a dictionary.
Then, for each key, the corresponding value is written into the file.

On the other hand, a GET request can be sent through the
localhost:5000/api/v1/getProducts Uniform Resource Locator (URL), which calls the

localhost:5000/api/v1/updateCSV
localhost:5000/api/v1/getProducts
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getProducts method with the goal of obtaining the list of products to be added to the pro-
duction line, i.e., the remaining production plan. In this case, no information needs to be
sent in the request’s body. The getProducts method’s behaviour is illustrated in Figure 17.

getProducts Method’s Algorithm

for row in planReader:

Start

End

- The csv.reader() method reads the content of the given file
- The jsonify() method creates a response with the JSON representation of the given data

Create file
planReader = csv.reader(...)

data = {}
index = 0

data[index-6] = row

index += 1

Does the
file exist?

No Open file in 
reading mode

Yes

index > 5

Yes
response = jsonify(data)

No

Figure 17. getProducts method’s algorithm.

Whenever the previous service is called, the file is created if it does not exist yet and,
afterwards, it is opened for reading. Followingly, the file’s content is iterated and, from its
seventh line on, the information is stored in an auxiliary array. This is due to the fact that
the first six lines are always reserved for the initial state information. Finally, the data are
converted into the JSON notation and returned to the MAS.

2.2.4. The Multi-Agent System

The original version of the MAS was developed using Java Agent DEvelopment
Framework (JADE) but no communications with external applications were allowed. Fur-
thermore, products used to be manually added, which did not match the desired working
mode for this project, where they ought to be inserted periodically. Consequently, in order
to ensure the synchronisation between the manufacturing unit and the newly-created DT,
a new Java class and a GUI were added to the initial project.

The restClient class contains auxiliary data structures used to store the system’s current
status, the remaining production plan and statistics data. Aside from that, it includes
methods which interact with the aforementioned variables, keep the database file up to
date, using the API, and compute the real KPIs. Furthermore, a Ticker Behaviour, from
JADE, was used to ensure that an attempt to add a product to the network is made every
five seconds.

In order to provide an intuitive way of describing the production plan to the MAS, a
GUI with two sections was created. The first section, dedicated to the production pattern,
is where the products’ types are inserted and sorted into the desired order, whereas the
second one is where the plan size is defined and the instruction to create the plan is given.
This graphical interface is represented in Figure 18.
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Figure 18. Production plan GUI.

In order to add a new product type, the amount of Brush Up and Brush Down
skills has to be written in the respective text fields and the “+” button has to be pressed.
In case the user mistakenly inserts a product type, it can be removed using the “−” button.
Moreover, there are two buttons which move the selected product type up or down in the
displayed pattern.

After describing the intended production pattern, the total amount of products shall
be written into the respective text field and the “Create Plan” button must be pressed. If the
content of the text field is numeric and the pattern does not contain any invalid product
types, according to the ontology, the plan is created and the button is disabled so as to avoid
a new attempted creation. In the example from the previous figure, the production plan
would consist of a complete pattern, i.e., ProductType1→ ProductType2→ ProductType3,
followed by a product of type one.

Once the plan has been defined, the MAS becomes autonomous and, inclusively,
generates a csv file where the entry and exit timestamps of each processed product
are stored. These can be used in case the user wants to calculate KPIs that are not
automatically computed.

3. Demonstration and Validation
3.1. The Demonstrator

For validating the digital model, its predictions were compared with the values
derived from the physical twin, whose components are shown in Figure 19.

For each simulation, the ensuing steps must be followed. After executing the Java
project, a product has to be put on conveyor A. In fact, whenever this conveyor becomes
empty, a new product must be added so that, when the next agent is launched, it starts
moving immediately. Afterwards, the product travels from one conveyor to the following
until the ResourceBrush’s position is reached. Then, the due skills are executed, after which
the product resumes its journey towards the end of the network. By the time it gets there,
the agent is killed and the product must be manually removed.
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Conveyor A
(ResourceEntry)

Conveyor B

Conveyor C

Conveyor D

Conveyor E

Conveyor F
(ResourceExit)

ResourceBrush

Figure 19. Manufacturing unit simulator’s components.

