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Given two shapes A and B in the plane with Hausdorff distance 1, is there a shape S with 
Hausdorff distance 1/2 to and from A and B? The answer is always yes, and depending 
on convexity of A and/or B , S may be convex, connected, or disconnected. We show 
that our result can be generalized to give an interpolated shape between A and B for 
any interpolation variable α between 0 and 1, and prove that the resulting morph has 
a bounded rate of change with respect to α. Finally, we explore a generalization of the 
concept of a Hausdorff middle to more than two input sets. We show how to approximate 
or compute this middle shape, and that the properties relating to the connectedness of the 
Hausdorff middle extend from the case with two input sets. We also give bounds on the 
Hausdorff distance between the middle set and the input.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For two sets A and B in R2, we define the directed Hausdorff distance as

d �H (A, B) := sup
a∈A

inf
b∈B

d(a,b),

where d denotes the Euclidean distance. The undirected Hausdorff distance is defined as

dH (A, B) := max(d �H (A, B),d �H (B, A)).

If A and B are closed sets then dH (A, B) = r is equivalent to saying that r is the smallest value such that A ⊆ B ⊕ Dr

and B ⊆ A ⊕ Dr , where ⊕ denotes the Minkowski sum, and Dr is a disk of radius r centered at the origin. Recall that the 
Minkowski sum of sets A and B is the set {a + b | a ∈ A, b ∈ B}. In this paper we consider only closed sets, and therefore 
we can freely use this containment property.

The Hausdorff distance has been widely used in computer vision [15] and computer graphics [6,12] for tasks such as 
template matching, and error computation between a model and its simplification. At the same time, the Hausdorff dis-
tance is a classic mathematical concept. Our research motivation is to study this profound concept from a new perspective. 
Algorithms to compute the Hausdorff distance between two given sets are available for many types of sets, such as points, 
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Fig. 1. Hausdorff morphs between three shapes.

line segments, polylines, polygons, and simplices in k-dimensional Euclidean space [3,4,7]. However, the question whether a 
polynomial-time algorithm exists to compute the Hausdorff distance between general semialgebraic sets remains open [14].

In this paper, we consider the natural problem of finding a set that lies “between” two or more input sets, in a Hausdorff 
sense. In Section 2 we investigate the Hausdorff middle of sets A and B; this is a set that has minimum undirected Hausdorff 
distance to A and B . Differently put, it minimizes the maximum of four directed Hausdorff distances. We show that when 
the Hausdorff distance between A and B is assumed to be 1, there is always a Hausdorff middle that has Hausdorff distance 
1/2 to A and B , and this is the best possible. We relate the convexity of A and/or B to the convexity and connectedness of 
the Hausdorff middle, and study its combinatorial complexity.

We actually treat the middle more generally, by defining a class of sets that smoothly interpolate between A and B , 
giving a morph between them. Fig. 1 shows two examples of such morphs. We prove that for two given intermediate shapes 
in the morph, the difference between the interpolation parameters bounds the Hausdorff distance between the shapes.

Algorithms for morphing, sometimes called shape interpolation, have been widely studied. A classical application is the 
reconstruction of a 3D object from 2D slices, a common problem in medical imaging. Many algorithms that solve this 
problem exist, based on straight skeletons [8,10], curve matching and triangulations [9], and Delaunay triangulations [11]. 
When considering more abstract applications, a typical approach is to first transform each input shape into a cannonical 
form, and then morph between those. Alt and Guibas [5] give an overview of this approach. Finally, work has been done to 
ensure the interpolation of two simple polygons is itself a simple polygon [19].

A common thread in all these algorithms is that they are based on computing some kind of correspondence between 
features of the input shapes, either by explicitly matching parts of the boundary, or by computing some geometrical struc-
ture (like a Voronoi diagram or a straight skeleton). In addition, most of these morphing algorithms interpolate only the 
boundary of the input shapes, and keep all intermediate shapes polygonal. Our approach does not require any correspon-
dence between features of the input to be calculated. However, our approach is unusual in the sense that the intermediate 
shapes when morphing between e.g. two polygons are not necessarily polygons themselves.

