
foods

Article

A Predictive Strategy Based on Volatile Profile and
Chemometric Analysis for Traceability and Authenticity of
Sugarcane Honey on the Global Market

Pedro Silva 1 , Jorge Freitas 1 , Fernando M. Nunes 2 and José S. Câmara 1,3,*

����������
�������

Citation: Silva, P.; Freitas, J.; Nunes,

F.M.; Câmara, J.S. A Predictive

Strategy Based on Volatile Profile and

Chemometric Analysis for

Traceability and Authenticity of

Sugarcane Honey on the Global

Market. Foods 2021, 10, 1559.

https://doi.org/10.3390/

foods10071559

Academic Editor: Pedro Vitoriano de

Oliveira

Received: 14 May 2021

Accepted: 1 July 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal,
Portugal; pedro_dasilva@hotmail.com (P.S.); Jorge.freitas@staff.uma.pt (J.F.)

2 CQ-VR—Centro de Química-Vila Real, Food and Wine Chemistry Lab., Departamento de Química,
Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; fnunes@utad.pt

3 Departamento de Química, Faculdade de Ciências Exactas e Engenharia, Campus da Penteada, Universidade
da Madeira, 9020-105 Funchal, Portugal

* Correspondence: jsc@staff.uma.pt; Tel.: +351-291-705112

Abstract: Sugarcane honey (SCH) is a syrup produced on Madeira Island and recognized by its
unique aroma, a complex attribute of quality with an important influence on the final consumer’s
acceptance of the product, and determined by a complex mixture of a large number of volatile organic
compounds (VOCs) generated during its traditional making process and storage. Therefore, the
purpose of this study was to establish the volatile profile of genuine SCH produced by a regional
certified producer for seven years and compare it with syrups from non-certified regional producers
and with producers from different geographical regions (Spain, Egypt, Brazil and Australia), as
a powerful strategy to define the volatomic fingerprint of SCH. Different volatile profiles were
recognized for all samples, with 166 VOCs being identified belonging to different chemical classes,
including furans, ketones, carboxylic acids, aldehydes and alcohols. Chemometric analysis allowed
(i) the differentiation between all syrups, being more pronounced between SCH and other syrups;
and (ii) the identification of 32 VOCs as potential markers for the traceability and authenticity of
SCH on the global market.

Keywords: sugarcane syrup; volatile profile; authenticity; geographical origin

1. Introduction

Food authenticity has become a critical issue due to the high globalization of the
food trade, leading to an unprecedented diversity of food products on the market, and
consequently, to an increasing occurrence of food fraud [1]. Food products with a high
added-value, typically exclusive to certain regions or obtained from traditional processes,
are the most desirable targets for counterfeiters [2]. In this context, the European Union
(EU) promotes three types of authenticity certification for regional or traditional food
products: (i) Protected Designation of Origin (PDO); (ii) Protected Geographical Indication
(PGI); (iii) Traditional Speciality Guaranteed (TSG). On the one hand, it guarantees a
greater appreciation of the product on the market, increasing profitability for producers,
as this type of certification is widely attractive to both producers and consumers. On
the other hand, it is a guarantee of the quality expected by consumers and, mainly, a
guarantee of food security. However, the application process for each of these three types
of EU certification is long, time-consuming and exhaustive; every step of the regulatory
framework (Regulation N◦ 1151/2012) must be meticulously followed before submission
to the European Commission in order to guarantee the right to use the respective label of
certification [2–4]. To date, hundreds of EU certification applications have been accepted,
including several food products (i.e., wine, vinegar, olive oil, cheese, among others),
protecting the local producers and traditional practices.
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Recently, the government of Madeira Island, Portugal, has started the process of
authentication to protect one of its most valuable traditional food products, the sugarcane
syrup (SCH). The SCH is a crystalline black syrup produced from the stalks of fresh sugar-
cane (Saccharum officinarum L.) cultivated under the mild climate conditions of the Atlantic
region, and recognized worldwide for its excellent quality and sui generis organoleptic
properties. The distinctive and unique properties of SCH arise from the use of sugarcane
cultivars grown in the region and, principally, from secular and traditional processing and
storage conditions in addition to terroir (climatic conditions and cultivation treatments).
To distinguish the SCH from other syrups, molasses and treacles, the government created
a regional production certification brand. Nevertheless, its importance and economic
value have led to the emergence of adulterated SCH with low-quality sugarcane-derived
products from different geographical origins, which has affected its notoriety [5,6]. In
this context, it becomes essential for the identification of potential molecular markers to
guarantee its typicality and authenticity and, consequently, its traceability on the market,
thereby supporting a potential application for EU certification.

One of the most recent and promising developments in the food authentication domain
is Foodomics, which emerged as a new approach supported by high resolution- and MS-
based techniques to solve some of the new challenges for global food safety [7–9]. In
SCH, the chemical complexity of VOCs formation and origin can be valuable for the
establishment of its typicality and authenticity. The traditional conditions of processing
and storage, together with the exclusive use of sugarcanes from authorized varieties,
cultivated on Madeira Island, can generate a specific “fingerprint” of the volatile pattern.
Furthermore, this approach has been used for the EU certification of several food products,
such as Modena Balsamic Vinegar from Italy [10], “La Rioja” Olive Oil from Spain [11],
“Corsica” Honey from France [12] and Madeira wine from Portugal [13].

