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Simple Summary: Pleural effusion (PE) occurs as a consequence of various pathologies. Malignant
effusion due to lung cancer is one of the most frequent causes. A method for accurate differentiation of
malignant from benign PE is an unmet clinical need. Proteomics profiling of PE has shown promising
results. However, mass spectrometry (MS) analysis typically involves the tedious elimination of
abundant proteins before analysis, and clinical annotation of proteomics profiled cohorts is limited.
This study compares the proteomes of malignant PE and nonmalignant PE, identifies lung cancer
malignant markers in agreement with other studies, and identifies markers strongly associated with
patient survival.

Abstract: Background: Pleural effusion (PE) is common in advanced-stage lung cancer patients
and is related to poor prognosis. Identification of cancer cells is the standard method for the
diagnosis of a malignant PE (MPE). However, it only has moderate sensitivity. Thus, more sensitive
diagnostic tools are urgently needed. Methods: The present study aimed to discover potential protein
targets to distinguish malignant pleural effusion (MPE) from other non-malignant pathologies. We
have collected PE from 97 patients to explore PE proteomes by applying state-of-the-art liquid
chromatography-mass spectrometry (LC-MS) to identify potential biomarkers that correlate with
immunohistochemistry assessment of tumor biopsy or with survival data. Functional analyses
were performed to elucidate functional differences in PE proteins in malignant and benign samples.
Results were integrated into a clinical risk prediction model to identify likely malignant cases.
Sensitivity, specificity, and negative predictive value were calculated. Results: In total, 1689 individual
proteins were identified by MS-based proteomics analysis of the 97 PE samples, of which 35 were
diagnosed as malignant. A comparison between MPE and benign PE (BPE) identified 58 differential
regulated proteins after correction of the p-values for multiple testing. Furthermore, functional
analysis revealed an up-regulation of matrix intermediate filaments and cellular movement-related
proteins. Additionally, gene ontology analysis identified the involvement of metabolic pathways
such as glycolysis/gluconeogenesis, pyruvate metabolism and cysteine and methionine metabolism.
Conclusion: This study demonstrated a partial least squares regression model with an area under the
curve of 98 and an accuracy of 0.92 when evaluated on the holdout test data set. Furthermore, highly
significant survival markers were identified (e.g., PSME1 with a log-rank of 1.68 × 10−6).

Keywords: biomarker; diagnosis; malignant; lung cancer; proteomics; risk models; pleural effusion

1. Introduction

Pleural effusion (PE) is an abnormal accumulation of fluid in the pleural cavity. Ac-
cording to Light’s criteria, PE can be clinically classified as either exudate, which is most
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frequently caused by lung pleura and systemic disorders, or transudate, which is typically
caused by cardiac, kidney, or liver failure [1,2]. Compared to a tissue biopsy, PE is obtained
through a less invasive and uncomfortable process [3]. Malignant pleural effusion (MPE)
reflects the dissemination of cancer cells to the pleura (pleural metastasis), disrupting
normal fluid turnover [4].

Clinical discrimination of PE types is crucial and the gold standard method for MPE
detection is cytology of the PE or histology of the pleural membrane by closed biopsy or
by thoracoscopy, the latter being more invasive. Although pleural fluid cytology has high
specificity, the sensitivity is moderate, 58.2% (95% CI 52.5% to 63.9%) [5]. An imprecise
diagnosis makes the discrimination of disease stages more difficult, and it is an obstacle to
defining a therapeutic strategy [6].

MPE, a frequent clinical issue in cancer patients, can result from both primary thoracic
tumors and a metastatic dissemination in the chest [7]. In about 10% of cases, MPE is the
first sign of the disease. Despite improvements in treatment choices, the prognosis is still
grim, and the typical survival time after a MPE diagnosis is 4 to 9 months [7]. The clinical
management of this condition will be substantially facilitated by biomarkers for survival in
patients with MPE [8]. However, current large-scale mass spectrometry-based proteomics
studies has not assessed survival of protein biomarkers. Advanced malignancies frequently
experience MPE, which lowers quality of life and restricts available treatments.

Lung cancer accounts for 36.0% of MPEs, followed by breast cancer and lymphoma [9].
Around 40% of lung cancer patients with exudative PE are undetected by current thora-
centesis and require thoracoscopy for detection [10]. Currently, detection of lung cancer
implies late stage and poor prognosis. However, an early detection of lung cancer by an
innovative method may lead to a decrease in cancer lethality.

Lung cancer has become the top-ranked leading cause of cancer death globally, ac-
counting for 1.80 million deaths in 2020 (18%) [11]. Two main histological subtypes of lung
cancer are small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). NSCLC
is usually diagnosed in 85% of lung cancer cases and includes three main subgroups: squa-
mous cell carcinoma (SCC), adenocarcinoma (ADC), large-cell carcinoma (LCC) and some
rare subgroups [12]. Despite the advances in understanding lung cancer biology and the
implementation of innovative treatment methods such as tyrosine kinase inhibitors and
immunotherapies [13], lung cancer has remained a critical clinical issue due to late-stage
diagnosis in over 62% of the cases [14]. More importantly, early detection of patients would
raise the 5-year overall survival rate from 18% to 55%, giving the patients a chance of being
cured by surgery [15]. Vast effort has been invested in attempting to find new methods to
diagnose MPE in the early stages. However, the most efficient strategy to overcome the
high mortality rate and poor prognosis is to find an efficient panel of biomarkers [16–18].
Therefore, there is an urgent demand to seek potential biomarkers to distinguish MPE from
benign lung diseases.