In Section 3 we extend the results of Section 2 to Hausdorff middles of more than two sets and generalize several 
results. We assume that the maximum Hausdorff distance over all pairs of input sets is 1 and examine the small-
est Hausdorff distance for a middle set. That is, given sets M = {A1, . . . , Ak}, we are interested in the value α(M) =
minS maxi=1,...,k dH (Ai, S). This value α(M) is no longer 1/2, but depends on the input. For convex sets, we show that 
a value ≈ 0.608 can always be achieved and is sometimes necessary, whereas for non-convex sets a value of 1 may be 
required. For a given set of polygons with total combinatorial complexity n, we show that α(M) and the Hausdorff middle 
can be computed in O (n6) time, and, for any constant ε > 0, (1 + ε)-approximated in O (n2 log2 n log 1/ε) time. We note 
that other interpolation methods between two shapes do not have a natural generalization to a middle of three or more 
shapes.

Our proofs use three types of arguments. First, many of our arguments rely on simple manipulations of the formal defi-
nition of the Hausdorff distance. The second type of argument is of a topological nature. Using continuity and connectivity, 
we infer related properties to the output, by constructing topological structures or conclude that they cannot exist. The third 
type of argument uses 2-dimensional Euclidean geometry directly. We construct features, like vertices, edges and circular 
arcs, and argue about their existence, and give distance bounds. These arguments are often intricate and do not general-
ize. They are of particular value, as the 2-dimensional Euclidean plane is often the most interesting case in computational 
geometry.

2. The Hausdorff middle of two sets

Consider two compact sets A and B in R2; we are interested in computing a Hausdorff middle: a set C that minimizes 
the maximum of the undirected Hausdorff distances to A and B . That is,

C ∈ argmin
C ′

max(dH (A, C ′),dH (B, C ′)).

Note that there may be many such sets that minimize the Hausdorff distance; see Fig. 2 for a few examples. It might 
seem intuitive to restrict C to be the minimal set that achieves this distance, but such a set is not necessarily unique, and 
the common intersection of all minimal sets is not a solution itself (see Fig. 3). However, the maximal set is unique. Let 
dH (A, B) = 1. Then

S(A, B) := (A ⊕ D1/2) ∩ (B ⊕ D1/2)
2
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Fig. 2. Three possible Hausdorff middles of A and B: two points, a line segment, and S1/2.

Fig. 3. Two different minimal sets achieving minimal Hausdorff distance to A and B . Both the two green dots in Figure (b) and the three green dots in 
Figure (c) minimize the Hausdorff distance to A and B . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 4. An arbitrary point a ∈ A with its closest point b on B . The point s has distance at most α to a, and distance at most 1 − α to b.

is the unique maximal set with Hausdorff distance 1/2 to A and B (we prove this below in Lemma 2; see the right of Fig. 2
for an example of what S looks like). Note that in the rest of the paper we omit the arguments and simply write S , as the 
arguments are always clear from context. We want to show that dH (A, S) ≤ 1/2 and dH (B, S) ≤ 1/2. In fact, we can prove 
a more general statement.

We define

Sα(A, B) := (A ⊕ Dα) ∩ (B ⊕ D1−α)

for α ∈ [0, 1], and we use seg(a, b) to denote the line segment connecting points a and b.

Theorem 1. Let A and B be two compact sets in the plane with dH(A, B) = 1. Then dH (A, Sα) = α and dH (B, Sα) = 1 − α.

Proof. We first show that dH (A, Sα) ≤ α. The proof for dH (B, Sα) ≤ 1 −α is analogous and therefore omitted. We will infer 
dH (A, Sα) ≤ α from d �H (A, Sα) ≤ α and d �H (Sα, A) ≤ α; thereafter we will show equality.

Consider any point a ∈ A; by our assumption that dH (A, B) = 1, there is a point b ∈ B with d(a, b) ≤ 1; see Fig. 4. Now 
consider a point s ∈ seg(a, b) with d(a, s) ≤ α and d(b, s) ≤ 1 − α; clearly this point must be in Sα , as it is contained in 
both A ⊕ Dα and B ⊕ D1−α , and it has d(a, s) ≤ α. As this works for every a ∈ A, it holds that d �H (A, Sα) ≤ α. The fact that 
d �H (Sα, A) ≤ α follows straightforwardly from Sα being a subset of A ⊕ Dα . Thus, dH (A, Sα) ≤ α.

To show equality, assume that the Hausdorff distance between A and B is realized by a point â ∈ A with closest point 
b̂ ∈ B , at distance 1. Consider the point ŝ ∈ seg(â, ̂b) with d(â, ̂s) = α and d(b̂, ̂s) = 1 − α. As observed, ŝ ∈ Sα . Since ŝ is the 
closest point of Sα to â, and b̂ is the closest point of B to ŝ, equality follows. �
3
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Fig. 5. Sets A and B for which S1/2 is disconnected. The shaded areas around A and B represent A ⊕ D1/2 and B ⊕ D1/2, respectively.