In this context, the purpose of this study was to establish the volatile profile of
sugarcane-based syrup produced by a regional certified producer analyzing seven pro-
cessing years (2007, and 2013 to 2018) in order to determine the typicality and authenticity
of genuine SCH. Additionally, the volatile profile of sugarcane-based syrups from non-
certified regional producers and from different geographic regions (Spain, Egypt, Brazil
and Australia), was established. Subsequently, chemometric analysis was applied to the
obtained data allowing the identification of a set of predictive VOCs as potential traceability
markers of genuine SCH on the market. The predictive strategies based on MS techniques
combined with chemometric analysis have been successfully applied in the traceability of
food products [14–16]. Solid-phase microextraction in headspace mode (HS-SPME) with
gas chromatography–mass spectrometry (GC-MS) methodology was performed according
with our previous study [5], being used to establish the volatile profile of all samples.
The proposed predictive strategy will represent a valuable tool to guarantee the trace-
ability of genuine SCH, and to support a potential application for EU certification of its
geographical origin.

2. Materials and Methods
2.1. Standards, Reagents, Materials and Software

Internal standard (IS), 4-heptanone, was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Sodium chloride was acquired from Panreac (Barcelona, Spain). SPME
holder and the fiber DVB/CAR/PDMS (50/30 µm) were acquired from Supelco (Bellefonte,
PE, USA). The BP-20 fused silica capillary column (60 m × 0.25 mm I.D. × 0.25 µm) was
acquired from SGE (Dortmund, Germany). Ultrapure deionized water (H2O) was obtained
from a system from Millipore (Burlington, MA, USA). The Mixer was purchased from Thermo
Scientific (Burlington, MA, USA). All methods used in chemometric analysis were performed
using the STATSOFT STATISTICA 12.0 (2013) software (Tulsa, OK, USA).
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2.2. Samples

Samples from the traditional and certified producer Fábrica de Mel-de Cana do Ribeiro
Sêco (FRS), Madeira Island, Portugal, were collected from lots subsequently placed on
the market in 2007 (FRS07), 2013 (FRS13), 2014 (FRS14), 2015 (FRS15), 2016 (FRS16), 2017
(FRS17) and 2018 (FRS18). All other sugarcane-based syrups samples were purchased
on the regional market between 2014 and 2018, while the samples from the non-certified
regional producers (ECAL14 and NCAL14) and regional homemade producer (GLA14),
were obtained in 2014. Samples from Brazil (MDBR14 and MCBR14) were from the 2014
harvest, whereas the samples from Spain (ESP16), Egypt (EGPA16, EGPB16, EGPC16
and EGP17) and Australia (AUS17) were from the 2016 and 2017 harvest, respectively.
All samples were stored under stable conditions (4 ◦C, in the dark). Identification (ID)
replicate number, replicate code, sample code, group code, processing year, processing type,
geographic origin and regional certification are described in Supplementary Material (S)
Table S1.

2.3. Solid-Phase Microextraction Procedure

The extraction of VOCs from SCH samples was carried out by HS-SPME developed,
optimized and validated in our previous study [5]. Briefly, the samples were prepared every
day by addition of sample (15 g) into H2O (10 mL) in a ratio 3:2 (w/v), being homogenized
for 1 min in a vortex mixer, and aliquoted (8 mL) and stored at 4 ◦C. After, these aliquots
were placed into a glass vial containing NaCl (60 mg) in a thermostatic bath at 30 ◦C for
5 min. The HS-SPME was achieved for 60 min at 30 ◦C with magnetic agitation. Every day,
the fiber was cleaned for 15 min at 250 ◦C in GC-MS, being performed blank assays. All
samples were completed in triplicate experiments.

2.4. Gas Chromatography-Mass Spectrometry Analysis

The analysis was carried on 6890N Network GC system with a 5975 quadrupole MS
detector, both acquired from Agilent Technologies (Santa Clara, CA, USA). A GC fused
silica capillary column BP-20 from SGE was used, being acquired from Thermo Scientific
(Burlington, MA, USA). The GC protocol for the column oven was: started at 40 ◦C, then
2 min hold, after it was increased (0.25 ◦C min−1) to 45 ◦C, then a 2 min hold, subsequently
it was increased (4 ◦C min−1) up to 70 ◦C, another 2 min hold, once again it was increased
(3 ◦C min−1) to 130 ◦C, another 2 min hold, and finally it was increased (3 ◦C min−1)
to 220 ◦C, then a final 7 min hold, resulting in 91.25 min total time. The column flow
was 1.0 mL min−1 using a carrier gas He (99.999%) from Air Liquid (Lisbon, Portugal).
The injection GC port was worked in the splitless mode at 250 ◦C. In MS system, the
temperatures of the transfer line, quadrupole and ionization source were 270, 150 and
230 ◦C, respectively. Electron impact mass spectra were recorded at 70 eV voltage and at
10 µA current. The MS acquisitions were performed in full-scan mode (30–300 m/z). The
identification VOCs method was performed by the Agilent MS ChemStation Software with
a NIST14 Mass Spectral Library (2014). The VOCs’ identification was successfully achieved
with a similarity higher than 75%. The total peak area values were accomplished by target
ion semi-quantification method. The results are presented as relative peak areas (RPA),
being achieved by the ratio of each VOC peak area value by the IS peak area value.