A major limitation of lung tissue biomarkers screening is the sample accessibility, since
the procedures are generally highly invasive, particularly for patients in late stages [3]. An-
other challenging factor is tissue heterogeneity, which adds excessive variability in predicted
outcome [19]. To overcome these issues, there has been an increased investment in identi-
fying potential protein biomarkers in body fluids, such as blood, urine, bronchoalveolar
lavage and PE [20–24]. The commonly used biomarkers of body fluids in clinical panels
such as Carcinoembryonic antigen (CEA), CA-125, CA 15-3 and cytokeratin fragments
showed low efficacy in detecting lung cancer [25]. The design of new screening tests,
based on more reliable targets, e.g., identified by more advanced and sensitive techniques,
is essential. The proteome profile of lung cancer’s pleural fluid comprises proteins origi-
nating from the complex tumor microenvironment, including immune cells, cancer cells,
epithelial cells, etc. [26,27]. PE has been investigated by metabolomics and proteomics
studies and results are promising in terms of potential biomarkers [28–30]. However, more
and larger clinical cohorts are needed as well as detailed clinical annotation of samples
such as survival data.
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Previous clinical cohorts analyzing the proteome of MPE, suggest that a further
investigation of PE proteome will provide an overview of lung cancer cell mechanism and
its associated signaling cascades [31,32]. Investigations have addressed protein patterns in
clinical conditions such as tuberculosis [33]. Furthermore, a number of proteomics studies
have been focusing on malignant pleural mesothelioma to determine protein biomarkers
by using different sample types [34–36]. Other studies analyzed proteome profiling of MPE
compared with benign inflammatory diseases [37]. Few studies analyzed patients with
suspected MPE with undefined pathogenesis to discover diagnostic markers [38]. However,
in this study, we collected PE samples through various etiologies to obtain a well annotated
real-life clinical cohort with the aim of identifying biomarkers for MPE and survival.

The present study reveals original findings concerning functional characterization of
PE across pathologies, based on PE proteomics profiling, and identifies protein markers
strongly correlated with survival. Classification performance of comparative models based
on PE proteomics data was also evaluated. Moreover, our results in terms of predicting
poor prognosis are concurrent with previous studies.

2. Materials and Methods
2.1. Patient Samples

PE samples were obtained from patients with lung cancer, suspected lung cancer,
mesothelioma cancer, other types of cancers and non-malignant patients at CUF Descober-
tas hospital, in Lisbon, from 2019 to 2021. The study protocol was approved by NOVA
Medical School Ethics Committee (Registry number nr.85/2018/CEFCM) and by the ethi-
cal committee from CUF Descobertas hospital. All patients or relatives signed a written
informed consent. The samples used for this study are normally discarded samples, thus
there is no added inconvenience for the patients. The project was conducted according to
the ethical rules of the Helsinki declaration. All the information regarding human patients
was anonymized. Inclusion and exclusion criteria of the patients were clearly defined.
Patients under 18 years, mentally disabled and patients too weak to evaluate the informed
consent were excluded from the study. All patients, in the collaborating institution, able
to sign the informed consent were enrolled. All pleural fluid samples were obtained from
patients undergoing a thoracocentesis at CUF Descobertas hospital and collected in sterile
50 mL tubes. The samples were subjected to low spin centrifugation (800 rpm) to remove
cells. The cell pellet and supernatant samples were stored at −80 ◦C until further analysis.
A total number of 97 PE samples were collected which were later diagnosed, resulting in the
following diagnosis: 35 malignant patients, 5 suspected malignant and 57 non-malignant
cancer (benign) patients. MPE was confirmed by clinical positive cytology reports or by
further invasive diagnostic tests (e.g., pleural biopsy). Non-malignant patients that were
referred in this study as benign were further categorized into exudate and transudate
benign groups. Benign patients were diagnosed with diseases such as pneumonia, throm-
boembolism, entrapped lung, inflammatory and auto-immune diseases, heart failure, and
renal failure. On the other hand, the malignant group included patients diagnosed with
lung cancer and patients diagnosed with other malignancies such as breast, gynecologic,
gastric and colorectal cancer.

2.2. Peptide Preparation

The frozen PE specimens were thawed and then centrifuged at 3200× g, 10 min,
4 ◦C to pellet cell debris. Next, PE were precipitated with ice cold acetone and proteins
resuspended in solution containing RIPA buffer, 4% SDS. Proteins were reduced with
0.1 M dithiothreitol (DTT) and loaded onto 30K spin columns and washed with 8 M
Urea 0.1 M HEPES, pH 8.0. Then proteins were alkylated with 50 mm iodoacetamide.
Prior to trypsin digestion overnight at 37 ◦C, proteins were equilibrated with ammonium
bicarbonate buffer.
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2.3. Protein Measurements

Protein concentrations in PE were measured by using a Bicinchoninic acid (BCA)
protein assay kit (Pierce Biotechnology, Rockford, IL, USA) according to the manufacturer’s
instructions. Bovine Serum Albumin (BSA) was used as the reference standard to generate
the standard curve of the BCA protein assay. Additionally, the protein quantifications were
validated by SDS-PAGE Coomassie staining.

