
SolTrack : a free, fast and accurate routine
to compute the position of the Sun

Marc van der Sluysa,b,∗, Paul van Kanc

aNikhef, P.O. Box 41882, NL-1009 DB Amsterdam, The Netherlands.
bUtrecht University, Institute for Gravitational and Subatomic Physics (GRASP), P.O. Box 80000, NL-3508 TA Utrecht,

The Netherlands.
cHAN University of Applied Sciences, P.O.Box 2217, NL-6802 CE, Arnhem, The Netherlands.

Abstract

We present a simple, free, fast and accurate C/C++ and Python routine called SolTrack, which can
compute the position of the Sun at any instant and any location on Earth. The code allows tracking of
the Sun using a low-specs embedded processor, such as a PLC or a microcontroller, and can be used for
applications in the field of (highly) concentrated (photovoltaic) solar power ((H)CPV and CSP), such
as tracking control and yield modelling. SolTrack is accurate, fast and open in its use, and compares
favourably with similar algorithms that are currently available for solar tracking and modelling. SolTrack
computes 1.5×106 positions per second on a single 2.67 GHz CPU core. For the period between the years
2017 and 2116 the uncertainty in position is 0.0036 ± 0.0042◦, that in solar distance 0.0017 ± 0.0029%.
In addition, SolTrack computes rise, transit and set times to an accuracy better than 1 second. The code
is freely available online.1

Keywords: Solar tracking, algorithm, CPV, CSP

1. Introduction

For a project to develop affordable units for highly-concentrated photovoltaics (HCPV) in an urban
environment, we require an accurate (. 0.01◦), fast and affordable algorithm that we can use freely for
commercial products. Currently, existing codes in the field are either less accurate or have an insufficiently
open licence. Since many codes that could potentially fulfil our demands can be found online, albeit not
currently in the field of solar concentration or in a preferred language (C/C++ and Python), we considered
a number of these codes and used them to develop the SolTrack code. Since many steps in any algorithm
to compute the position of the Sun can be performed in a number of ways, we selected the alternatives
that gave the speed-accuracy performance of our liking and assembled them to create SolTrack. We
currently use our code to control our HCPV system and to model its electrical yield. In Section 2 we
describe the origin and key features of the code that is included in SolTrack and the software licence
under which it can be used. In Section 3 we present the accuracy and computational speed of our code,
and compare them to the two other algorithms that are currently available in the field. In Section 4 we
summarise our findings and present our conclusions.

2. Description of the SolTrack code

The original SolTrack code (van der Sluys and van Kan, 2014–2022) is written in plain C, which makes
it available for many users and computing platforms. In addition, there is a Python version available. It
can compute the position of the Sun in topocentric coordinates, for any geographical location on Earth
and for any instant. The code can express the solar vector both in a horizontal (azimuth and altitude
or zenith angle) and in a parallactic coordinate system (using the equatorial coordinates hour angle
and declination). The SolTrack code is derived from the Fortran library libTheSky (van der Sluys, 2002–
2022) and includes corrections for aberration and parallax, and a simple routine to correct for atmospheric
refraction (Saemundsson, 1986). Apart from sky position and distance, SolTrack can compute rise, set

∗Corresponding author
Email address: sluys@nikhef.nl (Marc van der Sluys)

1http://soltrack.sf.net, https://pypi.org/project/soltrack/

Preprint submitted to Solar Energy September 7, 2022

ar
X

iv
:2

20
9.

01
55

7v
1

 [
as

tr
o-

ph
.I

M
]

 4
 S

ep
 2

02
2

and transit times for a given location and day, as well as the corresponding azimuths and altitude. The
C/C++ code is freely available online at http://soltrack.sf.net, under the terms and conditions of
the GNU Lesser General Public Licence (Free Software Foundation, 2007). The Python code can be freely
downloaded from the Python Package Index (PyPI) at https://pypi.org/project/soltrack/. A few
examples that use SolTrack are added to the download, so that the users can verify their implementation.