2.5. Chemometric Analysis

The chemometric analysis procedure was performed according to the developed
procedure in our previous study [17]. Briefly, all samples were grouped in one of four
groups formed according to their geographic origin. The FRS07, FRS13, FRS14, FRS15,
FRS16, FRS17 and FRS18 samples were classified into the regional certified producer
group (CERT); the ECAL14, NCAL14 and GLA14 samples into the regional non-certified
producers group (NCERT); the ESP16, EGP17, EGPA16, EGPB16 and EGPC16 samples
into the Mediterranean region producers group (MED); the MDBR14, MCBR14 and AUS17
samples into the southern hemisphere region producers group (STH). The one-way ANOVA
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with Tukey’s post-hoc test, principal component analysis (PCA), partial least square (PLS),
linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA) were fully
described in our previous study [17].

3. Results and Discussion
3.1. Establishment of the Volatile Profile from Sugarcane-Based Syrups

The establishment of the VOC profiles of 18 sugarcane-based syrups from different
geographical origins was successfully achieved by the HS-SPME/GC-MS method. The
information about the 166 identified VOCs is listed in Table S2. The mean RPA and RSD
values of the VOCs are described in Table S3, the mean, minimum and maximum values of
RPA for the VOCs are summarized in Table S4. The representative GC-MS chromatograms
for each sample under analysis is shown in Figure S1.

3.1.1. Number of Identified Volatile Organic Compounds

The analysis of the volatile profile of all samples allowed for the identification and
semi-quantitation of 166 VOCs from a wide diversity of chemical classes. One hundred and
nineteen VOCs (71.69%) were identified in all samples under analysis. On the contrary, only
six VOCs (3.61%) were identified in one specific sample, namely: 2-heptanone (HPT2ONE)
in ECAL14; ethyl hexanoate (EESTHA), ethyl octanoate (EESTOA) and ethyl decanoate
(EESTDA) in GLA14; 2-ethyl-5-methyl-pyrazine (E5MPYZNE) and trimethyl-pyrazine
(TMPYZNE) in AUS17. Interestingly, 48 VOCs (28.92%) were also previously identified in
sugarcane-based syrups from other geographical origins, 17 VOCs in syrup from Egypt [18],
14 VOCs in syrup from the USA [19], 12 VOCs in syrup from the Dominican Republic [20],
11 VOCs in syrup from China [21] and 15 VOCs in syrups from Japan [22,23] (Table S5).

3.1.2. Main Volatile Organic Compounds

Although the contribution of each of the 166 VOCs was important to establish the
SCH volatile profile, their RPA (×103) values varied between 0.5 and 1 × 106. The 20 major
VOCs with higher contribution for the volatile profile of investigated samples are described
in Figure 1A–D.

1,3-Dihydroxy-2-propanone (DHYPPAONE), 5-(hydroxymethyl)-2-furfural (HM5FURAL),
furfural (FURAL) and 2-furanmethanol (FUR2OL) were common to all samples. Further-
more, DHYPPAONE was the most dominant VOC for 17 samples, second only on the FRS07
sample, followed by HM5FURAL. The high contribution of these VOCs is expected because
both are strongly linked to the thermal processing of SCH (i.e., sugars, amino acids), be-
ing well-known markers of the occurrence of non-enzymatic browning reactions, such as
the Maillard reaction, Strecker reaction and caramelization [6,24]. 3,5-Dimethyl-dihydro-2-
furanone (DM35DHFURONE) and 3-methyl-furfural (M3FURAL) were dominant in ENCAL14;
maltol (MALTOL), benzoic acid (BNZOIC), erythritol (ERYTOL), 2-methyl-propanoic acid
(M2PPOICA), 3-methyl-1,2-cyclopentanedione (M3CPT12DONE) and 5-butyl-dihydro-2(3H)-
furanone (BDH2FURONE) were dominant in MDBR14; 2-methyl-furan (M2FUR) was dominant
in AUS17. In fact, most of the VOCs classified as main contributors to the volatile profile are
commonly linked to high temperatures used in the processing of sugarcane-based syrups,
indicating that processing is critical for the establishment of its volatile profile.
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Figure 1. The relative peak area values of the 20 main VOCs for samples of CERT group (A), NCERT
group (B), MED group (C) and STH group (D).
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3.1.3. Chemical Class Classification of Volatile Organic Compounds