2.4. Mass Spectrometry Analysis

Samples were analyzed by mass spectrometry-based proteomics using a nano-LC-
MSMS (Dionex RSLCnano 3000) coupled to an Exploris 480 Orbitrap mass spectrometer
(Thermo Scientific, Hemel Hempstead, UK) as previously described [39]. In brief, samples
were loaded onto a custom made fused capillary pre-column (2 cm length, 360 µm OD,
75 µm ID, flowrate 5 µL per minute for 6 min) packed with ReproSil Pur C18 5.0 µm resin
(Dr. Maish, Ammerbuch-Entringen, Germany), and separated using a capillary column
(25 cm length, 360 µm outer diameter, 75 µm inner diameter) packed with ReproSil Pur
C18 1.9-µm resin (Dr. Maish, Ammerbuch-Entringen, Germany) at a flow of 250 nL per
minute. A 56 min linear gradient from 89% A (0.1% formic acid) to 32% B (0.1% formic
acid in 80% acetonitrile) was applied. Mass spectra were acquired in positive ion mode in
a data-dependent manner by switching between one Orbitrap survey MS scan (mass range
m/z 350 to m/z 1200) followed by the sequential isolation and higher-energy collision dis-
sociation (HCD) fragmentation and Orbitrap detection of fragment ions of the most intense
ions with a cycle time of 2 s between each MS scan. MS and MSMS settings: maximum
injection times were set to “Auto”, normalized collision energy was 30%, ion selection
threshold for MSMS analysis was 10,000 counts, and dynamic exclusion of sequenced ions
was set to 30 s.

2.5. Database Search

The obtained data from the 214 LC-MS runs of 97 PE samples were searched using
VEMS [40] and MaxQuant [41]. Of the 97 PE samples 91 were analyzed as duplicates,
two were analyzed four times, and four were analyzed six times. The MSMS spectra were
searched against a standard human proteome database from UniProt (3AUP000005640).
Permuted protein sequences, where Arg and Lys were not permuted, were included in the
database for VEMS. Trypsin cleavage allowing a maximum of 4 missed cleavages was used.
Carbamidomethyl cysteine was included as fixed modification. Methionine oxidation,
lysine and N-terminal protein acetylation, deamidation of asparagine, serine, threonine and
tyrosine phosphorylation, diglycine on lysine, and methylation on lysine were included
as variable modifications. Five ppm mass accuracy was specified for precursor ions and
0.01 m/z for fragment ions. The false discovery rate (FDR) for protein identification was
set at 1% for peptide and protein identifications. No restriction was applied for minimal
peptide length for VEMS search. Identified proteins were divided into evidence groups as
defined by Matthiesen et al. [42].

2.6. Statistical Analysis and Machine Learning

Quantitative data from MaxQuant and VEMS were analyzed in the R statistical pro-
gramming language. Protein LFQ and protein spectral counts from the two programs
were preprocessed by three approaches: (1) removing common MS contaminants fol-
lowed by log2(x + 1) transformation, (2) removing common MS contaminants followed by
log2(x + 1) transformation and quantile normalization, (3) removing common MS con-
taminants followed by log2(x + 1) transformation, quantile normalization and abundance
filtering to optimize overall Gaussian distribution of the quantitative values. Protein LFQ
values were subjected to statistical analysis utilizing R package limma [43] where contrast
between MPE versus BPE and MPE versus EBPE were specified (Tables S1a and S2a).

Correction for multiple testing was applied using the method of Benjamini and
Hochberg [44]. Volcano plot was plotted with ggplot followed by annotating data points
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with potential contaminant proteins from erythrocyte, platelet and coagulation extracted
from Geyer et al. [45]. Univariate Cox proportional hazards regression models were
fitted using the R package survival [46] and the parameter ties were set to “breslow”.
Kaplan–Meier plots were constructed with the R package RTCGA [47]. The R package
pROC were applied for plotting receiver operator characteristic (ROC) and calculating the
Youden’s J statistic [48].

The partial least squares (PLS) regression and lasso logistic regression models were
constructed using the R package caret [49]. The data were log2 transformed, centered and
scaled. Only data with a definitive diagnosis and no missing data were included in the
training and test data (N = 91). The data were split to ensure a balanced training set and
75% of the data was provided for training of the models and the remaining for testing the
reported performance. The split of data were constructed to ensure a balanced training set.
Highly correlated features and zero variance features were removed. The training model
was optimized using 10-fold repeated cross validation and accuracy as performance metric.

2.7. Functional Analysis of Differentially Regulated Proteins

Functional analysis applying the hypergeometric function in R for dysregulated pro-
teins against KEGG and gene ontology (GO) categories including cellular component (CC),
biological process (BP), and molecular function (MF) are provided in Tables S1 and S2.
GO and KEGG functional analyses were performed for all significantly regulated pro-
teins (p-value < 0.05) obtained by the limma package in R, as described previously [43].
We compared MPE (N = 35) versus EBPE (N = 30) and MPE versus BPE (N = 57) sam-
ples. In addition, functional analysis was performed for all significantly up-regulated
(p-value < 0.05) and significantly down-regulated proteins (p-value < 0.05).