In spite of the physical station being immovable, the ResourceBrush may be plugged
into any conveyor. However senseless in a real-life context, this nuance does not affect the
obtained results because the processing delays are independent of the resource’s location.

3.2. Results Analysis

Before using the model to make predictions, each skill’s processing time and the
model’s conveyors speed had to be tuned so that the simulation closely matched the
physical system’s behaviour. For this first calibration, single-product production plans
were considered with a station at conveyor D. It was assumed that all the conveyors moved
at the same speed, regardless of the station’s position.

In order to assess this calibration’s impact, twelve scenarios were tested on both sys-
tems (the simulation model and the physical demonstrator) for each station’s
possible location:

• Production pattern—six combinations of ProductType1, ProductType2
and ProductType3.

• Production plan size—ten or twenty products.

For each conducted test, the total processing time and the two KPIs below
were extracted.

• Cycle time (CT)—average time spent by products on the line, in s/product.
• Throughput (Tp)—average amount of exported products per time unit, in products/min.

The first analysis unveiled some traits of the system’s behaviour. The scenarios
with a station at conveyor A presented the least accurate predictions, because products
continuously communicate with the entry conveyor until they are allowed to enter the
network, which makes the MAS become unexpectedly slower. As the station advances
from one conveyor to the following, between B and D, the model gradually becomes less
accurate. This is due to the fact that, the further the station is from the entry conveyor,
the more products get stuck at the network, which leads to an increase in the amount of
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communications and, consequently, to greater delays. However, the change in the station’s
location from conveyor D to E is a turning point on this regard. From this conveyor on,
the accumulation takes longer to occur and there is no such growth in the amount of
communications, resulting in better predictions.

These discrepancies led to a second calibration. For the simplicity’s sake, only
two possible locations for the station (conveyors B and D) and the two scenarios below
were tested:

• Production pattern—1→2→3 or 3→2→1.
• Production plan size—twenty products.

Besides, distinct speeds were chosen for each model’s conveyor, through trial-and-
error, taking into account the station’s position as well.

Afterwards, all twelve scenarios were repeated with a station at conveyor B or D, the
best and the second worst cases, respectively. As expected, the second calibration managed
to improve the overall model’s accuracy for both setups.

Nevertheless, the physical system still became quite unstable upon the products’
accumulation, possibly due to the increase in the amount of agents and, consequently,
communications. Moreover, in spite of being possible to adjust both the total time and
the throughput for a specific production plan, it was achieved by reducing the conveyors’
velocity, which spoiled each product’s cycle time. For that reason, it is safe to assume that
such change is insufficient.

Since modelling the delays transcended the scope of this work, a last verification was
performed so as to ascertain whether processing a sufficiently large amount of products
helped dissimulating such latency. For that, the scenarios from the second calibration were
rerun with larger production plans, but the KPIs calculations still considered sets of twenty
consecutive products.

The predictions’ relative error for different production plan sizes, with a station at
conveyor B, are represented in Figure 20.

Figure 20. Predictions’ relative error as a function of the plan size, with a station at conveyor B.

The corresponding values with a station at conveyor D are portrayed in Figure 21.
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Figure 21. Predictions’ relative error as a function of the plan size, with a station at conveyor D.

A closer look at the previous plots suggests that, regardless of the station’s position,
the relative error of each KPI’s predictions did not directly increase with the production
plan’s dimension.

Finally, since they represented the same practical situation, the KPIs for the twenty
intermediate products out of sixty were calculated and compared with the values ob-
tained for the last twenty products out of forty in the corresponding test cases. The mis-
matches derived from this confrontation indicated that the manufacturing unit will often
originate different results for the same test case. The most likely reason is the casual
network instability, which may be exacerbated by the affluence of communications be-
tween agents depending on the amount of products being processed at a certain time.
Such unsteady nature of the physical demonstrator partially explains the inaccuracies in the
model’s predictions.

3.3. Discussion

As presented at the beginning of the article, the application of distributed manufac-
turing control is quite difficult to predict and apply due to self-organized behaviour and
the non-existence of a central point. Based on the study and results obtained, the authors
believe that DTs’ conjunction with these approaches can reduce the existent gap between
the research approaches and real applications. The authors also understand that the results
are promising but not mature enough to direct application. One of the reasons is that the
existing simulation tools are not designed to deal with this system type. So it is necessary
to develop new tools to increase the similarities of the control logic with the simulation
model or improve the integration mechanisms to overcome these limitations.