The sum of VOCs, RPA and TRPA values of each chemical class recognized in
sugarcane-based samples are summarized in Table S6A–D, respectively. The contribu-
tion, RPA and TRPA values, of each chemical class to the volatile profile of all samples are
shown in Figure 2A,B, respectively.
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Seventeen chemical classes were recognized in SCH’s volatile profile: alcohols (ALC),
aldehydes (ALD), benzenes (BNZ), benzofurans (BZF), carboxylic acids (CAC), esters (EST),
ethers (ETH), furans (FUR), hydrocarbons (HYD), indenes (IND), ketones (KET), naph-
thalenes (NPH), nitrogen (NIT), phenols (PHE), pyrans (PYR), sulfur (SUL) and terpenoids
(TER). All chemical classes were identified in all sugarcane-based syrups. Interestingly,
FUR was the chemical class with the highest contribution to the volatile profile of genuine
SCH obtained by the certified producer. For the remaining samples, FUR was the second
main class for ECAL14, NCAL14, GLA14, ESP16, EGP17, EGPB16, EGPC16, MCBR14 and
AUS17, being the third main class for EGPA16 and MDBR14, where its contribution was
higher than 22%. In addition, FUR was the class with the highest number of VOCs (44).
HM5FURAL was the VOC with the highest influence in FUR class contribution followed
by FURAL, FUR2OL and 3-furanmethanol (FUR3OL). KET was the main class for most of
the samples with a contribution higher than 30%, but only the second main contributor for
samples from the certified producer, with the exception of the FRS07 samples, where it was
the third main contributor. DHYPPAONE was undoubtedly the most dominant from the
KET class, being responsible for more than 50% of the total contribution of this chemical
class for the total volatile profile. Additionally, 1-hydroxy-2-propanone (HXY1PP2ONE),
1,2-cyclopentanedione (CPT12DONE) and 2,3-butanedione (BT23DONE) had a significant
contribution to the KET class, but to a minor level. CAC presented a high contribution
to the volatile profile of all samples ranging from 5.97% (FRS15) to 26.26% (EGP16A).
Among the nine VOCs classified in the CAC class, ethanoic acid (ETNOIC) was respon-
sible for more than 90% of the total volatile fraction. In fact, FUR, KET and CAC classes
comprised a large fraction of the volatile profile of all samples analyzed, from 66.92%
(FRS17) to 92.07% (ENCAL14). ALC and NIT classes also had a substantial contribution
to the volatile profile of investigated samples, being more pronounced in samples from
the certified producer. The contributions of ALC and NIT for certified samples varied
between 7.14–10.39% and 3.18–5.88%, respectively. For the remaining samples, the contri-
butions of ALC and NIT ranged between 1.27–5.67% and 0.17–2.59%, respectively. Ethanol
(ETOL) was the highest contributor for the ALC class, followed by 2-methyl-1-propanol
(M2PP1OL) and 2-cyclohexenol (CHEX2E1OL). Among the 16 VOCs assigned in the NIT
class, 2,4,6-trihydroxypyrimidine (THDXYPYMNE), 2-acetylpyrrole (ACTLPYROLE) and
4-pyridinol (PYRDINOL) were the VOCs with the highest contribution. Likewise, ALD,
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EST and PYR classes had a reasonable contribution (>1%) for all samples from the certified
producer, being less expressive for most of the other samples. Typically, BNZ and PHE
classes also presented a higher contribution for the volatile profile of certified samples
compared to non-certified samples. The number of VOCs classified into each of these
chemical classes were: ALD (9), EST (11), PYR (5), BNZ (13) and PHE (8). ALD contribu-
tion was mainly explained by 2-methyl-propanal (MPPAL), 2-methyl-butanal (M2BTAL)
and 3-methyl-butanal (M3BTAL), while EST contribution was mostly influenced by viny-
lene carbonate (VYLESTCA), 4,5-dimethyl vinylene carbonate (DM45CVYLESTCA) and
ethyl acetate (EESTAA). PYR contribution was predominantly influenced by MALTOL,
and its derivatives, 5-hydroxy-maltol (HX5MALTOL) and 3-hydroxy-2,3-dihydro-maltol
(HX3DH23MALTOL). BNZ and PHE contributions were highly influenced by benzeneac-
etaldehyde (BENZACETAL) and 3-methoxy-1,2-benzenediol (M3BNZDIOL); phlorogluci-
nol (PHLOGLNOL) and phenol (PHEOL), respectively. VOCs from BZF, ETH, HYD, NPH,
SUL and TER were identified in all samples, but their contribution was normally lower
than 1% and the number of VOCs assigned was always lower than five.

Most of the chemical classes found in the volatile profiles of sugarcane-based syrups,
such as FUR, BZF, PHE and PYR and, in a minor way, ALD, BNZ, KET, NPH and NIT,
are highly related to thermal reactions (i.e., Maillard reaction, Strecker degradation and
caramelization) that occurs during the processing of sugarcane [25–27]. Alternatively,
ALD, KET and NIT classes can also be originated from enzymatic reactions and microbial
activity in the sugarcane before processing or during the syrup’s storage. Additionally,
ALC, CAC, EST and SUL classes are commonly associated with enzymatic and microbial
activity [28–30]. Other classes, namely HYD and TER, are probably products from bio-
chemistry pathways that occur in sugarcane plants [31]. The formation and origin of VOCs
from the IND and ETH classes are more difficult to establish, being the result of proba-
ble crop contamination by biomass burning, plastic residues combustion and pesticide
application [32,33].