The top 10 significant pathways were extracted from KEGG enrichment analysis
results. In the case of GO, for each GO category, top 3 most significant terms of each GO
category were extracted.

In Cytoscape, annotated enrichment maps of pathways for significantly regulated
proteins (adjusted p-value < 0.05) were automatically generated. Significantly regulated
proteins were identified by comparison of MPE samples (N = 35) versus BPE samples
(N = 57) and MPE samples (N = 40) versus EBPE samples (N = 30). Briefly, signifi-
cantly regulated proteins in R language programming (RCy3 package) were used to create
a string network in Cytoscape with string protein query cutoff = 0.99 and a limitation
query = 40. Then, functional enrichment was calculated in Cytoscape, and data were
extracted in the format of “gmt.file”. After installation of the EnrichmentMap Pipeline
Collection, the extracted “gmt.file” was used for EnrichmentMap generation. In the last
step, autoAnnotate and subnetwork commands were used to create subnetworks based on
the Markov clustering (MCL) algorithm.

2.8. Western Blotting Analysis

Aliquots of 20 µg of pleural effusion (PE) protein were separated by 10% SDS-PAGE.
The proteins were transferred onto polyvinylidene fluoride (PVDF) membranes, and the
membranes were blocked with phosphate-buffered saline with 0.1% Tween 20 (PBS-T)
containing 5% skim milk, followed by incubation with primary antibody (1/10,000 dilution),
overnight at 4 ◦C. Membranes were incubated with HRP-conjugated secondary antibody
(goat anti-rabbit (1:10,000) 1/10,000 dilution) for 1 h at room temperature. Immunoreactivity
was visualized with ChemiDoc Touch System (Bio-Rad, Hercules, CA, USA).

3. Results
3.1. Outline of Study

A total of 97 patients were enrolled prospectively in the study from 2019 to 2021.
Malignant cancer status was updated in spring 2022. The probability of MPE in the cohort
was 38%. Acellular PE was analyzed by LC-MS by at least two technical replicas resulting
in a total of 214 LC-MS runs. Overall, 1689 protein isoforms were identified by LC-MS. The
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protein isoforms were collapsed into their coding genes resulting in 820 proteins identified
in all PE groups. Two pairwise comparisons were performed: (1) all malignant versus
all benign and (2) all malignant versus benign classified as exudate. Survival analysis
was based on follow-up data obtained in spring 2022. Finally, pathways regulation and
functional enrichment analysis were performed on the identified proteins and dysregulated
proteins.

3.2. Demographic and Clinical Characteristics of Patients

A statistical summary of patients’ characteristics is outlined in Table 1 after follow-up
data collection in spring 2022. In total, 97 patients including 35 MPE, 5 suspected but not
confirmed malignant lung cancer and 57 BPE samples were enrolled. The malignant cases
showed lower mean age compared to nonmalignant (Table 1). Gender was approximately
equally balanced across the main clinical subgroups. Exudate PEs were strongly correlated
with MPE. Cytology and clinical measurements of LDH and total protein concentration in
PE were strongly correlated with malignant status. Exudate versus transudate classification
is based on LDH and total protein PE measurements and the ratio to serum measurements.
Although LDH and total protein concentration are statistically significant between MPE
and BPE, there is a nonmalignant group of patients with similar total protein concentration
as MPE (Figure 1), which are mainly EBPE. This is also evident for LDH (Figure A1).
Consequently, we focus on the comparison between MPE and BPE for evaluation with
other studies and in addition on MPE versus EBPE. The last pairwise comparison better
reflects the clinical challenges. Regarding the tumor type, most lung cancer patients are
diagnosed with adenocarcinoma histological type, with 62% confirmed cases out of all lung
cancer cases.

Table 1. Summary of patients’ characteristics.

Group Malignant (MPE) Suspected
Malignant Non-Malignant (BPE) p

Observations
N = 97 35 5 57

Age (Years)

Mean (SD) 67 (15) 77 (9.5) 75 (15) 0.024
valid (missing) 35 (0) 5 (0) 57 (0)

Gender

F 51% (18) 60% (3) 42% (24) 0.56
M 49% (17) 40% (2) 58% (33)

Pleural fluid

Exudate 97% (34) 100% (5) 53% (30) <0.001
Transudate 2.9% (1) 47% (27)

Pleural LDH units

Mean (SD) 372 (325) 237 (108) 266 (580) <0.001
valid (missing) 34 (1) 5 (0) 57 (0)

Pleural proteins mg/dL

Mean (SD) 4.5 (0.97) 4.2 (0.3) 3.2 (1.4) <0.001
valid (missing) 34 (1) 5 (0) 57 (0)

Ethnicity

Black 17% (6) 0% (0) 1.8% (1) 0.018
Caucasian 83% (29) 100% (5) 98% (56)
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Table 1. Cont.