The high accuracy, low computational cost and implementation in plain C and Python allow a flexible
use of SolTrack, ensuring that the code can run on inexpensive, low-spec embedded systems like the
STM32F4 DISCOVERY boards, on simple systems with light-weight operating systems like the Raspberry
Pi, on PLCs and on standard PCs or servers. A version ported to Arduino Scratch is available on the
website. In addition to SolTrack, we have developed a closed-loop system that allows feedback from
sensors near the PV cell in order to correct for discrepancies that arise due to e.g. an imperfect installation
of the system, or mechanical deformations. Furthermore, we have designed an algorithm that takes into
account non-perfect alignment, for example because the system is aligned with the main axes of the
building it resides in, rather than the north-south axis (van der Sluys et al., 2015).

2.1. Calculation of the position of the Sun

The open-source Fortran library libTheSky (van der Sluys, 2002–2022) contains several routines to com-
pute the Sun’s position with different performances in terms of accuracy and computational speed. We
used the subroutine sunpos la() (for a low-accuracy Sun position2) as a development environment. We
used the references in the code to read the literature behind it and see whether alternatives existed for
each equation. Thus we were able to test the influence of the different parts of the code and their alter-
natives on the accuracy and speed of the code. In many cases, we simplified the original equations by
leaving out higher-order terms if the resulting increase in speed was significant and the loss in accuracy
was limited or negligible. In some cases we found alternatives with a similar effect. We translated the
resulting code from Fortran to C and Python as the basis for SolTrack, in order to meet our own demands,
as well as to make it available to a large audience and a wide range of computing platforms.

By profiling our code using gprof (part of GNU binutils; The GNU Project, 2022) and Valgrind (The
Valgrind Developers, 2022) we found that the majority of the CPU cycles went to computing sines,
cosines and tangents and to the use of the fmod() function. We reduced CPU time by computing the
trigonometric functions once and distributing the result through the code wherever that was possible.
Some angles, like the latitude, declination and altitude, are defined in the range of [−π

2 ,
π
2] ([−90◦, 90◦])

so that the cosine of an angle ϕ can be computed cheaply from cosϕ =
√

1 − sin2 ϕ without ending up
in the wrong quadrant. If all three of sine, cosine and tangent of an angle must be computed, the latter
can be cheaply obtained by division of the first two. In addition, we wrote our own atan2() function in
C, which computes the inverse tangent without confusion in the quadrants, based on Wikipedia (2019).
If tanα ≡ y

x , then

α ≡ atan2(y, x) =

arctan(yx) if x > 0;

arctan(yx) + π if x < 0 and y ≥ 0;

arctan(yx) − π if x < 0 and y < 0;

+π
2 if x = 0 and y > 0;

−π
2 if x = 0 and y < 0;

0 if x = 0 and y = 0,

(1)

where in the last case, we return 0 even though the result is undefined. We found that this version is
about 39% faster than the function provided in the C standard math library. Finally, SolTrack treats all
angles in radians, which avoids a computational overhead from constant conversion to and from degrees.
The input and output can be easily converted from and to degrees at the beginning and end of the call
respectively. A switch is available to the user to tell the routine that degrees are used for input and
output if wanted.

2.1.1. Date, time and location

The desired date and time are provided as an input for the code in the common Gregorian calendar
system. As is customary in astronomical calculations, these are converted to a Julian day (JD; e.g.
Urban and Seidelmann, 2012), which provides a continuous time variable measured in days. The JD

2In fact, the library also provides routines for higher and lower accuracy than sunpos la().

2

http://soltrack.sf.net
https://pypi.org/project/soltrack/

is further converted to time in Julian days (tJd) and centuries (tJc) since the year 2000.0, which are
required for input in many of the equations. The geographic location of the observer is provided as the
longitude lobs (where east from the Greenwich meridian is positive) and latitude bobs (where the northern
hemisphere is positive), in either radians or degrees.

2.1.2. Ecliptical coordinates

The ecliptic plane forms the base plane of the solar system, hence position calculations regarding orbital
motions of the planets are usually performed in ecliptical coordinates. The geocentric position of the Sun
is easily computed from the heliocentric position of the Earth in its orbit around the Sun in ecliptical
coordinates by negating the ecliptical latitude and adding π (180◦) to the ecliptical longitude.