3.2. Chemometric Analysis Based on the Volatile Profile of Sugarcane-Based Syrups

Chemometric analysis was applied to the VOCs’ dataset to obtain a predictive strategy
that guarantees the traceability of genuine SCH on the global market. Predictive strategies
have been successfully applied for the traceability of food products such as olive oil [34],
coffee [35] and cider [36].

3.2.1. One-Way ANOVA Test

One-way ANOVA with post-hoc Tukey test results (p and F values) are described in
Table S7. The assigned group for each sample is described in Table S1.

The results show that 147 VOCs (86.75%) presented statistically significant differences
in RPA values between all 18 samples under analysis. On the other hand, 19 VOCs
(13.25%) did not show statistically significant differences, being removed from the further
analysis. Moreover, 53 VOCs (31.93%) showed high differences, with F values ≥ 10
between all samples, and among these, 19 VOCs (11.45%) demonstrated huge significant
differences, with F values ≥ 20. The post-hoc Tukey test results demonstrated a high
level of dissimilarity in volatile profiles between all groups. The CERT group showed
the highest dissimilarity from the other groups, which presented 47 VOCs (28.31%) with
statistically significant differences for the NCERT, MED and SYH groups, simultaneously.
In a minor level of dissimilarity, the STH group presented 22 VOCs (13.25%), followed by
the NCERT group with 12 VOCs (7.23%) and the MED group with only two VOCs (1.20%).
Interestingly, most of these VOCs only presented significant differences for one specific
group and irrespective of all combinations with other groups.

3.2.2. Principal Component Analysis and Partial Least Squares

The PCA and PLS analyses were performed on 147 VOCs that showed statistically
significant differences in the ANOVA test. The loading values and VIP scores for identified
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VOCs are summarized in Table S9. The loading values of 18 samples and four centroids are
listed in Table S10. The scores values of samples are summarized in Table S11. The PCA
line plot based on loading values of samples for the three main components are presented
in Figure S2A–C, respectively. The PLS line plot based on loading values of four centroids
for the three main components are shown in Figure S2D–F. The PCA 3D plots based on
loading values of all samples and the VOCs for the three main components are shown in
Figure 3A,E, respectively. The PLS 3D plots based on loading values of the four centroids
and the VOCs for the three main components are shown in Figure 3B,F, respectively.

The three main components of PCA comprised 64.92% of the total variance (TVA).
The projection of structure based on loading results from the three main components
demonstrated a clear differentiation between the samples from the certified producer and
samples from the other producers. In the PC1 projection (35.42% TVA), all samples from the
certified producer showed a high variance from the remaining samples under analysis. In
the PC2 projection (18.46%), the samples from Madeira Island, including certified and non-
certified producers, presented a slight variance from other geographical regions’ samples.
Also, in PC2 projection, the MDBR14 sample showed a high variance from all remaining
samples, while in the PC3 projection (11.05%), a high variance was shown between the
sample from the homemade producer (GLA14) and all other samples.

In PLS the samples were classified according to the type of producer and geographical
localization, being classified as: centroid-CERT (C-CERT), centroid-NCERT (C-NCERT),
centroid-MED (C-MED) and centroid-STH (C-STH). The three main components of PLS
analysis (PLS1, PLS2 and PLS3) were responsible for 69.96% of TVA, the sum of all 18 com-
ponents comprised 99.66%. Interestingly, the results from PLS1, PLS2 and PLS3 demon-
strated that all group centroids were clearly separated. In PLS1 projection (38.56%), a
high variance was obtained between C-CERT and the other centroids. For PLS2 projection
(19.82%) a substantial and equitable differentiation was observed between all centroids.
In PLS3 projection (11.58%), a higher variance was shown between C-NCERT and the
other centroids.

PCA and PLS results were based on 144 VOCs, where each one influenced the projec-
tion of samples and centroids differently. In the case of PLS projection, it was possible to
identify the individual contribution of each VOC for the projection structure.

The PLS 3D plot based on loading values for all 147 VOCs exposed the fact that a
significant number of VOCs influenced the projection of C-CERT, mainly belonging to
ALD, ALC, FUR and NIT chemical classes. The projection of NCERT was very influenced
by VOCs from EST and BNZ classes, such as EESTOA, EESTDA, ethyl undecanoate
(EESTUNDA), benzyl acetate (PMESTAA) and benzeneethanol (BENZETOL), while the
projection of STH was influenced principally by VOCs from CAC, IND and NPH, such as
heptanoic acid (HPTOIC), octanoic acid (OCTOIC), decanoic acid (DECOIC), 2,3-dihydro-
1,1,4,6-tetramethyl-1H-indene (DHT1146MIDNE), and 2,3-dihydro-1,1,5,6-tetramethyl-1H-
indene (DHT1156MIDNE). Lastly, the projection of C-MED was influenced by a lower
number of VOCs than the other three centroids, they were dimethyl disulfide (DMDSFD),
HPT2ONE, E5MPYZNE, TMPYZNE and M3FURAL.