Group Malignant (MPE) Suspected
Malignant Non-Malignant (BPE) p

Smoking status

Ex-smoker 31% (11) 40% (2) 39% (22) 0.47
Non-smoker 57% (20) 20% (1) 53% (30)
Smoker 11% (4) 20% (1) 5.3% (3)
missing 0% (0) 20% (1) 3.5% (2)

Cytology

Negative 29% (10) 100% (5) 98% (56) <0.001
Positive 54% (19) 0% (0) 0% (0)
missing 17% (6) 0% (0) 1.8% (1)

Status §

Alive 29% (10) 20% (1) 100% (57) <0.001
Dead 71% (25) 80% (4) 0% (0)

§ Status 2.5 years post-PE collection.
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3.3. Protein Identification

Across the 214 LC-MS runs, 1689 protein isoforms were identified. The protein
isoforms were mapped to their corresponding genes resulting in 818 proteins. Figure 2a
depicts the number of proteins identified factored on diagnostic status. The MPE group
displays a high number of identified proteins despite considerably fewer samples in the
MPE group compared to the BPE group. The MPE group also displays more unique proteins
compared to the BPE group (Figure 2b). Extracellular region and extracellular vesicles
(EVs) cellular component terms were found to have the highest functional enrichment
when analyzing all identified proteins in both MPE and BPE (Figure 2c). Endocytic vesicle
lumen, nucleosome, vesicle and focal adhesion were more enriched in MPE compared to
BPE (Figure 2c).
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3.4. Protein Dysregulation

Statistical analysis of quantitative proteomics data between MPE versus BPE
(Table S1a) and MPE versus EBPE (Table S2a) revealed significant differences in 58/192
expressed proteins from MPE versus BPE and 65/218 DEPs from MPE versus EBPE (adjust
p-value < 0.05/p-value < 0.05).

Volcano plots for the comparison between MPE versus BPE and MPE versus EBPE
proteomes are provided in Figure 3a,b, respectively. Potential contaminant proteins from
erythrocytes, platelets and coagulation cascade pathway obtained from Geyer et al. [45]
were highlighted in red, orange and blue, respectively. Potential contaminant proteins
displayed a minimal overlap with significantly dysregulated proteins (Figure 3a,b). LDHA
and LDHB regulation was in agreement with clinical data and constituted protein malignant
markers typically identified in lung fluids such as PE and bronchoalveolar lavage.
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3.5. Survival Analysis Based on Protein Markers

Univariate Cox proportional hazards regression models were fitted to the observed
survival, proteomics and clinical data for all lung patients in the cohort. The proportional
hazard (PH) assumption was assessed using Schoenfeld residuals [50]. The Cox–Mantel
log-rank tests for the top proteins (p-value < 0.05 and Cox–Mantel log-rank tests < 0.01) are
listed in Table 2. None of the clinical measured variables correlated significantly to survival
when applying the above thresholds. Figure 4 depicts the Kaplan–Meier for IGLV9_49 and
proteasome activator subunit 1 (PSME1) which are the two most significant predictors for
survival. Proteins such as PSME1 and HSP90AA1 have previously been associated with
poor prognosis in cancer [51,52].

Table 2. Cox–Mantel log-rank tests and p-value estimates from Cox proportional hazards regression
models.

Protein p Log-Rank Protein p Log-Rank

IGLV9_49 0.00014266 2.87 × 10−5 ACTC1 0.0048079 0.00023111
PSME1 0.00037219 1.68 × 10−6 ACTA2 0.00482817 0.00023881

HSP90AA1 0.0005116 0.00030706 SAA2 0.00527138 0.00336226
POTEKP 0.0005359 0.00012375 ACTA1 0.00547701 0.00029288

SERPINA3 0.00132541 0.00110944 LPA 0.006096 0.0044481
VTN 0.00148688 0.00096543 DSP 0.0064211 0.0015112

HSP90AB1 0.00165501 0.00114973 ITIH2 0.00652889 0.00572679
HSP90AB2P 0.00246227 0.00172132 ITIH4 0.00694899 0.00580105
HSP90AB3P 0.00248381 0.00175161 POTEE 0.00887962 0.00111277

SFTPD 0.00356403 0.00212968 POTEI 0.01041618 0.00164127
HPX 0.0036552 0.00398468 POTEF 0.01052107 0.00150148

ACTG1 0.00367013 0.00028455 SAA4 0.01084473 0.00922537
SAA2_SAA4 0.00397487 0.0029843 CPB2 0.01106905 0.0005958
HSP90AA5P 0.00400309 0.00297193 SAA1 0.0124629 0.00516249

ACTB 0.00401629 0.00031496 AKR1B10 0.01503984 0.00520114
H0YJW9 0.00436481 0.00344019 IGHV5_51 0.01558887 0.00675904
ACTG2 0.00448447 0.00020827 POTEJ 0.02431411 0.00718341
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3.6. Comparative Classification Models