The ecliptical longitude is computed as follows. The mean longitude (Simon et al., 1994) and mean
anomaly (Chapront-Touze and Chapront, 1988) of the Sun are given by (when dropping unnecessary
higher-order terms):

λ0 = 4.895063168 + 628.331966786 · tJc + 5.291838 × 10−6 · t2Jc; (2)

M = 6.240060141 + 628.301955152 · tJc − 2.682571 × 10−6 · t2Jc. (3)

The Sun’s equation of the centre is the difference between the true and mean anomalies and between
the true and mean longitudes of the Sun. It can be approximated using Meeus (1998, up to the sin 2M
term):

C =
(
3.34161088 × 10−2 − 8.40725 × 10−5 · tJc − 2.443 × 10−7 · t2Jc

)
sinM

+
(
3.489437 × 10−4 − 1.76278 × 10−6 · tJc

)
sin 2M. (4)

The true longitude is then simply:
λ = λ0 + C. (5)

In order to apply a correction to the Sun’s position for nutation and aberration, we need the longitude
of the Moon’s mean ascending node Ω (Chapront-Touze and Chapront, 1988, up to second order):

Ω = 2.1824390725 − 33.7570464271 · tJc + 3.622256 × 10−5 · t2Jc. (6)

The nutation in longitude is a periodic wobble of the Earth’s rotation axis due to the presence of the
Moon and can be described with sufficient accuracy by (Seidelmann, 1982, leading term only):

∆ψ = −8.338601 × 10−5 sin Ω. (7)

If an accurate distance is important, we compute the geocentric distance of the Sun in AU from the
eccentricity of the Earth’s orbit e (Simon et al., 1994, to second order) and the true anomaly ν:

e = 0.016708634 − 4.2037 × 10−5 · tJc − 1.267 × 10−7 · t2Jc; (8)

ν = M + C; (9)

R = 1.0000010178
1 − e2

1 + e cos ν
. (10)

In other cases, we simply assume a circular orbit:

R = 1.0000010178. (11)

Annual aberration is the effect that the light from a celestial body seems to come slightly more from
direction of the Earth’s motion around the Sun, similar to the apparent motion of rain drops coming
from the direction a car is moving into (but much less so, since the orbital speed of the Earth is much
smaller than the speed of light). We use (Kovalevsky and Seidelmann, 2004):

∆λ =
−9.93087 × 10−5

R
. (12)

We can now correct the longitude of the Sun for nutation and aberration, and arrive at the ecliptical
longitude at the given instant:

λ = λ+ ∆λ+ ∆ψ. (13)

3

Since we do not need extremely high accuracy, and since the Sun is (by definition) always near the
ecliptic, for the ecliptical latitude of the Sun we simply use

β = 0. (14)

Finally, we need the obliquity of the ecliptic ε, the angle between the Earth’s rotation axis and the
normal to the ecliptic plane, for coordinate transformations later on. However, we calculate it here
because Ω is now available. We compute it from the mean obliquity ε0 (Meeus, 1998) and the nutation
in obliquity ∆ε (Seidelmann, 1982, leading term only):

ε0 = 0.409092804222 − 2.26965525 × 10−4 · tJc − 2.86 × 10−9 · t2Jc; (15)

∆ε = 4.4615 × 10−5 cos Ω; (16)

ε = ε0 + ∆ε. (17)

2.1.3. Equatorial and parallactic coordinates

The equatorial coordinates right ascension α and declination δ are computed from the ecliptical coordi-
nates (λ, β) using a standard coordinate transformation (e.g. Urban and Seidelmann, 2012):

tanα =
sinλ cos ε− tanβ sin ε

cosλ
; (18)

sin δ = sinβ cos ε+ cosβ sin ε sinλ, (19)

where we use the atan2() function to compute the right ascension from Eq. 18.
The parallactic coordinate hour angle is the difference between the local sidereal time θ and the right

ascension:
H = θ − α, (20)

where

θ = θ0 + ∆θ + lobs; (21)

θ0 = 4.89496121 + 6.300388098985 · tJd + 6.77 × 10−6 · t2Jc; (22)

∆θ = ∆ψ · cos ε. (23)

Here, θ is the local sidereal time, lobs is the observer’s geographical longitude (east of Greenwich is posi-
tive), θ0 is the Greenwich mean sidereal time and ∆θ corrects for nutation in right ascension, converting
to apparent Greenwich sidereal time.

