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A B S T R A C T   

Increasing municipal solid waste (MSW) generation has become not only a major sustainability challenge and a 
considerable financial burden for municipalities across the globe, but also an opportunity to promote a circular 
economy, provided adequate information is made available. Data and information on MSW generation, char
acterization, and management practices are prerequisites to studying and optimizing solid waste management 
systems (SWMS). However, such data and information are usually dispersed, unsystematized, and suffering from 
various availability and quality issues. This study aims to assemble and provide access to the current landscape of 
MSW data by establishing a comprehensive framework for understanding the interconnectedness of various sub- 
domains of MSW knowledge. Existing databases and governmental reports were reviewed to compile 1720 re
cords of MSW generation, composition, management practices, and socioeconomic contexts for 219 countries 
and 410 cities. Multivariate linear regression and additive models were built to relate MSW generation, 
composition, and recovery rates to demographics, economic development, and climate patterns of cities and 
regions. These models generate new insights into the complex nature of SWMS and provide an evidence-based 
decision-making tool to future researchers and policy makers. Specifically, economic development (GDP), den
sity factors (population, population density, and household size), sustainability initiatives, education, and 
regulation are all identified as positive drivers toward the targets of United Nations Sustainable Development 
Goal 12.   

1. Introduction 

With projected population growth and economic development, 
greater municipal solid waste (MSW) generation is expected (Chen et al., 
2020; Kaza et al., 2018). This not only imposes a major sustainability 
challenge, but also portends a heavy financial burden on municipalities 
managing these streams across the globe (World Bank, 2019). Histori
cally, municipalities have been predominantly disposing of their MSW 
streams through landfilling, open-dumping, and incineration without 
prioritizing on waste valorization or resource recovery (Kaza et al., 
2018; World Bank, 2019), a major priority for current environmental 
policies. However, as societies begin to embrace a circular economy 
model, solid waste management systems (SWMS) need to be both 

resilient enough to safely manage increased MSW generation and effi
cient in maximizing resource recovery, while minimizing environmental 
impacts and economic costs. The dual SWMS functions of waste disposal 
and waste valorization echo the U.S. EPA goal of sustainable materials 
management (U.S. EPA, 2019) and the EU circular economy action plan 
(COM(2020) 98 final) as important actions toward the United Nations 
Sustainable Development Goals (UN SDGs) (United Nations, 2015). 

This new waste management paradigm requires a holistic approach 
of optimizing collection logistics, deploying optimal waste treatment 
and valorization technologies, and mobilizing social and financial cap
ital to achieve the most sustainable recovery and disposal of MSW 
(Magazzino and Falcone, 2022; Marshall and Farahbakhsh, 2013). In 
particular, the recent shrinkage of global demand for recyclables 
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exacerbated by the China’s waste import bans calls for resilient local 
waste valorization capacity building (Brooks et al., 2018; Li et al., 2021). 
All of these requirements are predicated upon robust scientific un
derstandings of solid waste management and a rich collection of data on 
MSW generation, characterization, management practices, and SWMS 
performance (Chowdhury, 2009). However, due to the historical 
emphasis on waste disposal and a lack of financial incentives for data 
collection, MSW managers and decision-makers are faced with sizable 
data and knowledge gaps (Chowdhury, 2009; Cohen and Gil, 2021; 
Reike et al., 2018). 

Existing MSW data and information come from academic and non- 
academic sources on a variety of topics. To set the stage for a global 
knowledge base, we first provide an overview of available data sources, 
the types of information provided, and accessibility. Most academic 
studies published in peer-reviewed journals investigate waste charac
terization (Götze et al., 2016; Karak et al., 2012), predictive models of 
MSW generation (Beigl et al., 2008; Kolekar et al., 2016), SWMS per
formance evaluation (Campitelli and Schebek, 2020; Khandelwal et al., 
2019), and SWMS optimization (Van Engeland et al., 2020). 
Non-academic sources, mainly in the format of datasets, databases, and 
reports from governmental and non-governmental organizations, are the 
primary data sources for MSW generation, MSW composition, and MSW 
management practices (Kaza et al., 2018). 

Academic MSW characterization studies aim to understand the 
quality of MSW by characterizing various chemical, physical, and 
compositional properties of MSW streams. Commonly reported proper
ties include the fractions of MSW (e.g., percentages of plastics, paper, 
and food waste), heavy metals and toxic elements (Viczek et al., 2020), 
nutrients concentration, and energy recovery parameters, such as 
heating values, ash content, halogen concentrations, and volatile matter 
(Götze et al., 2016). These studies either target one specific MSW stream 
of high priority, such as organic residues (Campuzano and 
González-Martínez, 2016; Dou and Toth, 2021), or compare multiple 
parameters across different MSW fractions for a specific region (Gu 
et al., 2017). 

The total quantity of MSW generation is the most commonly reported 
metric of system production, typically aggregating over periods of days, 
months, or years. Researchers have applied several modeling tech
niques, such as regression analysis, input-output models, time series 
models, and machine learning models to predict MSW generation 
(Abdallah et al., 2020; Beigl et al., 2008; Kannangara et al., 2018). 
Although these models vary in form and scale, they typically compile 
and organize MSW generation information in the form of either 
time-series data, cross-sectional data, or panel data, and relate MSW 
generation to various socioeconomic and demographic variables. These 
explanatory variables, such as GDP, household size, education, and 
population, are typically collected by national or state census bureaus or 
through local primary surveys. 

The formulation and evaluation of SWMS performance metrics 
represent another expansive body of academic research. Thousands of 
studies have been published since the 1980s to evaluate SWMS in terms 
of their environmental footprints, societal impacts, economic costs, and 
governmental interventions (Campitelli and Schebek, 2020; Turcott 
Cervantes et al., 2018). Most of these studies focus on quantifying the 
environmental footprints of SWMS using life cycle analysis (LCA) 
(Campitelli and Schebek, 2020), either relying on the life cycle in
ventory (LCI) data built into LCA software such as SimaPro, GaBi, 
EASETECH (Environmental Assessment System for Environmental 
Technologies), and IWM (Integrated Waste Management), or compiling 
their own site-specific LCI data (Khandelwal et al., 2019; Laurent et al., 
2014b; Ripa et al., 2017). 