Different machine learning models were built based on clinical available parameters,
proteomics data and a combination of clinical and proteomics data. Data from patients
with a definitive diagnosis and no missing data (N = 91) were split into training (N = 52)
and test data (N = 39) using 75% for training. Partial least squares (PLS) regression and
lasso logistic regression were compared. PLS regression models demonstrated slightly
higher accuracy than lasso logistic regression and were therefore explored in more detail
(Figure 5). Receiver operating characteristics (ROC) analysis of PLS regression models
demonstrated that models based on proteomics data increased performance in comparison
to models based solely on clinical data. The highest area under the curve (AUC) was
obtained by a combination of clinical and proteomics data (Figure 5a). PLS regression
model trained on a combination of proteomics and clinical data maintained both clinical
and proteomics features among the top 10 most important features (Figure 5b). Although,
the clinical parameters total protein concentration and cytology examination were ranked as
more important than the individual protein quantitative values. SLC3A2, GOT1 and BST1
obtained the highest importance in the PLS model (Figure 5b). The final PLS regression
model using a combination of clinical data and PE protein quantitative data were evaluated
by a confusion matrix (Figure 5c) and various performance measures calculated by caret
R package (Figure 5d). The different performance measures are described in detail in [53].

3.7. Functional Enrichment for Significantly Regulated Proteins

To provide insight on the functional role of dysregulated proteins functional enrich-
ment analysis using KEGG and gene ontology were performed. The analysis in Figure 6 was
performed for the comparison between MPE and EBPE for protein significantly higher ex-
pressed in malignant. Gene ontology indicated enriched up-regulated proteins are mostly
related to extracellular pathways (extracellular vesicular exosome, structural molecule
activity and structural constituent of cytoskeleton, intermediate filament and keratin fila-
ment). Moreover, for KEGG pathway analysis revealed that metabolism-related pathways,
especially glycolysis/gluconeogenesis, pyruvate metabolism and cysteine and methion-
ine metabolism pathways were enriched among up-regulated proteins. In addition, the
NOD-like receptor signaling pathway which is associated with infection and cancer were
also identified.
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In the comparison between MPE and all benign (BPE) proteome, the pathways related
with metabolism such as glycolysis/gluconeogenesis, pyruvate and cysteine and methion-
ine metabolism were significantly enriched among up-regulated proteins
(Figure A2). In fact, these constitute the major biochemical pathways affected by cancer
reprogramming, suggesting the relevance of proteins involved in metabolism in lung cancer
PE physiology. Figure A3 summarizes the KEGG and GO analysis for down-regulated
proteins. Extracellular vesicles and extracellular space are significantly enriched among
down-regulated proteins. Furthermore, functions related to infection and inflammation
were down-regulated for malignant samples (Figure A3).

The network enriched map of pathways of the significantly expressed proteins was
investigated by the RCy3 R package and Cytoscape software (Figure A4). This provides
a simplified overview of enriched pathways. In this approach, large networks were clus-
tered into single nodes based on the Markov clustering (MCL) algorithm. MCL superiority
in comparison with other methods of clustering has been demonstrated, particularly in
showing the intra clusters’ edges [54–56].

Enriched map of pathways for comparison of the MPE samples versus EBPE identified
21, 18, 18, and 18 pathways in the membrane-bounded organelle, alpha-beta fibrinogen,
complement receptor signaling, and intermediate filament rod domain clusters, respectively
(Figure A4a).

Moreover, enriched map of pathways for comparison of the MPE samples versus
BPE samples identified cancer signaling pathways, membrane-bounded organelle, lactate
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dehydrogenase domain, and plasma lipoprotein particles with 45, 25, 13, and 13 pathways
as the four largest clusters, respectively (Figure A4b). This enriched map is in accordance
with the functional enrichment result of both study groups (MPE versus EBPE and MPE
versus BPE samples) and demonstrated the relevance of metabolism-related clusters such
as lactate dehydrogenase domain and plasma lipoprotein particles.

Cancers 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 6. Functional analysis for significant up-regulated proteins by comparing MPE versus EBPE 
proteome. (a) Shows the significant GO analysis of up-regulated proteins (p-value < 0.05) between 
MPE and EBPE (CC, Cellular component; BP, biological process; MF, molecular function), (b) KEGG 
pathway enrichment analysis for up-regulated proteins by comparing MPE and EBPE. 

In the comparison between MPE and all benign (BPE) proteome, the pathways re-
lated with metabolism such as glycolysis/gluconeogenesis, pyruvate and cysteine and me-
thionine metabolism were significantly enriched among up-regulated proteins (Figure 
A2). In fact, these constitute the major biochemical pathways affected by cancer repro-
gramming, suggesting the relevance of proteins involved in metabolism in lung cancer PE 
physiology. Figure A3 summarizes the KEGG and GO analysis for down-regulated pro-
teins. Extracellular vesicles and extracellular space are significantly enriched among 
down-regulated proteins. Furthermore, functions related to infection and inflammation 
were down-regulated for malignant samples (Figure A3). 

The network enriched map of pathways of the significantly expressed proteins was 
investigated by the RCy3 R package and Cytoscape software (Figure A4). This provides a 
simplified overview of enriched pathways. In this approach, large networks were clus-
tered into single nodes based on the Markov clustering (MCL) algorithm. MCL superiority 
in comparison with other methods of clustering has been demonstrated, particularly in 
showing the intra clusters’ edges [54–56].  

Enriched map of pathways for comparison of the MPE samples versus EBPE identi-
fied 21, 18, 18, and 18 pathways in the membrane-bounded organelle, alpha-beta fibrino-
gen, complement receptor signaling, and intermediate filament rod domain clusters, re-
spectively (Figure A4a). 