Together, hour angle and declination provide the coordinates needed for a parallactic mount.

2.1.4. Horizontal coordinates

We use the parallactic coordinates hour angle H and declination δ to compute the horizontal coordinates
azimuth A and altitude h. This too is a well known coordinate transformation (e.g. Urban and Seidelmann,
2012):

sinh = sin δ sin bobs + cosH cos δ cos bobs; (24)

tanA =
sinH

cosH sin bobs − tan δ cos bobs
, (25)

where bobs is the geographic latitude of the observer (northern hemisphere is positive). We use the
atan2() function again to compute the azimuth from Eq. 25.

A variable that is often used instead of the altitude is the zenith angle, which is simply given by

ζ =
π

2
− h. (26)

2.1.5. Correction for atmospheric refraction

On the last part of their journey to the Earth’s surface, the Sun’s rays travel through the atmosphere
of the Earth. The effect of the increasing density of the atmosphere causes refraction of the light rays
towards the Earth’s surface, so that they generally hit the surface somewhat earlier (nearer the Sun) than
if the atmosphere had been absent. The result for an observer on the ground is that the altitude of the
Sun h appears to be somewhat higher than we have just computed. The effect vanishes if the Sun is in the
zenith, and has a maximum close to the horizon of about 0.5◦, roughly the Sun’s apparent diameter. For

4

accurate positions, we need to take this effect into account, and because atmospheric refraction affects
the altitude only, this is most easily done in horizontal coordinates.

We use a simple prescription by Saemundsson (1986), which, when expressed in radians, looks as
follows:

∆h = 0.0002967 cot

(
h+

0.0031376

h+ 0.0892

) (
T

283

)−1(
P

101

)
. (27)

Here, cot() is the cotangent, h the uncorrected altitude, T the temperature in Kelvin and P the atmo-
spheric pressure in kPa. For standard atmospheric values of P = 101 kPa and T = 283 K (10◦C), the last
two fractions can be ignored. We then add the quantity ∆h to the uncorrected altitude h to account for
the atmospheric refraction. Alternatively, we subtract ∆h from the uncorrected zenith angle ζ.

SolTrack also offers refraction-corrected parallactic coordinates. These are obtained by transforming
the corrected horizontal coordinates back to the parallactic system using the inverse transformation of
Eqs. 24–25.

3. Performance of the SolTrack code

3.1. Accuracy of SolTrack

In order to assess the accuracy of our code, we need a comparison. We used the VSOP 87 code to
compute very precise positions of the Sun, with an accuracy of 1.4 × 10−6 between the years 1900 and
2100 (Bretagnon and Francou, 1988). In order to correct for atmospheric refraction, we used an accurate
model (Hohenkerk and Sinclair, 1985) that integrates the path of a light beam as it travels through the
atmosphere for a given apparent sky position. This model is used in a slow, iterative procedure to solve
the inverse problem, in order to find the apparent position for a given true sky position, as implemented
in libTheSky (van der Sluys, 2002–2022). We assumed standard atmospheric pressure and temperature.
The accuracy of the result will be limited by the detailed model for atmospheric refraction. In this
section, we assume that the results from the combination of these two accurate models are exact, so that
any deviation between it and SolTrack indicates an inaccuracy in our code. This assumption is validated
by the fact that the detailed models are about three orders of magnitude more accurate than SolTrack.

The comparison between VSOP 87 and SolTrack was carried out for 100,000 random moments in the
next 100 years (between 2017 and 2116) when the Sun is above the horizon in the Netherlands. We find
that the error in position (either in parallactic or horizontal coordinates) is 0.0036 ± 0.0042◦, or about
0.68% of the apparent diameter of the Sun. This is sufficient for solar tracking of HCPV systems under
all conditions.

Figure 1 shows the positional error for 10,000 of the computed sky positions as a function of time
over the next 100 years. We see that the accuracy hardly deteriorates over the coming century, so that
the SolTrack algorithm can be used safely for at least the next 100 years. The figure also shows that
most positions yield an accuracy that is better than 0.01◦, while only a small fraction of points are less
accurate than that. The latter group represents very low Sun positions, . 2.5◦, where the correction for
atmospheric refraction becomes less accurate. If these low-altitude points are ignored, on the grounds
that very little energy will be generated at such Sun altitudes, the accuracy, and in particular its standard
deviation, drop to 0.0030 ± 0.0016◦.