3.2.3. Linear Discriminant Analysis

The procedure applied to reduce the matrix dimension based on the VIP scores showed
unsatisfactory results in the PLS and HCA analysis, not being used for further analysis.
The LDA information and respective PLS and HCA plots constructed according to VIP
scores are described in Table S14 and Figure S5, respectively. The LDA information of
the selected 32 VOCs according to the F values from the ANOVA test are described in
Table 1. The canonical discriminant functions (CDF) coefficients and higher probability
classification results of all samples are described in Table S13. The LDA 3D plots based on
CDF coefficients of the four centroids and respective VOCs for the three main components
are shown in Figure 3C,G, respectively.
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Figure 3. The loading 3D plot of all samples (A) and the selected 144 VOCs (E) for PCA, all
centroids (B) and the selected 144 VOCs (F) for PLS, all centroids (C) and the 32 most predictive
VOCs (G) for LDA, and all centroids (D) and the 32 most predictive VOCs (H) for PLS.
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Table 1. LDA results after matrix reduction method to 20% of original dimension based on the VOCs with higher F values from One-way ANOVA.

Volatile Organic Compounds Abbreviations

ANOVA LDA PLS

F 1 W 2 F 3
CDF 4 Loading Value VIP 5

1 2 3 1 2 3 Importance Power (× 100)

2,4,6-Trihydroxypyrimidine THDXYPYMNE 180.09 4.62 × 10−2 130.62 −70.540 −8.258 14.822 −0.107 −0.339 −0.167 2 22.49
1,4-Pentadiene PT14DIENE 49.98 2.70 × 10−1 17.12 26.030 −39.002 1.486 −0.063 −0.420 0.200 17 15.85
Pentane PTANE 48.69 1.96 × 10−1 25.97 −34.120 12.658 −10.012 0.187 0.035 0.091 16 15.91
4-Pyridinol PYRDINOL 45.77 1.73 × 10−1 30.19 −162.900 51.083 −51.729 0.181 0.065 −0.015 5 21.08
4-Cyclopentene-1,3-dione CPT4E13DONE 42.70 5.21 × 10−1 5.82 −4.580 −17.467 10.460 0.188 −0.016 0.007 20 15.15
Ethanol ETOL 38.57 2.63 × 10−1 17.70 −15.990 −9.449 −3.794 0.167 0.007 0.188 13 16.76
2,5-Furandicarboxaldehyde FUR25DIAL 30.06 3.12 × 10−1 13.95 71.890 −55.246 −11.369 0.179 −0.069 0.049 10 17.99
5-Methyl-2(3H)-Furanone M5FURONE 29.65 1.88 × 10−1 27.32 −9.110 −61.784 18.575 0.197 −0.085 0.005 25 12.42
2-(2-Furanylmethyl)-5-Methyl-Furan FURYLMFUR 28.08 1.36 × 10−1 40.21 88.730 −8.719 24.338 −0.008 0.187 0.392 4 22.12
2-Methyl-Benzofuran M2BNZFUR 27.39 6.90 × 10−2 85.49 −185.440 48.514 −37.864 0.179 −0.041 −0.087 8 18.11
2,2’-Methylenebis 5-Methyl-Furan MNEB5MFUR 24.37 1.02 × 10−1 55.62 105.390 46.353 2.323 0.189 −0.029 0.012 9 18.10
Oxypurinol OXYPUROL 23.80 2.85 × 10−1 15.90 29.440 −11.140 −8.239 0.188 −0.126 0.032 18 15.48
2-Cyclohexenol CHEX2E1OL 23.74 1.88 × 10−1 27.37 122.070 −26.365 46.694 0.197 0.023 0.067 19 15.46
2-Methyl-Dihydro-2(3H)-Furanone MDH2FURONE 23.37 5.09 × 10−1 118.02 87.910 −10.980 6.705 −0.041 −0.436 0.141 12 17.01
5-Acetoxymethyl-2-Furfural B ACTYMFURALB 22.74 3.75 × 10−2 162.39 −220.540 45.621 −33.535 −0.043 −0.443 0.068 11 17.51
Furfural Acetone FURALTONE 22.71 1.14 × 10−1 49.18 −279.810 36.381 −44.076 0.198 −0.013 −0.001 21 14.86
3-Methyl-2,4(3H,5H)-Furandione M3FURDIONE 22.67 6.43 × 10−2 92.12 287.950 −18.438 49.078 0.190 −0.022 0.027 6 19.74
3-Methoxy-1,2-Benzenediol M3BNZDIOL 22.36 6.43 × 10−2 92.12 −206.700 126.409 −33.892 0.203 −0.072 −0.031 32 9.20
Furfuryl Acetate FURYLACTE 20.88 Removed from analysis.
2-Furanpropionic Acid FURPPIONIC 19.07 6.24 × 10−2 95.17 303.870 −13.701 39.789 −0.079 −0.128 −0.415 1 23.54
3-Methyl-Pyridazine M3PYRDZNE 17.95 1.32 × 10−1 41.58 131.650 −2.761 −0.685 0.197 0.016 0.011 24 12.79
2-Methyl-Butanal M2BTAL 17.62 3.43 × 10−1 12.13 0.060 −23.095 7.286 0.199 −0.047 −0.097 14 16.51
Cyclotene CYTENE 17.59 3.19 × 10−1 13.49 −83.600 −28.243 12.252 0.201 −0.091 0.002 31 10.46
2-Acetylpyrrole ACTLPYROLE 17.38 9.14 × 10−2 62.99 −90.260 55.198 −30.992 0.188 −0.146 −0.003 27 11.84
Furfuryl Formate FURYLFMTE 17.23 6.55 × 10−1 3.33 −17.910 7.134 −37.968 0.185 −0.001 −0.129 15 16.08
2,3-Dihydro-1,1,4,6-Tetramethyl-1H-
Indene DHT1146MIDNE 17.05 4.92 × 10−1 6.53 36.680 0.135 3.888 0.179 0.075 0.090 23 13.62