To improve the performance of SWMS, a number of mathematical 
optimization models have been developed by researchers to support 
strategic and operational decisions in MSW management (Van Engeland 
et al., 2020). Most of these models are validated with real-world case 
studies and incorporate valuable information, such as the capital 

investments, operation costs, and revenues associated with SWMS 
(Roberts et al., 2018). In addition, some studies factor in the un
certainties in waste generation, costs, and technology capacity (Van 
Engeland et al., 2020). Environmental and social impacts such as 
pollutant emissions and job creation are also acknowledged as important 
optimization objectives but are less commonly adopted (Van Engeland 
et al., 2020). 

Non-academic sources of MSW data mainly include governmental 
reports at regional and national levels and reputable NGO databases 
from the United Nations (UN), World Bank (WB), Eurostat, OECD Stat, 
etc. These NGOs and governmental agencies are the primary data 
sources for MSW generation, composition, and management practices 
since they are typically responsible for either managing MSW or 
providing data on MSW (Kaza et al., 2018). Although many local waste 
managers contract with academic institutions or consulting companies 
to conduct characterization or composition studies for their jurisdic
tions, they normally support these studies by providing access to pri
mary data on local waste generation through waste collectors or 
weighing stations. 

The aforementioned academic and non-academic sources are sum
marized in Table 1. The bar charts embedded in the “Geographic Dis
tribution” column represent the relative abundance of studies for each 
continent. Our review suggests that historically, academic studies were 
predominantly conducted for the developed countries in the EU and 
North America. However, recent publication trends indicate a mo
mentum shift towards developing countries in Asia and other parts of the 
world. Similar shifts have been observed for scientific activities and 
publications in other disciplines (Tan et al., 2021; Valente de Macedo 
et al., 2021), reflecting changing prioritization, demand, and capacity 
for scientific research in these regions. Currently, the overall MSW data 
landscape is dominated by studies of the EU and Asia (noticeably in 
China, India, and Iran), followed by North America. Also, it is worth 
acknowledging the existence of other data sources such as waste tech
nology R&D articles, industry reports, and regional NGO archives. 
However, due to the relatively low data intensity and sporadicity of 
these sources, they are not included in this study. 

Despite the abundance of MSW data, major issues and knowledge 
gaps persist. First, existing MSW data are mainly stored in “silos” 
confined by geographical boundaries or topical focuses (Cohen and Gil, 
2021). There is not a single centralized repository to organize all the 
information in a systemic manner, which is verified by the lack of 
relevant peer-reviewed articles on multi-attribute MSW knowledge 
systems (Dias et al., 2021). Second, due to the financial and organiza
tional costs of data collection, waste characterization studies are infre
quently conducted or reported, especially in low-income countries (Kaza 
et al., 2018). This uneven geo-economics distribution of MSW data is 
also manifested in Table 1. Third, there is a lack of standardization in the 
definition of MSW and reporting metrics (Bianchini et al., 2011; Wilson, 
2015). The main inconsistencies stem from the inclusion of commercial 
construction and demolition (C&D) wastes, waste tires, and other 
MSW-like commercial or industrial streams. In addition, discrepancies 
in MSW quantity reporting are observed in terms of generated MSW, 
collected MSW, and disposed MSW. Some reports only include resi
dential disposal streams while others include all wastes generated by the 
public for both disposal and recovery. Fourth, the reliability of MSW 
data is hard to verify, since governmental reports are normally the only 
source for such information (Kawai and Tasaki, 2016). For example, a 
few researchers questioned the reliability of the U.S. MSW generation 
data reported by the U.S. EPA, claiming that the other assessment 
method based on facility-level data yielded estimates that were 50% 
higher due to modeling assumptions, reporting errors, and inconsistent 
reporting formats (Tonjes and Greene, 2012). Fifth, there is a lack of 
understanding of MSW management at the municipality level, since 
most data sources report at an aggregated national or regional level. This 
is a particularly relevant issue for countries with diverse socioeconomic 
and demographical conditions, such as India and China, where MSW 
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Table 1 
Overview of the major MSW data sources identified in this study.  

Data Sources Data Types Geographic Distribution1 Selected References 

Academic Waste characterization heat values, moisture, inert matter, volatile matter, 
ultimate analysis results, composition 

(Götze et al., 2016)* 
Dou and Toth (2021) 
Campuzano and González-Martínez 
(2016) 
Karak et al. (2012) 

Waste generation 
prediction 

quantity of MSW, various socioeconomic and 
demographic parameters 

(Beigl et al., 2008)* 
(Kolekar et al., 2016)* 
Abdallah et al. (2020) 
Kannangara et al. (2018) 

SWMS performance 
evaluation 

environmental, social, and economic impacts of 
SWMS 

(Campitelli and Schebek, 2020)* 
(Laurent et al., 2014a, 2014b) 
Khandelwal et al. (2019) 

SWMS optimization operation costs, capital investment costs, capacities 
and efficiencies of technologies 

Juul et al. (2013) 
(Van Engeland et al., 2020)* 
(Sandoval-Reyes et al., 2022)* 

Non- 
academic 

NGO databases/ 
reports 

MSW generation, composition, management 
practices 

UN and WB databases have global coverage, while OECD and Eurostat cover their member 
countries. 

What a Waste Database (World Bank, 
2021), 
(United Nations Statistics Division, 
2021), 
(Eurostat, 2021), 
(UN-Habitat, 2010), 
(OECD, n.d.) 

Governmental reports MSW generation, composition, management 
practices 

Almost all countries have national waste statistics, except 31 countries in the Sub-Saharan Africa 
region and 8 countries in other regions (Kaza et al., 2018). 

Gov. environmental agencies, statistic 
offices at various levels 

Note: 1. The geographical distribution of studies in each academic source is estimated based on data reported in the studies denoted by an asterisk in each row. 
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management scenarios in rural areas could drastically differ from rela
tively wealthy, densely populated urban districts (Wang et al., 2017). 

This study does not intend to bridge these data gaps; instead, we 
attempt to reveal the current landscape of MSW data by recognizing 
these important limitations. Moreover, as a complex socio-technical 
system, SWMS requires holistic design and decision-making ap
proaches empowered by a systemic view (Marshall and Farahbakhsh, 
2013). Thus, we aim to establish a comprehensive MSW knowledge base 
that indexes major data sources, reveals the interconnections among 
sub-domains of MSW knowledge, and facilitates knowledge discovery 
and communication. Recognizing the extensiveness of this undertaking, 
we choose to focus this paper on the development of a robust knowledge 
base framework rather than exhaustive data collection. Based on this 
framework, the interconnections between MSW generation and the so
cioeconomic context of SMWS are investigated as an illustration of a 
major intended application of the knowledge base. 