The accuracy of the computed distance is 0.0017% ± 0.0029%, which results in an typical error in the
computed solar power of 0.0058%. This will be completely negligible in a model where the uncertainty
in weather conditions will have a much larger impact. The accuracy of the rise, transit and set times
has been determined to be better than one second, while the corresponding azimuths and altitudes have
an accuracy that is better than 10−3◦. The first uncertainty is far smaller than needed, since weather
conditions provide a much larger source of uncertainty.3 The second uncertainty is better than that for
the position in general (since it is a one-dimensional problem, rather than a two-dimensional one).

3.1.1. Comparison of SolTrack’s accuracy to other algorithms

We have computed sky positions for the Sun for the same 100,000 random moments in next 100 years
using PSA’s SunPos (Plataforma Solar de Almeŕıa, 2013) and NREL’s SPA (Reda and Andreas, 2004),
and compared them to the VSOP87 positions. The results are displayed in Figures 2 and 3 and in Table 1.

When compared to SunPos routine, which is also lightweight and freely available, SolTrack is about
20 times more accurate in both horizontal and parallactic coordinates. Compared to the performance of

3Typically, the weather imposes an uncertainty of at least one minute on rise and set times.

5

Figure 1: The accuracy of the SolTrack algorithm as a function of time for 10,000 random instances where the Sun is
above the horizon in Arnhem, the Netherlands between 2017 and 2116. While for most cases, the accuracy is better than
0.01◦, a relatively small number of data points indicate a larger deviation. All these are near sunrise or sunset (see Fig.2).

Table 1: Comparison of the accuracy, resulting loss of power w.r.t. optimal tracking with and without secondary optics
(SO) between the SunPos, SPA and SolTrack routines.

SunPos SPA SolTrack

Accuracy mean 0.073◦ 0.0023◦ 0.0036◦

in position st.dev. 0.091◦ 0.0036◦ 0.0042◦

relative 20.2 0.64 1.00

Accuracy mean — 0.0017% 0.0029%
in distance st.dev. — 0.0011% 0.0021%
in power mean — 0.0034% 0.0058%

the code to the NREL routine SPA, which is more elaborate and has a more restricted licence, SPA is
36% more accurate than SolTrack when comparing horizontal coordinates. However, SPA does not offer
refraction-corrected parallactic coordinates, so that our code is about 20 times more accurate when a
parallactic mount is used. For this comparison we computed only the Sun’s position in SPA, no rise and
set times or incident radiation. An overview of the comparison between the three codes can be found in
Table 1.

3.2. Speed of SolTrack

In order to benchmark the SolTrack C code, we timed runs where 107 (ten million) positions were
computed on a single 2.67 GHz CPU core of a normal laptop computer. We used the GCC compiler (v6.2
The GCC project, 2022) with -O2 optimisation and the taskset Linux utility to force the program to
always run on the same core (The Linux Foundation, 2022). In these speed-benchmark runs we generated
the date and time randomly, in order to avoid an I/O overhead from reading these data from disc. We
did not save the computed results for the same reason.

We performed ten such runs and found a mean run time and standard deviation (averaged over the
ten runs of 107 calls to the SolTrack routine each) of 7.331 ± 0.024 s. We then repeated the test, but
without actually calling the SolTrack routine, which took 0.860 ± 0.012 s (again the mean of ten runs
of 107 calls each). This number represents the overhead from the code that calls SolTrack rather than
from SolTrack itself, e.g. from starting the code and generating the random date and time. Hence, we
determine the CPU time for 107 calculations of the Sun’s position on the used CPU core as the difference

6

Figure 2: A comparison of the accuracies of PSA’s SunPos (green/grey, at the top), SolTrack (red/grey, near the bottom)
and SPA (blue/black, at the bottom), as a function of altitude for 10,000 random instances where the Sun is above the
horizon in Arnhem, the Netherlands. The data points for SolTrack partially overlap with those for SPA (see Fig. 3 for a
clearer view). The largest difference is found between SunPos and the other two codes, especially for low altitudes, mainly
due to the lack of correction for atmospheric refraction in SunPos.