3-Methyl-Furfural M3FURAL 16.94 2.36 × 10−1 20.52 23.630 −29.167 15.070 0.201 0.001 −0.083 30 11.26
2-Ethyl-Hexanoic Acid E2HXNOIC 16.91 1.10 × 10−1 51.37 36.630 −16.971 11.398 0.196 −0.022 −0.128 22 14.73
Maltol MALTOL 15.39 2.29 × 10−1 21.26 53.870 3.310 19.627 −0.123 −0.085 −0.066 3 22.20
Tetrahydro-5-Methyl-2-Furanmethanol TEHYMFUROL 15.38 6.09 × 10−2 97.61 −46.990 11.888 1.765 0.177 −0.003 −0.206 7 18.33
3,5-Xylenol XYL35NOL 15.25 7.90 × 10−2 73.85 −137.460 −96.967 −1.898 0.201 −0.088 −0.018 29 11.29
2,3-Dihydro-1,1,5,6-Tetramethyl-1H-
Indene DHT1156MIDNE 14.77 6.28 × 10−1 3.76 −4.680 56.537 −28.156 0.204 −0.007 −0.004 28 11.42

Decanal DECAL 14.47 3.55 × 10−2 172.01 125.780 −31.467 30.132 0.195 −0.030 −0.020 26 11.95
1 F—F value from One-way ANOVA test. 2 W—W value from Linear Discriminant Analysis. 3 F—F value from Linear Discriminant Analysis. 4 CDF—Canonical Discriminant Function Coefficients.
5 VIP—Variable importance for projection
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Only furfuryl acetate was removed from LDA analysis throughout all 22 steps (back-
ward selection with p < 0.05 to enter and remove). Thus, LDA results are described in
Table S2. All 54 replicates obtained from 18 syrup samples were classified at a 100%
correct rate.

The projection of LDA results based on the three main CDFs presented in
Figure 3c demonstrated a high level of discrimination between all four centroids. In
CDF 1, a discrimination was verified between the C-CERT and the other centroids. In CDF
2, a high discrimination was observed between all centroids, where it verified a proximity
between the centroids based on syrups from Madeira Island (C-CERT and C-NCERT)
compared to centroids formed with samples from foreign syrups (C-MED and C-STH).
Likewise, in CDF3 a higher discrimination was observed among the four centroids, being
more prominent between the C-NCERT and the remaining three centroids. The LDA results
evidenced that it was possible to discriminate and classify correctly all syrup samples based
on only 32 VOCs.

3.2.4. Partial Least Squares and Hierarchical Clustering Analysis

An additional PLS was completed to validate the projection structure between all
syrup samples based only on the 32 most predictive VOCs (Table S14). The loading values
and VIP scores of PLS for each VOC are summarized in Table 1. The loading values of four
centroids and the scores of 18 samples are summarized in Table S13, while the PLS line
plots based on the loading values of four centroids according to the three main components
are shown in Figure S4A–C, respectively. The PLS line plot based on the loading values of
the previously selected 32 VOCs for the three main components are presented in Figure
S4D–F, respectively. The PLS 3D plots based on the loading values of the four centroids
and 32 VOCs for the three main components are presented in Figure 3D,H, respectively.

The PLS analysis performed according to the three main components explained 83.00%
of TVA and the summary of all 18 components described 99.88%. As predicted, the results
shown in the PLS loading 3D plot revealed that the four centroids were categorically
separated, whereas a higher and equitable variance between all centroids was verified.
Likewise to CDF1, the projection of PLS1 (63.70%) showed a higher variance between
the C-CERT and the other three centroids. In PLS2 projection (12.11%), a high variance
was verified between the C-STH and the remaining centroids. Finally, in PLS3 projection
(7.20%), a substantial variance was observed between the C-MED and the other centroids.

HCA was completed according to the selected 32 VOCs to define the Euclidean linkage
distances between all 54 replicates. The HCA dendrogram is shown in Figure 4.