2. Methodology 

2.1. Framework of the knowledge base 

The first step in developing a comprehensive knowledge base is to 
establish a logical framework to categorize the heterogeneous data 
sources and to relate the sub-domains of MSW information. The systemic 
knowledge base framework is built in a similar fashion as in system 
dynamics models (Rafew and Rafizul, 2021; Xiao et al., 2020), capturing 
the influences and interconnectedness of individual “siloed” 
sub-domains. 

SWMS-related knowledge can be categorized into three major com
ponents: the socioeconomic context of SWMS, the SWMS themselves, 
and the performance of SWMS. The regional socioeconomic context of 
SWMS consists of the general public (characterized by its demographics, 
lifestyles, and education/environmental awareness), regional economy, 
climate patterns, and governance (Abdallah et al., 2020; Beigl et al., 
2008; Dias et al., 2021; Kolekar et al., 2016). The broader socioeconomic 
context of SWMS includes domestic and international trades, as well as 
markets for secondary and primary materials (Brooks et al., 2018; Das 
et al., 2019; Matter et al., 2015). The second component contains the 
sub-domains related to the MSW management system itself, such as 
waste types, waste generation, waste properties, technologies (collec
tion, transportation, storage, preprocessing, and final treatment), and 
MSW management (the deployment and implementation of waste 
technologies) (Roberts et al., 2018). Municipalities across the globe 
might share similarities in waste types and waste technologies; while 
their waste generation, composition, and local SWMS configurations 
may differ dramatically. The third component is the performance of 
SWMS in the typical “three pillars of sustainability” fashion: financial 
impacts (e.g., costs, revenues, and return on investments), environ
mental impacts (e.g., climate change, environmental quality, biodiver
sity, and ecosystem health), and societal impacts (e.g., labor condition, 
job creation, public engagement, and public health) (Aleluia and Ferrão, 
2017; Rodrigues et al., 2018). 

While most of the sub-domains of MSW knowledge are represented 
by existing data sources identified in Table 1, the interconnectedness 
among these sub-domains is rarely studied or reported in a systematic 
way. The local socioeconomic context, comprising demographics, life
style, education, economy, climate, and governance, determines local 
MSW generation quantity and quality (Johnstone and Labonne, 2004). 
Combining with the inherent characteristics of different waste types, the 
local MSW generation determines various physical, chemical, and 
compositional properties of different MSW streams. It is these waste 
properties along with MSW generation that suggest technically prefer
able waste valorization and disposal technologies. When it comes to the 
local deployment and operations of these technologies, the socioeco
nomic context plays a determining role again. For example, municipal
ities may prefer to landfill or incinerate their mixed MSW based on their 

land availability and public perception. Furthermore, international or 
cross-region trade policies, such as China’s waste import bans, can in
fluence market demand and prices of secondary materials, shifting local 
MSW management scenarios (Brooks et al., 2018). Finally, based on the 
technology selection, local implementation, and daily operations, 
various societal, environmental, and financial performance metrics can 
be evaluated using life cycle analysis (LCA) and life cycle cost assess
ment tools (Martinez-Sanchez et al., 2015). 

This overarching knowledge base framework not only serves as a 
checklist for data collection efforts to ensure comprehensiveness, but 
also functions as a roadmap for identifying and revealing under- 
investigated interconnections among the sub-domains of SWMS 
knowledge. 

2.2. Data collection and quality control 

Data collection focusing on the country-level and city-level MSW 
generation, composition, management practices, and corresponding 
socioeconomic contexts was conducted through extensive online 
searches into state and municipal environmental agency websites in the 
U.S. and reputable international NGO databases. The scope and key 
parameters of the knowledge base are detailed in Appendix A1 and the 
specific data sources and collection processes are provided in Appendix 
A2. 

The primary measure of quality control is the identification of 
reputable data sources such as the WB, UN Statistics Division (UNSD), 
Eurostat, OECD Stat, and peer-reviewed journals. Other data quality 
control measures include source tracing to differentiate primary and 
secondary sources, prioritizing recently published data to reflect the 
latest MSW generation trends, and differentiating total MSW generation 
from disposed MSW to account for the variation in reporting metrics. 
The knowledge base framework with currently collected data is avail
able at the institutional repository of CMU KiltHub (DOI: 10.1184/R1/ 
20280138) for open access and collaboration. 

2.3. Waste prediction modeling 

One direct application of the established knowledge base framework 
is to investigate how socioeconomic context could impact MSW gener
ation and management practices. To predict daily per capita MSW 
generation, MSW composition, and MSW recovery rate, statistical 
models are built, including multivariate linear regression (LR) models 
and multivariate additive models (AMs). 

Y = β0 +
∑p

j=1
βjXj + ε (LR)  

Y = β0 +
∑p

j=1
fj
(
Xj
)
+ ε (AM)  

Where: β0 to βp are coefficients, ε is the error term and fj(Xj) is the un
known smooth fit function from data. 

LR has been widely adopted for building econometric models, and 
for revealing linear relationships between dependent variables and 
explanatory variables. AMs share similar assumptions of multivariate 
normality, linear relationship, and independency of observations with 
LR. However, AMs relax the linearity assumption of LR models by 
allowing dependent variables to fit to nonlinear terms of explanatory 
variables (e.g., polynomial terms) (Fang and Chan, 2015; Ravindra 
et al., 2019). Thus, AMs are capable of modeling both linear and 
nonlinear relationships between MSW generation and the collected 
explanatory variables (listed in Table A1). 

Specifically, the MSW generation prediction modeling is conducted 
in several steps (see Fig. 1). After data collection and preparation, 
exploratory data analysis (EDA) is performed to understand the 
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distributions of and the correlations among all the variables. Then, 
principal components analysis (PCA) and hierarchical clustering anal
ysis are conducted to reduce the dimensionality, complexity, collinearity 
effects, and heterogeneity of the dataset for better model performance 
and interpretability. 

Next, various AMs and LR models are fitted to predict per capita 
MSW generation. Adjusted R-square is adopted for penalizing added 
degrees of freedom when comparing LR models and AMs with different 
numbers of fitted parameters. Due to the relatively small size of the 
dataset, the selection of explanatory variables and their degrees of 
freedom (for the AMs) are determined using 10-fold cross-validation 
(CV), which randomly splits the entire datasets into 10 data folds of 
the same size (i.e., 9 training folds, and 1 testing fold). In each CV 
iteration, an AM model is fitted with the 9 training folds and tested of the 
mean squared errors (MSEs) on the testing fold. This fitting and testing 
iteration repeats 10 times with a different fold selected as the testing fold 
each time to calculate the average MSEs. In addition to adjusted R- 
square and CV, the maximum degree of freedom for nonlinear terms is 
capped at 5 in the AMs to further control for overfitting. 