Figure 3: Three histograms comparing the accuracies of SPA (dash-dotted/purple line, to the left), SolTrack (solid/red
line, in the middle) and PSA’s SunPos (dashed/blue line, to the right), for 10,000 random instances where the Sun is above
the horizon in Arnhem, the Netherlands. Note the logarithmic scale on the horizontal axis.

7

Table 2: Comparison of the CPU times for the calculation of 107 positions between modes where neither the distance or
refraction correction for equatorial coordinates are computed, or where one or both are computed.

Distance? × X × X
Ref corr eq.? × × X X
CPU time mean 6.471 s 6.987 s 8.160 s 8.686 s

st.dev. 0.027 s 0.028 s 0.022 s 0.030 s
relative 1.000 1.080 1.261 1.342

Table 3: Comparison of the CPU times for the calculation of 107 positions between SunPos, SPA and SolTrack routines.
The last column shows the results for SolTrack with the additional refraction correction in equatorial coordinates.

SunPos SPA SolTrack SolTrack + eq.
CPU mean 6.632 s 160.78 s 6.471 s 8.160 s
time st.dev. 0.026 s 0.45 s 0.027 s 0.022 s

relative 1.025 19.70 1.000 1.261

of these two numbers, i.e. 6.471 ± 0.027 s, or about 1.5 × 106 calls per second.4 These numbers are
valid for the default mode of SolTrack where the refraction correction is computed only for horizontal
coordinates and the Sun-Earth distance is not computed. In these tests we only computed positions of
the Sun; we did not determine rise, transit or set times.

In addition, we computed the same numbers, i.e. the mean CPU time for ten runs of 107 SolTrack
calls each, corrected for the overhead determined from runs without calls to SolTrack for the other three
modes of SolTrack where the distance is computed as well and/or the equatorial coordinates are corrected
for atmospheric refraction as well. The results are shown in Table 2. We find that computing the distance
adds about 8% to the CPU time, while correcting equatorial coordinates for refraction costs 26% extra.

3.2.1. Comparison of SolTrack’s computational speed to other algorithms

We compare the CPU times of SolTrack to those of SunPos (Plataforma Solar de Almeŕıa, 2013) and SPA
(Reda and Andreas, 2004) in Table 3. The table shows that SolTrack is about 2.5% faster than SunPos
if the refraction correction is only applied to horizontal coordinates, and 23% slower if this correction is
also applied for equatorial coordinates. Hence, SolTrack ’s performance in computational speed is similar
to that of SunPos, despite the much greater accuracy of our code (see Sect. 3.1).

When comparing SolTrack to NREL’s PSA code, our code is almost a factor of 20 faster if the
refraction correction is limited to horizontal coordinates, and nearly 16 times faster if SolTrack corrects
equatorial coordinates for refraction as well, an option that does not exist in PSA. As we saw in the
previous section, PSA gives more accurate results for its higher computational costs, albeit not by more
than an order of magnitude.

4. Summary and conclusions

In this paper, we presented SolTrack, a free, fast and accurate code to compute the position of the Sun
and do related calculations. Due to its open-source licence and the fact that the code is written in plain
C and Python, it can be used by a wide range of users on a wide range of computing platforms and for
a wide range of purposes, be it scientific, commercial or otherwise. The mean accuracy over the period
2017–2116 is 0.0036 ± 0.0042◦, and if instances where the Sun is less than 2.5◦ above the horizon are
omitted, this improves to 0.0030 ± 0.0016◦. SolTrack can also compute rise, transit and set times to
an accuracy better than 1 second. SolTrack can compute millions of positions per second on a typical
modern CPU, and as such is capable of accurately tracking a solar-concentration system on a low-spec
platform, as well as perform many calculations in a yield model (e.g. using a Monte Carlo method).

When compared to the two codes that are currently used in the field of (high-)concentration photo-
voltaics ((H)CPV) and concentrated solar power (CSP), it is comparable in its open licence and computing
speed to the first (PSA) while being about 20 times more accurate, and only slightly less accurate than
the other (SPA) whilst about 20 times faster and much freer in its licence.