The higher Euclidean distance was verified between samples from the certified pro-
ducer and the remaining syrups. The ECAL14 sample from non-certified regional producers
presented a substantial proximity to the samples from the certified producer. On the con-
trary, the syrups from non-certified regional producers, GLA14 and ENCAL14, presented
a higher distance from samples of the certified producer, and also among themselves.
Another interesting fact regards the proximity between the various syrup samples from the
Mediterranean region (Spain and Egypt). The PLS projection and HCA results confirmed
that it is possible to differentiate the genuine SCH from other syrups based only on the 32
most predictive VOCs, proving their potential as useful markers for the traceability and
authenticity of SCH on the global market.
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4. Conclusions

The HS-SPME/GC-MS methodology was successfully applied for the establishment
of the volatile profile of SCH samples. A total of 166 different VOCs were identified
from which 119 were common in all investigated samples. FUR, KET and CAC were the
most dominant chemical classes being responsible for a large fraction of the SCH volatile
profile in number of VOCs and RPA values. HM5FURAL, DHYPPAONE and ETNOIC
were the main identified VOCs. Interestingly, FUR was the main chemical class for all
samples from the certified regional producer, and KET the most dominant class for the
other syrups samples.

The ANOVA revealed that 144 VOCs showed statistically significant differences
between all syrups. PCA and PLS, using full data matrix, demonstrated that the highest
level of differentiation was verified between samples from certified producers and other
syrup samples. The selection of the 32 most predictive VOCs based on the LDA proved their
high predictive capacity, where a high level of differentiation was reached between samples
from the regional certified producers and the non-certified producers, Mediterranean
producers (Spain and Egypt) and south hemisphere producers (Brazil and Australia). Once
again, the highest differentiation level was verified between samples from the certified
producer and other syrup samples.

According to the results from the chemometric analysis, we concluded that the es-
tablishment of a volatile profile appears to be a promising strategy to identify genuine
SCH from other syrups on the market, and also to discriminate the syrups based on their
geographical origin. Furthermore, the specificity of some VOCs for a group of syrup
samples could be a potential marker. This information is fundamental for guaranteeing the
traceability and authenticity of SCH on the global market and, consequently, to support its
submission process for EU certification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10071559/s1, Figure S1: The GC-MS chromatograms for FRS07 (A), FRS13 (B), FRS14 (C),
FRS15 (D), FRS16 (E), FRS17 (F), FRS18 (G), ECAL14 (H), NCAL14 (I), GLA14 (J), ESP16 (K), EGP17
(L), EGPA16 (M), EGPB16 (N), EGPC16 (O), MDBR14 (P), MCBR14 (Q) and AUS17 (R) samples.
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Figure S2. The PCA loadings line plot of all samples for PC1 (A), PC2 (B) and PC3 (C), and the PLS
loadings line plot of all samples for PLS1 (D), PLS2 (E) and PLS3 (F). Figure S3. The LDA loading
line plots of all samples for to CDF1 (A), CDF2 (B) and CDF3 (C), and LDA loading line plots for
CDF1 (D), CDF2 (E) and CDF3 (F). Figure S4. The PLS loadings line plots of all samples based on
the 32 most predictive VOCs for PLS1 (A), PLS2 (B) and PLS3 (C), and the PLS loadings line plots
of the 32 most predictive VOCs for PLS1 (D), PLS2 (E) and PLS3 (F). Figure S5: The PLS 3D plot
(A) and HCA dendrogram (B) for results from the matrix reduction procedure based on the VIP
scores. Table S1. Information of sugarcane-based syrups samples. Table S2. Information of identified
VOCs in sugarcane-based syrups samples. Table S3A. Mean and relative standard deviation values
of VOCs from CERT group. Table S3B: Mean and relative standard deviation values of VOCs from
NCERT group. Table S3C: Mean and relative standard deviation values of VOCs from MED group.
Table S3D: Mean and relative standard deviation values of VOCs from STH group. Table S4: Mean,
minimum and maximum peak area values of VOCs. Table S5: VOCs identified in samples from this
study and previously identified in others sugarcane-based syrups from other studies. Table S6A:
Number of VOCs identified, relative peak areas and total relative peak areas values of main chemical
classes from CERT group. Table S6B: Number of volatile organic compounds identified, relative peak
areas and total relative peak areas values of main chemical classes from NCERT group. Table S6C:
Number of VOCs identified, relative peak areas and total relative peak areas (%) values of main
chemical classes from MED group. Table S6D: Number of VOCs identified, relative peak areas and
total relative peak areas values of main chemical classes from STH group. Table S7: One-way ANOVA
test results based on the relative peak areas of the 147 VOCs. Table S8: Information of PCA and PLS.
Table S9: Loading results and variable importance in projection scores of variables from PCA and
PLS. Table S10: Loading results of samples and variables from PCA and PLS. Table S11: Scores results
of all cases from PCA and PLS. Table S12: Canonical Discriminant Function Coefficients and Highest
Probability Classification results. Table S13. Information of PLS based only on the relative peak areas
of the 32 most predictive VOCs. Table S14: Results of LDA and PLS analysis based on the relative
peak areas of the most predictive VOCs.
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