The final model forms of the LR models are determined based on the 
highest adjusted R-squares by removing the explanatory variables that 
are not statistically significant (p-value >0.1) from the model. AMs are 
finalized by maximizing adjusted R-squares and minimizing MSEs. 
Because the built-in prediction confidence intervals (C.I.) of statistics 
software are calculated based on the homoscedasticity assumption, 
which may or may not hold, numerical methods are required to simulate 
the C.I. of our model predictions. To accomplish this, the non-parametric 
bootstrap technique of resampling training data is applied to quantify 
prediction uncertainty (Dixon, 2001). 

This methodology is also applied to predict MSW composition (paper 
and food waste fractions) and MSW recovery rates, defined as the per
centages of MSW recycled or composted. The R code used to perform all 
these analyses is provided as Appendix B. 

2.4. Outcome evaluation against the UN SDGs 

MSW management is extensively related to the UN SDGs (Fatimah 
et al., 2020; Hannan et al., 2020). After LR models are built for pre
dicting per capita MSW generation (Model 1), food waste fractions 
(Model 2), and MSW recovery rates (Model 3), Model 1 is multiplied 

with Model 2 and Model 3, respectively, to estimate total food waste 
generation (Model 4) and total recovered MSW (Model 5). Model 1, 3, 4, 
and 5 correspond to the UN SDGs sub-targets of 12.3, 12.4, and 12.5 
(United Nations, 2015). To understand the impacts of key socioeco
nomic variables on these SDGs, the first order derivative of each socio
economic variable is taken and evaluated at the mean values of all the 
variables. A positive derivative indicates that the socioeconomic vari
able is likely a positive driver towards the related SDG targets. 

3. Results and discussions 

3.1. Mapping of the current MSW data and knowledge landscape 

The identified MSW data sources listed in Table 1 are mapped to the 
knowledge base framework described in Section 2.1 (see Fig. 2). The 
colored circles in Fig. 2 represent various data sources, with the place
ment of the circles indicating whether a data source focuses on the in
terconnections between sub-domains (e.g., SWMS optimization studies) 
or it provides information on both the interconnections and the indi
vidual sub-domains (e.g., waste characterization studies). It is worth 
mentioning that both SWMS optimization studies and performance 
evaluation studies assess the environmental and financial impacts of 
SWMS. However, both types of studies are assigned to just one type of 
impact category based on their respective emphases. The colored arrows 
denote the interconnections explored or revealed by existing studies, 
including the socioeconomic drivers of waste generation, physico
chemical properties of different MSW streams, applicability of technol
ogies, and the environmental and financial impacts of different SWMS 
configurations. 

The three major under-investigated interconnections are highlighted 
with black dashed arrows in Fig. 2. First, waste properties have been 
primarily characterized based on waste types, with limited or no 
adjustment to waste quantity and generation behaviors. For example, 
the compostability of food waste depends not only on the type of waste, 
but also on the contaminant levels, moisture levels, nutrient ratios, etc. 
Second, MSW generation is usually reported on the total annual quan
tity, with insufficient information to break it down into each major 
waste type. Third, SWMS decisions are predominantly made based on 
the quantity of MSW and the financial costs of technically feasible 
technologies. Nevertheless, the real-world SWMS are embedded in 

Fig. 1. Flow chart of MSW generation prediction modeling process.  
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complicated decision-making contexts that include trade policies, mar
ket conditions, governance, and consumer behaviors, leading to diverse 
SWMS configurations (UN-Habitat, 2010). There are increasing numbers 
of empirical studies on how consumer behaviors impact SWMS (Kaplan 
Mintz et al., 2019; Meng et al., 2019; Tong et al., 2018). However, such 
studies have not been systematically integrated into the decision-making 
process. 

Apart from these missing interconnections, there is also a lack of 
information to effectively characterize and model each sub-domain of 
SWMS. For example, MSW generation needs to be complemented with 
waste quality for valorization considerations. Quantity, characteriza
tion, and management data need to be enriched for waste types that are 
not included in this study. As for technologies, most studies focus on 
traditional options such as landfill, incineration, composting, and me
chanical recycling, precluding the promotion of emerging valorization 
options, such as reuse and remanufacturing. Lastly, local SWMS con
figurations are seldomly reported in detail, which makes it difficult to 

evaluate the socioeconomic drivers and policy levers of SWMS in a local 
context. 

3.2. Overview of MSW generation and management 

As a result of our targeted data collection effort on MSW generation, 
composition, management practices, and socioeconomic context, a total 
of 1720 records (507 city-level records and 1213 country/state-level 
records) were collected, covering 410 unique cities, 219 countries/ter
ritories, and 41 U.S. states. The average per capita MSW generation rate 
across the database is 1.25 kg/person/day, with a standard deviation of 
0.66 kg/person/day. It is worth mentioning that most of these MSW 
generation records are from developed countries such as the U.S. and 
most EU countries. Thus, this average value should not be regarded as an 
estimation of the global average. For the U.S. states and cities, the 
average MSW generation rate is significantly higher at 2.63 kg/person/ 
day with a standard deviation of 0.72 kg/person/day, while the average 

Fig. 2. Overview of the current MSW data landscape. The dotted arrows represent the 3 major under-investigated interconnections among the sub-domains of MSW 
knowledge. The colored arrows highlight the interconnections investigated by existing data sources (colored circles). 

Fig. 3. Comparisons of a) MSW composition and b) MSW management practices (i.e., the percentages of MSW treated by each option). For each MSW type and 
management option, the darker-colored box plot on the left represents the distribution of high-income countries (based on the WB classification), while the box plot 
on the right represents the distribution of other countries (low-income and middle-income countries). 
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MSW disposal rate is 1.83 kg/person/day with a standard deviation of 
0.33 kg/person day. 

The compositions of MSW streams in high-income countries and 
other countries are contrasted in Fig. 3a. It is revealed that low-income 
and middle-income countries tend to generate higher percentages of 
food waste, while the MSW streams of high-income countries tend to 
have higher percentages of paper waste. Differences in the distributions 
of other major waste types (glass, textile, metal, plastic, wood, yard, e- 
waste, and others) are not statistically significant between high-income 
countries and other countries, despite slightly higher averages for the 
high-income countries. 

Concerning the MSW management practices, high-income countries 
and other countries share similar distributions dominated by landfill 
disposal as illustrated in Fig. 3b. It is also revealed that there is a high 
degree of variability in management practices among the countries and 
cities, which cannot be explained by the income classification alone. 