Moreover, enriched map of pathways for comparison of the MPE samples versus BPE 
samples identified cancer signaling pathways, membrane-bounded organelle, lactate de-
hydrogenase domain, and plasma lipoprotein particles with 45, 25, 13, and 13 pathways 
as the four largest clusters, respectively (Figure A4b). This enriched map is in accordance 
with the functional enrichment result of both study groups (MPE versus EBPE and MPE 
versus BPE samples) and demonstrated the relevance of metabolism-related clusters such 
as lactate dehydrogenase domain and plasma lipoprotein particles. 

  

Figure 6. Functional analysis for significant up-regulated proteins by comparing MPE versus EBPE
proteome. (a) Shows the significant GO analysis of up-regulated proteins (p-value < 0.05) between
MPE and EBPE (CC, Cellular component; BP, biological process; MF, molecular function), (b) KEGG
pathway enrichment analysis for up-regulated proteins by comparing MPE and EBPE.

4. Discussion

The survival parameters in this trial demonstrated an overall poor survival for malignant
cases (Table 1). Furthermore, current clinical parameters used to identify malignant cases such
as exudate versus transudate, total protein concentration, LDH and cytology correlated with
histological confirmed malignant cases (Table 1). However, univariate assessment of these
parameters is unable to clearly classify malignant cases (Figures 1c and A1c). In the case of
cytology, 46% of malignant cases are undetected (Table 1). The main challenge that persists is
therefore to accurately classify exudate samples into malignant and nonmalignant.

Depletion of abundant proteins in body fluids such as albumin, immunoglobulins
and related proteins prior to LC-MS was in the past considered as a requirement. We
and others recently demonstrated that bronchoalveolar lavage [24] and plasma [22,57]
fluids are possible to analyze without pretreatment prior to reduction, alkylation, trypsin
digestion and LC-MS analysis. In this study, 1689 protein isoforms from 818 corresponding
genes were identified from PE from non-depleted samples. The depletion step introduces
sample processing bias, is time consuming and adds costs per sample. More proteins were
identified from MPE samples compared to BPE (Figure 2a,b) even though the number of
MPE samples is lower (35 compared to 57). This trend of higher proteome complexity in
malignant samples is concordant with our previous findings for bronchoalveolar lavage
[23,24]. Functional enrichment in cellular components based on all identified proteins in
MPE and BPE suggested that PE is enriched in EVs (Figure 2c) as previously demonstrated
for bronchoalveolar lavage [23,24]. This functional analysis also suggested nucleosome,
focal adhesion and vesicle-related proteins as the main enriched proteins in malignant
compared to nonmalignant cases for all identified proteins.
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Pairwise comparison between MPE versus BPE and MPE versus EBPE identified
multiple potential markers. Among them are well-established markers already applied
in the clinic such as LDHA and LDHB. A subset was also identified as dysregulated in
previous PE proteomics studies [32,34,58–64] which applied different sample preparation
and MS methodologies (Figure 7). Various HSP90 family proteins were identified as
potential biomarkers in this study by both performed pairwise comparisons (Figure 7).
HSP90 proteins serve as poor prognosis markers in tissue of multiple cancers including lung
cancer [51]. HSP90 proteins are involved in the stability of numerous proteins, including
oncogenes such as kinase receptors such as EGFR [65]. Comparing proteins identified only
in MPE with proteins significantly up-regulated MPE after correcting p-values for multiple
testing again identified HSP90AA4P (Figure A5). Most proteins identified only in MPE are
only identified in few samples. These proteins may result from stochastic sampling or from
the expected high heterogeneity in malignant cases.
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Structural molecule activity and intermediate filament terms were among the top
up-regulated GO terms in the MPE versus EBPE proteome functional enrichment analysis.
Collagen and actin fiber assembly proteins such as Biglycan (BGN), Elongation factor
1-gamma (EEF1G), Ras-related C3 botulinum toxin substrate 1 (RAC1), Myosin-2 (MYH2),
Lamin type A (LMNA), and Catenin beta-1 (CTNNB) were among the top regulated. The
role of BGN proteoglycan has been evaluated in lung tumor tissue microenvironment (TME)
as a metastasis factor, recommending inhibition of stromal BGN as a tumor vascular normal-
ization element [66]. Additionally, overexpression of EEF1G has been reported previously
in lung cancer, and it showed a correlation with poor prognosis in patients [67]. Among
the dysregulated genes in three independent cohort studies in the Oncomine database [68],
EEF1G was detected as the poor prognosis protein in lung cancer. Additionally, RAC1,
a family member of Rho GTPases, is capable of inducing epithelial-to-mesenchymal tran-
sition (EMT) and has a role in cell migration and metastasis through the activation of the
PI3K/AKT signaling pathway [68]. LMNA is a scaffolding protein that contributes to the
regulation of the cell cycle in lung cancer tumor cells [69]. AFM is a secreted glycoprotein
and a member of the albumin superfamily of proteins that have been reported before in
plasma, serum, cerebrospinal fluid, and follicular fluid [70], and it has been reported in
various cancers such as ovarian and breast cancers [71,72]. This protein was among the
up-regulated proteins comparing the MPE and BPE proteomes. As it was shown by the
preliminary result in Figure A6, the Western blot experiments showed consistency with the
proteomics results.