Despite the limitations found during the design and developments, it is possible to
verify the proposed three-layered architecture’s potential to interface a simulation-based
DT on top of an existing or new distributed manufacturing control system. The proposed
architecture with the different modules proposed and described in Section 2 can be used as
a baseline for future developments. To summarise, the utilisation of an API to regularly
store in a database the current state of the real system can be used as the starting point
for a simulation environment. In conjunction with the state stored in the database, an
accurate simulation model can approximately mimic the system’s behaviour at a much
higher speed, allowing to predict the real system’s performance.

Despite the existent limitations, the proposed research contributes to the utilisation of
DTs to allow the creation of a more harmonised ecosystem with self-organised manufac-
turing control and human personnel. In this context, DTs allow the human to understand
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the self-organised systems’ trends. This feature reduces the impact of unpredictability in
organisations, suppliers and costumers.

Although the proposed DT approach can help humans using these systems daily,
humans are also critical and fundamental for developing and maintaining these simulation-
based DTs due to their expertise. The creation of a better and more accurate simulation
depends not only on the simulation environment but also on the amount of knowledge
available to be applied during the model’s creation. A more accurate model will lead to
creating a more similar to the real environment model, increasing its utility.

4. Conclusions and Future Work

The usage of DTs is still at an early stage. As a result, standards for implementing
them are lacking. With the aim of covering this major gap, a general architecture was
pondered jointly with the digital model’s implementation, so that future solutions may be
based on it.

The suggested architecture focuses on dividing each component of a CPS.
Moreover, none of the used technologies narrows down the range of target-problems,
given that widely-compatible programming languages and file formats were opted for.
This way, it is believed that a considerable percentage of the oncoming solutions will be
safe to rely on an architecture along the lines of the one hereby introduced.

It is possible to conclude two main ideas from the results of the proposed article.
The first one is that the utilisation of simulation-based DTs to predict the behaviour and,
more specifically, a distributed manufacturing control system’s performance can be useful.
Due to the similarity of the values predicted and collected from the real system, the results
are promising. A prediction, even not very accurate, can constitute a relevant contribution
to applying these distributed control approaches because it is possible to approximately
predict the system’s performance and the self-organised ecosystem’s behaviour, which is
impossible to do presently. The second lesson learnt from this research is that the utilisation
of simulation to mimic a distributed control logic needs to mimic not only the logic behind
each decision and interaction, but also other characteristics like network connections or
the amount of cyber-physical modules, and possibly the number of computational devices
available and their performance.

To sum up, the discovered research gaps were not fully covered, because the net-
work’s stability and the amount of products being simultaneously processed substantially
influenced the model’s performance. However, these breakthroughs may be cornerstones
of further research on the topic, provided that such drawbacks are taken into consideration
on future DTs’ implementations.

As future work, since the communication delays were found to be the most likely cause
of inaccuracy, the idea of modelling them arose. Moreover, given that the manufacturing
unit can deal with changes in the resource’s location halfway through the simulation, it
would be valuable to provide the DT with such capability. Finally, it is advisable that the
developed model be exported as a stand-alone app and launched from the MAS project.
Thereafter, the DT becomes attached to its physical counterpart’s implementation.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
CTS Centre of Technology and Systems
CPS Cyber-Physical System
CPPS Cyber-Physical Production System
DCL Distributed Control Layer
DT Digital Twin
GUI Graphical User Interface
I4.0 Industry 4.0
IL Integration Layer
IoT Internet of Things
JADE Java Agent DEvelopment Framework
JSON JavaScript Object Notation
KPI Key Performance Indicator
KRI Key Result Indicator
MAS Multi-Agent System
NSF National Science Foundation
OPC-UA Open Platform Communications Unified Architecture
OWL Ontology Web Language
PI Performance Indicator
PLC Programmable Logic Controller
PLM Product Lifecycle Management
RICS Robotics & Industrial Complex Systems
SL Simulation Layer
URL Uniform Resource Locator
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