3.3. Results of waste generation prediction 

AMs and LR models were built to shed light on the factors that 
contribute to the variability observed in MSW generation. Multivariate 
LR models were built for their superior interpretability, while AMs were 
developed for capturing nonlinearity and their superior predictive 
power. After data preparation, PCA, and clustering analysis (detailed 
results are provided in Appendix A2 and A3), a dataset with 554 “city- 
like” samples and 1039 “country-like” samples was prepared for 
regression analysis. Eight explanatory variables (Population, Population 
Density, Household Size, Energy, GDP, Education, Sustainability, and Un
employment) were logarithmically transformed for meeting the multi
variate normality assumption. The statistically significant fitted 
coefficients of the linear terms are summarized in Table 2, while the 
responses of per capita MSW generation to the nonlinear terms in the 

AMs are visualized in Fig. 4. 
Comparing the two model forms, the AMs consistently out-perform 

the LR models in terms of goodness-of-fit with significantly higher 
adjusted R-squares. The AMs also yield lower MSEs than the LR models 
during the cross-validation trials for model selection. However, the 
differences in MSEs are not always statistically significant, indicating 
that the AMs are likely, but not guaranteed, to have lower prediction 
errors than the LR models. Due to the added nonlinear terms of “GDP”, 
“Population Density”, and “Household Size”, which could undermine the 
contributions from other variables, coefficients are always slightly 
different between the AMs and LR models. Overall, model results are 
robust to model forms, since the coefficients of most explanatory vari
ables share the same positive or negative signs and relatively similar 
values. 

The city-level models have relatively poor goodness-of-fit, mainly 
because some of the explanatory variables are not available for all the 
cities, and thus were substituted with their country-level counterparts as 
proxies. At the city-level, per capita MSW generation is positively 
associated with local economy, with a significant and positive coeffi
cient of 0.263 for “GDP” in the LR model. This positive association is 
further verified with the smooth fit curve of the AM (see Fig. 4 a.2), 
which depicts an overall monotonic growth trend with 2 minutes sta
bilization ranges. Age distribution turns out to be another significant 
factor, with negative coefficients suggesting that aging societies with 
higher percentages of population over 65 tend to have lower MSW 
generation rates (Kannangara et al., 2018). Surprisingly, “Household 
Size” is not statistically significant in the LR model, which can be 
explained by the AM fitting in Fig. 4 a.1. Due to the bell-shape curva
tures, the overall response of per capita MSW generation to “Household 
Size” cannot be captured by a statistically significant (non-zero) coeffi
cient. The interaction between “Energy” and “Education” suggests that 
the MSW generation curbing effect of “Education” can be undermined by 

Table 2 
Summary of the regression analysis results of per capita MSW generation prediction.   

City-like Data Country-like Data All Data 

LR AM LR AM LR AM 

Precipitation_f    − 0.196**   
Precipitation_m − 0.337*    − 0.248**  
Precipitation_T − 0.940*** − 0.582***   − 1.057*** − 0.455*** 
Precipitation_s  0.222′ 0.139* 
Precipitation_w   − 0.204* − 0.201** − 0.231** − 0.123* 
Temperature_h − 0.323*    − 0.146′

Temperature_E  − 0.582***    − 0.455*** 
Temperature_Dc   − 0.605*** − 0.796*** − 0.606*** − 0.634*** 
Temperature_Db − 0.331* − 0.453** − 0.152* − 0.229** − 0.278* − 0.331*** 
Temperature_Ca     − 0.093′ − 0.146** 
Temperature_Cb − 0.212* − 0.306**  − 0.207*** − 0.198*** − 0.300*** 
Population   − 0.049*** − 0.036*** − 0.031*** − 0.033*** 
Household Size  (5)*** − 0.959*** (4)*** − 0.573*** (5)*** 
Population Density    (2)***  (5)*** 
GDP 0.263*** (5)*** 0.234*** (5)*** 0.163*** (5)*** 
Service    0.004* 0.006** 0.006** 
Energy 0.207** 0.150′ 0.295*** 0.270*** 0.303*** 0.203*** 
Trash Only − 0.491** − 0.738*** − 0.340*** − 0.520*** − 0.395*** − 0.536*** 
Expense 0.010*** 0.007** 0.011*** 0.007*** 0.008*** 0.007*** 
Sustainability − 0.759′ − 0.866** − 0.604*   
Unemployment − 0.079′ − 0.099* − 0.052* − 0.038′ − 0.075*** − 0.063** 
Age (15–64) 0.017* 0.019* − 0.013**   0.008* 
Age (65+) − 0.024** − 0.056*** − 0.039*** − 0.039*** − 0.035*** − 0.041*** 
Education − 1.622*** − 1.084* − 1.319*** − 0.930*** − 1.663*** − 0.943*** 
Education*Energy 0.317*** 0.280*** 0.220*** 0.179*** 0.301*** 0.216*** 
Adjusted R2 0.435 0.489 0.614 0.684 0.509 0.553 
MSE 0.379 0.346 0.118 0.098 0.216 0.193 

Note: significance codes for the p-values of the estimated coefficients: ≤0.001 ‘***’, ≤0.01 ‘**’, ≤0.05 ‘*’, ≤0.1 ‘’’ 
The degrees of freedom for nonlinear variables in AMs are presented in round brackets. 
Precipitation and temperature patterns are expressed with categorical variables of “Precipitation_code” and “Temperature_code”, where “code” letters are based on 
Köppen-Geiger climate classification. 
“Trash Only” is a binary variable that denotes if an MSW generation record includes only disposal streams (“Yes”) instead of the total generated MSW (“No”). 
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high energy consumption lifestyles. The significant coefficients of the 
precipitation and temperature patterns suggest that people living in 
warmer cities are likely to generate more MSW than those living in 
cooler areas. 

The country-level models have adjusted R-squares of 0.61–0.68, 
which are much higher than those of the city-level models and those 
reported in previous studies (Beigl et al., 2008; Kannangara et al., 2018). 
The results suggest that climate patterns, economy, lifestyle, and de
mographics are all significant factors in predicting the per capita MSW 
generation. Interestingly, “Energy” and “Expense”, both of which are 
highly correlated with “GDP”, yield statistically significant positive co
efficients after controlling for per capita GDP. This verifies that extrav
agant lifestyles (excessive consumption behaviors) are positively 
associated with higher MSW generation. At the country-level, MSW 
generation is strongly associated with “Population” and “Population 
Density”. Countries with a bigger population and either a low or a high 
population density tend to have lower per capita MSW generation rates. 
This non-monotonic response of per capita MSW generation to “Popu
lation Density” (see Fig. 4 b.3) might be due to potential private disposal 
or low MSW collection coverages in the countries with low population 
density and high disposal costs for the densely populated countries. In 
addition, “Sustainability”, which measures countries’ dedication to sus
tainability initiatives, becomes a significant factor to MSW generation 
reduction as well. In terms of climate patterns, it is indicated that 
countries in cooler and dryer climate zones are likely to generate less 
MSW. 