4Scaled with the clock speed of the core, a 1.7 kHz CPU would be needed in order to compute the Sun’s position every
second if this were its only task.

8

References

Bretagnon, P., Francou, G., 1988. Planetary theories in rectangular and spherical variables - VSOP 87
solutions. Astronomy & Astrophysics 202, 309–315.

Chapront-Touze, M., Chapront, J., 1988. ELP 2000-85 - A semi-analytical lunar ephemeris adequate for
historical times. Astronomy & Astrophysics 190, 342–352.

Free Software Foundation, 2007. The GNU Lesser General Public License. URL: https://www.gnu.org/
copyleft/lesser.html.

Hohenkerk, C., Sinclair, A., 1985. The computation of angular atmospheric refraction at large zenith
angles. NAO Technical Note 63.

Kovalevsky, J., Seidelmann, P.K., 2004. Fundamentals of Astrometry.

Meeus, J., 1998. Astronomical algorithms.

Plataforma Solar de Almeŕıa, 2013. SunPos URL: http://www.psa.es/sdg/sunpos.htm.

Reda, I., Andreas, A., 2004. Solar position algorithm for solar radiation applications. Solar Energy 76,
577–589. doi:10.1016/j.solener.2003.12.003.

Saemundsson, T., 1986. Atmospheric Refraction. Sky & Telescope 72, 70.

Seidelmann, P.K., 1982. 1980 IAU theory of nutation - The final report of the IAU Working Group on
Nutation. Celestial Mechanics 27, 79–106. doi:10.1007/BF01228952.

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J., 1994. Numerical
expressions for precession formulae and mean elements for the Moon and the planets. Astronomy &
Astrophysics 282, 663–683.

The GCC project, 2022. GCC, the GNU Compiler Collection. URL: https://gcc.gnu.org/.

The GNU Project, 2022. GNU binutils. URL: https://sourceware.org/binutils/.

The Linux Foundation, 2022. util-linux. URL: https://www.kernel.org/pub/linux/utils/

util-linux/.

The Valgrind Developers, 2022. Valgrind. URL: http://www.valgrind.org.

Urban, S.E., Seidelmann, P.K., 2012. Explanatory Supplement to the Astronomical Almanac (3rd Edi-
tion). University Science Books.

van der Sluys, M., 2002–2022. libTheSky. URL: http://libthesky.sf.net.

van der Sluys, M., van Kan, P., 2014–2022. SolTrack URL: http://soltrack.sf.net.

van der Sluys, M., van Kan, P., Sonneveld, P., 2015. CPV in the built environment, in: American
Institute of Physics Conference Series, p. 080003. doi:10.1063/1.4931544.

Wikipedia, 2019. Atan2 — wikipedia, the free encyclopedia. URL: https://en.wikipedia.org/w/

index.php?title=Atan2. [Online; accessed 2019-02-18].

9

https://www.gnu.org/copyleft/lesser.html
https://www.gnu.org/copyleft/lesser.html
http://www.psa.es/sdg/sunpos.htm
http://dx.doi.org/10.1016/j.solener.2003.12.003
http://dx.doi.org/10.1007/BF01228952
https://gcc.gnu.org/
https://sourceware.org/binutils/
https://www.kernel.org/pub/linux/utils/util-linux/
https://www.kernel.org/pub/linux/utils/util-linux/
http://www.valgrind.org
http://libthesky.sf.net
http://soltrack.sf.net
http://dx.doi.org/10.1063/1.4931544
https://en.wikipedia.org/w/index.php?title=Atan2
https://en.wikipedia.org/w/index.php?title=Atan2

	1 Introduction
	2 Description of the SolTrack code
	2.1 Calculation of the position of the Sun
	2.1.1 Date, time and location
	2.1.2 Ecliptical coordinates
	2.1.3 Equatorial and parallactic coordinates
	2.1.4 Horizontal coordinates
	2.1.5 Correction for atmospheric refraction

	3 Performance of the SolTrack code
	3.1 Accuracy of SolTrack
	3.1.1 Comparison of SolTrack's accuracy to other algorithms

	3.2 Speed of SolTrack
	3.2.1 Comparison of SolTrack's computational speed to other algorithms

	4 Summary and conclusions