Furthermore, Univariate Cox proportional hazards regression model also identified
various HSP90 proteins as associated with survival (Table 2). Extracellular HSP can promote
cancer progression in breast cancer cell models [73]. The over-expression of HSPs has
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been observed in epithelial and hematological types of cancers, such as prostate, cervical,
ovarian, renal, brain, lung, colorectal, hepatocellular, breast carcinomas, and myeloid
leukemia [74]. Notably, immune-related proteins such as IGLV9-49 and PSME1 showed the
highest association with survival (Figure 4), which pinpoints the importance of immune
cells secretome and proteome for the outcome of patient treatment, particularly in the case
of immunotherapy regimens and checkpoint inhibitor targeting drugs. The proteasome
activator subunit (PSME) gene family has been shown to correlate with prognosis in gastric
cancer [75]. To the best of our knowledge this study is the first to present a medium size PE
proteomics cohort accessing protein markers association to survival. In total, 34 proteins
were found significantly associated with survival (Table 2). The top protein survival
markers were compared with tumor mRNA survival markers from lung adenocarcinoma
(TCGA, PanCancer Atlas) [76] using cBioPortal [77]. Vitronectin (VTN) displays a highly
significant correlation between mRNA expression and survival free progression (Figure A7).
PSME1, HSP90AA1 and SERPINA3 display a similar trend as the protein markers from PE.

PLS regression models demonstrated that models based on quantitative proteomics
demonstrate slightly higher AUC than models based on clinical data (Figure 5a). Further-
more, models based on proteomics data together with clinical data improved the AUC
even further (Figure 5a). The selected markers in the model are previously associated
cancer. For example, SLC3A2 and Ki67 are significantly correlated in NSCLC [50] and
associated with poor prognosis in breast cancer [78]. GOT1 is involved in coordinating the
glycolytic and the oxidative phosphorylation pathways in KRAS-mutated cancer cells [79].
BST1 is involved in immune suppression [80]. The current model based on clinical and
proteomics data mainly suffer from imperfect precision. However, optimization of the
quantitation of the protein markers may resolve this issue in the future. For example, by
developing stable isotope-labeled references for absolute quantitation using for example
multiple reaction monitoring. Currently the model based on combined proteomics and
clinical data appears as a useful model to identify patients for frequent follow-up by for
example image technologies.

Functional enrichment analysis provided insight into the dysregulated proteins in
PE such as extracellular vesicles proteins, metabolism pathways and NOD-like receptor
signaling pathway (Figures 6, A2 and A3, Tables S1 and S2). Extracellular vesicles proteins
and metabolism pathways were also identified in our previous bronchoalveolar lavage
proteome studies [23,24]. Additionally, metabolism proteome signatures with prognostic
impact were previously identified in lung cancer tissue samples [81].

This study presents several limitations. Although the elimination of the depletion
of abundant proteins reduced variance, it penalizes the total number of identified and
quantified proteins. Given that EVs according to the functional enrichment analysis pre-
sented in this study are also abundant in PE, as was the case for bronchoalveolar lavage,
a future study targeting EVs is planned. EVs from PE were isolated in our laboratory and
we observe similar levels of EVs as in bronchoalveolar lavage (manuscript in preparation).
In this study label-free quantitation with no reference proteins were applied for quantita-
tion. Introducing isotope labeled standard peptides for target peptides of interest, may
improve the accuracy of the quantitation and subsequent classification based on protein
quantitative values. Moreover, we are currently developing immune-based methods for
the quantitation of a panel of markers that can improve the AUC with a highest sensitivity
and specificity compared to single marker (Figure A5). Another limitation of this study is
the lack of image data on lung nodules to include in the machine learning models. Our
future studies will address the EV proteome and target current identified markers with
stable isotope label reference proteins analyzed by multiple reaction monitoring.

5. Conclusions

PE proteome is rich in highly significant survival markers. It appears based on com-
parisons with previous plasma-based studies [82] that PE proteome has slightly higher
potential than plasma-based proteomics for classifying malignant cancers cases. Further-
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more, PE proteome contains information that improves classification in comparison to only
using clinical parameters and traditional laboratory measurements. Moreover, the proteins
identified provide cues for establishing new treatment regimens targeted to patients with
distinct molecular features based on the personalized patient protein signature.
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vironment.
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versus EBPE samples. Membrane-bound organelle cluster with 21 pathways inside is the largest
cluster. (b) Enrichment map of the significantly regulated proteins identified by comparison of MPE
samples versus BPE samples. The cancer signaling pathways cloud correspond to the largest cluster
with 45 pathways and metabolism-related pathways highlighted among them.
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ing to the molecular size of ~87 kDa (a,b). Quantification of the Western blot bands was normalized 
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Figure A6. Western blot analysis showing expression of Afamin (AFM) in PE samples corresponding
to the molecular size of ~87 kDa (a,b). Quantification of the Western blot bands was normalized
with Ponceau S staining of the same membranes and the ratio of Western blot bands to Ponceau S
experiment was shown in (c,d). * indicates p-value = 0.01.**** indicates p-value < 0.0001.
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