Unlike the city-level AM, the response of MSW generation to 
“Household Size” at the country level features a monotonic decrease 
when the household size is below 4, followed by a relatively flat stabi
lization trend. Based on the narrower uncertainty band and the repre
sentativeness of data, we believe that the country-level model tells a 
more credible story that per capita MSW generation decreases as 
households get larger. This might be attributed to the efficiency gains of 
bigger households (e.g., purchase in bulk, shared resource utilization, 
less packaging, etc.) that diminish when the household size is above a 

certain threshold. 
The country-level AM reveals a slight downward trend when the 

“GDP” is lower than 1000 USD/person (see Fig. 4 b.2). There are a few 
possible explanations for this counterintuitive outcome, which implies 
an inverse Kuznets curve (Ercolano et al., 2018). First, the smooth fitting 
of “GDP” is able to capture external factors that are correlated with the 
added nonlinear terms of “GDP”. It is possible for low-income countries 
to have weaker sustainability initiatives, which leads to higher MSW 
generation. This hypothetical explanation is supported by the change in 
the coefficient of “Sustainability” from − 0.87 to − 0.60, suggesting that 
part of the contribution of “Sustainability” is transferred to the smooth fit 
of “GDP”. Second, it is possible that low-income countries have less 
robust waste collection and data reporting mechanisms, which leads to 
higher uncertainty and lower credibility in their MSW data (Kawai and 
Tasaki, 2016). Third, it is possible that the relatively primitive and 
simple SWMS in low-income countries reduce the effects of 
under-reporting observed from more complicated SWMS (Powell and 
Chertow, 2019; Tonjes and Greene, 2012). 

The overall models built upon all the data samples can be treated as a 
direct merge of the city-level models with the country-level models. 
Although it is advisable to use separate models to predict MSW gener
ation, the overall models can help cancel out “noises” in the data and 
draw generalized conclusions:  

• Population growth is negatively associated with per capita MSW 
generation.  

• Larger household size is generally associated with lower per capita 
MSW generation. However, this negative correlation becomes weak 
for households larger than a certain size.  

• People living in cooler and dryer regions tend to generate less MSW.  
• GDP growth is generally associated with higher MSW generation, 

and so are extravagant lifestyles (higher energy consumption and 
higher expenses). 

Fig. 4. Responses of per capita MSW generation to the nonlinear terms in the AMs. The response curves are generated by varying the selected nonlinear term (x-axis) 
while fixing all the other variables in the AM at their mean values. The blue shaded areas represent 95% confidence intervals. 
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• Societies with a high level of education, aggressive sustainability 
initiatives, and an aging population are more likely to generate less 
MSW. 

Finally, the MSW generation model was validated with the real- 
world data of Portugal, which reports an MSW generation rate of 
1.40 kg/person/day in 2020 (Eurostat, 2021). Our country-level LR 
model yields a slightly lower prediction of 1.37 kg/person day with a 
95% pivotal C.I. of 1.31–1.43 kg/person/day. The observed value, 
which is just 2% higher than our model prediction, falls well within the 
prediction C.I. (see Figure A.5 in Appendix A.3). It should be noted that 
the model prediction accuracy, as well as the goodness-of-fit, is heavily 
influenced by the global nature of the dataset and the heterogeneity not 
captured by the model. Thus, to achieve higher prediction accuracy, 
building customized versions of these models on regional datasets or 
observations similar to the object of interest is highly recommended. 

Compared to other similar regression analyses, our models explain 
more variations in the MSW generation thanks to a comprehensive list of 
explanatory variables. Compared to the machine learning models 
(Kannangara et al., 2018), which are able to achieve much higher 
adjusted R-squares due to unjustified model complexity, our models are 
more interpretable and can be used in a more direct manner to quantify 
uncertainties in the model parameters and predictions. 

3.4. Results of waste composition and recovery prediction 

In addition to predicting per capita MSW generation, the same 
methodology was applied to model MSW composition and MSW re
covery as exploratory attempts to reveal the missing interconnections b 
and c shown in Fig. 2 and discussed in Section 3.1. For MSW composi
tion, only paper fraction and food waste fraction were modeled. Detailed 
results and discussions are provided in Appendix A.4 and key findings 
are summarized below:  

a) Paper fraction in the MSW can be estimated with models including 
household size, climate patterns, per capita GDP, energy consump
tion, service industry GDP, and age distribution. The models capture 
a good portion of the variance in the paper fraction with adjusted R- 
squares ranging from 0.56 (LR) to 0.58 (AM). The largest paper 
fraction is expected at intermediate household sizes with high per 
capita GDP.  

b) The models of food fraction prediction built on a similar group of 
explanatory variables also exhibit an intermediate goodness-of-fit 
with somewhat lower adjusted R-squares of 0.44 (LR) and 0.49 
(AM). “Sustainability” replaces “GDP” as the wealth factor, which 
exhibits a downward turn of food waste fraction at high-income 
levels.  

c) The models for MSW recovery rate similarly exhibit intermediate 
values of adjusted R-square (0.46 for the LR model and 0.58 for the 
AM). Our models suggest that societies with higher per capita GDP, 
aging population, higher population density, and higher degrees of 
education tend to have higher MSW recovery rates. Existence of 
waste regulation is also a significant factor, supporting the general 
efficacy of waste regulations in boosting MSW recovery. 

3.5. Implications to the UN SDGs 

Sustainable MSW management contributes to various UN SDGs, 
including SDG 3 (good health and wellbeing), SDG 6 (clean water and 
sanitation), SDG 8 (decent work and economic growth), SDG 12 
(responsible consumption and production), and SDG 13 (climate action) 
(Fatimah et al., 2020). In particular, our waste prediction models can 
shed light on 3 specific targets of SGD 12, including: 12.3 “halve per 
capita global food waste at the retail and consumer levels”, 12.4 
“environmentally sound management of chemicals and all wastes” 
(assuming recovery has lower environmental impacts than disposal) 

(Zaman, 2016), and 12.5 “reduce waste generation through prevention, 
reduction, recycling and reuse” (United Nations, 2015). The key socio
economic drivers that contribute to these targets are summarized in 
Table 3 below. 

There is a mixture of synergies and conflicts between economic 
development, as measured by per capita GDP, and achieving SDG 12. As 
a result of continued pursuit of SDG 8 (economic growth), wealthy so
cieties are likely to achieve the goals of food waste reduction and lower 
environmental impacts through higher recovery rates. In some cases, 
MSW generation may increase, but be offset by larger amounts of 
recovered MSW. These patterns hold true for low-income societies as 
they pursue SDG 1 (poverty alleviation), except that food waste gener
ation will likely grow as GDP increases, indicating further conflict be
tween SDG 1 and SDG 12 at low levels of economic development. Policy 
makers should be particularly aware of this issue to ensure the important 
agendas of poverty alleviation and economic growth does not impede 
the pursuit of SDG 12. 

Density factors (population density, household size, and population), 
which are likely to be strengthened by SDG 11 (sustainable cities), are 
revealed to be beneficial to all 3 sub-targets of SDG 12, indicting clear 
synergies between these two SDGs. Moreover, sustainability initiatives, 
education, and regulation, which could be driven by SDG 4 (quality 
education) and SDG 13 (combat climate change), are all identified to be 
significant and positive drivers to achieving SDG 12 targets. 

3.6. Potential applications, limitations, and future work 

The main intended application of this knowledge base is to synthe
size and systematize MSW knowledge by revealing the relationships 
among the interconnected sub-domains identified in Fig. 2. As an 
illustration, statistical models were built to reveal the association be
tween socioeconomic contexts and MSW generation. In addition, this 
knowledge base can serve as a central repository of MSW data and in
formation with indexing to other related sources, thereby facilitating 
quicker access and use of broader, more consistent information. This 
kind of data repository can be adapted by governments at different levels 
as a foundation for building localized MSW information management 
systems, which can help reduce data collection barriers, model 
complexity, and prediction errors introduced by the data variability and 
sample heterogeneity across the global knowledge base. 

Another important area of application is SWMS knowledge discovery 
and decision support. With a systemic view of existing MSW data and 
knowledge, researchers and decision makers are empowered to identify 
and fill knowledge gaps, leverage socioeconomic drivers to achieve UN 

Table 3 
Summary of key socioeconomic and demographic drivers of SDG 12. 
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SDGs, and optimize SWMS models by combining data-driven ap
proaches with science-based knowledge. For instance, despite the 
incomplete sufficiency of our models for explaining the underlying 
reasons for the observed coefficients and curves in Section 3.3, they do 
provide directions for further model development and data collection to 
achieve the resolution and power needed to shed light upon the complex 
interrelationships among technical, economic, social, and behavioral 
forces that shape SWMS. 

There are several limitations in our current work. First, just like the 
other studies, our MSW generation prediction models inevitably suffer 
from the “curse of dimensionality” issue. The relatively low-to- 
intermediate adjusted R-squares suggest that MSW generation is asso
ciated with a wide spectrum of socioeconomic variables, which requires 
an exponentially large collection of data for uncertainty control. Second, 
our data collection is not exhaustive, and our knowledge base is limited 
in scope with only major types of MSW included at this moment. Third, 
with missing observed data, inconsistent metrics, and relatively large 
uncertainty ranges, our knowledge base also suffers from lingering data 
quality and availability issues. 

Although there is no easy solution to these limitations, actions and 
research are needed to pave the way to a more sustainable MSW man
agement future. Instead of passively waiting for favorable business cases 
for MSW data collection, waste managers and practitioners should 
harness the data collection potential of the Internet of Things (IoT) 
presented by various smart devices and sensor technologies (Sharma 
et al., 2020). These technologies can not only generate a massive amount 
of data automatically at relatively low costs, but also improve data 
reliability, traceability, transparency, and overall quality. This data 
collection potential could incubate MSW knowledge bases that are 
locally deployed, regionally integrated, and nationally connected. 
Meanwhile, academic communities should leverage the existing data 
and scientific understandings of SWMS to develop innovative hybrid 
models, in which data gaps and knowledge gaps can be bridged by 
existing knowledge and data, respectively. For example, attempts to 
predict waste fractions using data-driven approaches might have a 
higher chance of success with better scientific understandings of the 
correlated variables or the mechanistic material flows of these MSW 
streams. 

The sustainable future of MSW management hinges on systematic 
and streamlined collecting of MSW data, and subsequent translation of 
these data into insights and decisions. This study provides a solid base 
for integrating these two crucial aspects into a single integrated frame
work. Future improvements should focus on extensive data collection, 
scope expansion to include other non-hazardous wastes, modeling of the 
under-investigated interconnections, and local deployment and appli
cation of the knowledge base. 
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Juul, N., Münster, M., Ravn, H., Söderman, M.L., 2013. Challenges when performing 
economic optimization of waste treatment: a review. Waste Manag. 33, 1918–1925. 
https://doi.org/10.1016/j.wasman.2013.04.015. 

Kannangara, M., Dua, R., Ahmadi, L., Bensebaa, F., 2018. Modeling and prediction of 
regional municipal solid waste generation and diversion in Canada using machine 
learning approaches. Waste Manag. 74, 3–15. https://doi.org/10.1016/j. 
wasman.2017.11.057. 

Kaplan Mintz, K., Henn, L., Park, J., Kurman, J., 2019. What predicts household waste 
management behaviors? Culture and type of behavior as moderators. Resour. 
Conserv. Recycl. 145, 11–18. https://doi.org/10.1016/j.resconrec.2019.01.045. 

Karak, T., Bhagat, R.M., Bhattacharyya, P., 2012. Municipal solid waste generation, 
composition, and management: the world scenario. Crit. Rev. Environ. Sci. Technol. 
42, 1509–1630. https://doi.org/10.1080/10643389.2011.569871. 

Kawai, K., Tasaki, T., 2016. Revisiting estimates of municipal solid waste generation per 
capita and their reliability. J. Mater. Cycles Waste Manag. 18, 1–13. https://doi.org/ 
10.1007/s10163-015-0355-1. 

Kaza, S., Yao, L.C., Bhada-Tata, P., Van Woerden, F., 2018. What a Waste 2.0 : A Global 
Snapshot of Solid Waste Management to 2050. World Bank, Washington, DC.  

Khandelwal, H., Dhar, H., Thalla, A.K., Kumar, S., 2019. Application of life cycle 
assessment in municipal solid waste management: a worldwide critical review. 
J. Clean. Prod. 209, 630–654. https://doi.org/10.1016/j.jclepro.2018.10.233. 

Kolekar, K.A., Hazra, T., Chakrabarty, S.N., 2016. A review on prediction of municipal 
solid waste generation models. Procedia Environ. Sci. 35, 238–244. https://doi.org/ 
10.1016/j.proenv.2016.07.087. 

Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E., Hauschild, M.Z., 
Christensen, T.H., 2014a. Review of LCA studies of solid waste management systems 
- Part I: lessons learned and perspectives. Waste Manag. 34, 573–588. https://doi. 
org/10.1016/j.wasman.2013.10.045. 

Laurent, A., Clavreul, J., Bernstad, A., Bakas, I., Niero, M., Gentil, E., Christensen, T.H., 
Hauschild, M.Z., 2014b. Review of LCA studies of solid waste management systems - 
Part II: methodological guidance for a better practice. Waste Manag. 34, 589–606. 
https://doi.org/10.1016/j.wasman.2013.12.004. 

Li, C., Wang, L., Zhao, J., Deng, L., Yu, S., Shi, Z., Wang, Z., 2021. The collapse of global 
plastic waste trade: structural change, cascading failure process and potential 
solutions. J. Clean. Prod. 314, 127935 https://doi.org/10.1016/j. 
jclepro.2021.127935. 

Magazzino, C., Falcone, P.M., 2022. Assessing the relationship among waste generation, 
wealth, and GHG emissions in Switzerland: some policy proposals for the 
optimization of the municipal solid waste in a circular economy perspective. 
J. Clean. Prod. 351, 131555 https://doi.org/10.1016/j.jclepro.2022.131555. 

Marshall, R.E., Farahbakhsh, K., 2013. Systems approaches to integrated solid waste 
management in developing countries. Waste Manag. 33, 988–1003. https://doi.org/ 
10.1016/j.wasman.2012.12.023. 

Martinez-Sanchez, V., Kromann, M.A., Astrup, T.F., 2015. Life cycle costing of waste 
management systems: overview, calculation principles and case studies. Waste 
Manag. 36, 343–355. https://doi.org/10.1016/j.wasman.2014.10.033. 

Matter, A., Ahsan, M., Marbach, M., Zurbrügg, C., 2015. Impacts of policy and market 
incentives for solid waste recycling in Dhaka, Bangladesh. Waste Manag. 39, 
321–328. https://doi.org/10.1016/j.wasman.2015.01.032. 

Meng, X., Tan, X., Wang, Y., Wen, Z., Tao, Y., Qian, Y., 2019. Investigation on decision- 
making mechanism of residents’ household solid waste classification and recycling 
behaviors. Resour. Conserv. Recycl. 140, 224–234. https://doi.org/10.1016/j. 
resconrec.2018.09.021. 

OECD, n.d. Municipal waste (indicator) [WWW Document]. https://doi.org/10.1787/89 
d5679a-en. 

Powell, J.T., Chertow, M.R., 2019. Quantity, components, and value of waste materials 
landfilled in the United States. J. Ind. Ecol. 23, 466–479. https://doi.org/10.1111/ 
jiec.12752. 

Rafew, S.M., Rafizul, I.M., 2021. Application of system dynamics model for municipal 
solid waste management in Khulna city of Bangladesh. Waste Manag. 129, 1–19. 
https://doi.org/10.1016/j.wasman.2021.04.059. 

Ravindra, K., Rattan, P., Mor, S., Aggarwal, A.N., 2019. Generalized additive models: 
building evidence of air pollution, climate change and human health. Environ. Int. 
132, 104987 https://doi.org/10.1016/j.envint.2019.104987. 

Reike, D., Vermeulen, W.J.V., Witjes, S., 2018. The circular economy: new or refurbished 
as CE 3.0? — exploring controversies in the conceptualization of the circular 
economy through a focus on history and resource value retention options. Resour. 
Conserv. Recycl. 135, 246–264. https://doi.org/10.1016/j.resconrec.2017.08.027. 

Ripa, M., Fiorentino, G., Vacca, V., Ulgiati, S., 2017. The relevance of site-specific data in 
Life Cycle Assessment (LCA). The case of the municipal solid waste management in 
the metropolitan city of Naples (Italy). J. Clean. Prod. 142, 445–460. https://doi. 
org/10.1016/j.jclepro.2016.09.149. 

Roberts, K.P., Turner, D.A., Coello, J., Stringfellow, A.M., Bello, I.A., Powrie, W., 
Watson, G.V.R., 2018. SWIMS: a dynamic life cycle-based optimisation and decision 
support tool for solid waste management. J. Clean. Prod. 196, 547–563. https://doi. 
org/10.1016/j.jclepro.2018.05.265. 

Rodrigues, A.P., Fernandes, M.L., Rodrigues, M.F.F., Bortoluzzi, S.C., Gouvea da Costa, S. 
E., Pinheiro de Lima, E., 2018. Developing criteria for performance assessment in 
municipal solid waste management. J. Clean. Prod. 186, 748–757. https://doi.org/ 
10.1016/j.jclepro.2018.03.067. 

Sandoval-Reyes, M., He, R., Semeano, R., Ferrão, P., 2022. Waste management 
optimization models (WM-OM) review and quo vadis. J. Clean. Prod. (in 
preparation).  

Sharma, M., Joshi, S., Kannan, D., Govindan, K., Singh, R., Purohit, H.C., 2020. Internet 
of Things (IoT) adoption barriers of smart cities’ waste management: an Indian 
context. J. Clean. Prod. 270, 122047 https://doi.org/10.1016/j. 
jclepro.2020.122047. 

Tan, H., Li, Jialing, He, M., Li, Jiayu, Zhi, D., Qin, F., Zhang, C., 2021. Global evolution of 
research on green energy and environmental technologies:A bibliometric study. 
J. Environ. Manag. 297, 113382 https://doi.org/10.1016/j.jenvman.2021.113382. 

Tong, X., Nikolic, I., Dijkhuizen, B., van den Hoven, M., Minderhoud, M., Wäckerlin, N., 
Wang, T., Tao, D., 2018. Behaviour change in post-consumer recycling: applying 
agent-based modelling in social experiment. J. Clean. Prod. 187, 1006–1013. 
https://doi.org/10.1016/j.jclepro.2018.03.261. 

Tonjes, D.J., Greene, K.L., 2012. A review of national municipal solid waste generation 
assessments in the USA. Waste Manag. Res. 30, 758–771. https://doi.org/10.1177/ 
0734242X12451305. 
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