Fig. 6. Illustration of the proof showing that Sα is connected if A is convex (sketched for α = 3/4). The shaded areas around A and B represent A ⊕ D3/4

and B ⊕ D1/4, respectively, so that the doubly-shaded area is S3/4.

Lemma 2. Sα is the maximal set that satisfies dH(A, Sα) = α and dH (B, Sα) = 1 − α.

Proof. Consider any set T for which we have d �H (T , A) ≤ α and d �H (T , B) ≤ 1 − α. As A ⊕ Dα contains all points with 
distance at most α to A, we have that T ⊆ A ⊕ Dα ; similarly, we have that T ⊆ B ⊕ D1−α . By the definition of Sα , this 
implies that T ⊆ Sα . As this holds for any T , we conclude that Sα is a unique maximal set. �
2.1. Properties of Sα

In this section, we study the convexity and connectedness of Sα . Recall that a set A ⊆R2 is convex if for any two points 
a, b ∈ A, the segment seg(a, b) between them is completely contained in A. Also, recall that a set A ⊂ R2 is connected if 
for any two points a, b ∈ A, there exists a continuous curve c : [0, 1] → A such that c(0) = a and c(1) = b. This type of 
connectedness is known as path-connectedness, but we use the term connected for simplicity. We observe the following 
properties.

1. If A and B are convex, Sα is convex;
2. If A is convex and B is connected, Sα is connected;
3. For some connected sets A and B , Sα is disconnected.

Property 1 is straightforward: the Minkowski sum of A and B with a disk is convex, and the intersection of convex objects 
is itself also convex. The example in Fig. 5 demonstrates Property 3; in fact, any Hausdorff middle will be disconnected for 
those input sets.

The next lemma establishes Property 2.

Lemma 3. Let A and B be two compact connected regions of the plane with Hausdorff distance 1, and A convex. Then Sα = (A ⊕
Dα) ∩ (B ⊕ D1−α) is connected for any α ∈ [0, 1].

Proof. See Fig. 6 for an illustration. Because A is convex, there is a continuous map ρ : B → A that maps each point of 
B to a closest point (within distance 1) in A. For b ∈ B , let ρα(b) = αρ(b) + (1 − α)b. We have that ρα : B → Sα is also 
continuous.
4



M. van Kreveld, T. Miltzow, T. Ophelders et al. Computational Geometry: Theory and Applications 100 (2022) 101817
Fig. 7. Although B2 is a translate of B1, the middle set between A and B2 is not a translate of the middle set between A and B1.

Fig. 8. When α ≥ 1 − α, an arc b of ∂B⊕ (blue) can only intersect ∂ A⊕ (red) twice.

Now take any two points s and s′ in Sα ; respectively, they have points b and b′ ∈ B within distance 1 −α. The segments 
between s and ρα(b) and between s′ and ρα(b′) lie completely in Sα . Take a continuous curve π from b to b′ inside B . The 
image of π under ρα connects ρα(b) to ρα(b′) within Sα , so s and s′ are connected inside Sα . �

We note that Sα may contain holes. Furthermore, Sα is not shape invariant when B is translated with respect to A. For 
example, let A be the union of the left and bottom sides of a unit square and let B1 and B2 be the left and right sides of 
that same unit square. Then (A ⊕ D1/2) ∩ (B1 ⊕ D1/2) is not a translate of (A ⊕ D1/2) ∩ (B2 ⊕ D1/2). See Fig. 7; note that 
dH (A, B1) = dH (A, B2).

2.2. Complexity of Sα

In this section, we describe the complexity of Sα in terms of the number of vertices, line segments, and circular arcs on 
its boundary, for several types of polygonal input sets. Recall that ∂ A denotes the boundary of set A.

Lemma 4. Let A be a convex polygon with n vertices and B a simple polygon with m vertices. Then ∂ Sα consists of O (n + m) vertices, 
line segments and circular arcs, and this bound is tight in the worst case.

Proof. For brevity we let A⊕ = A ⊕ Dα and B⊕ = B ⊕ D1−α .
There is a trivial worst-case lower bound of �(n + m) by taking α = 0 or α = 1, as S0 = A and S1 = B . Note that if the 

boundaries of A⊕ and B⊕ would consist of only line segments, the upper bound is easy to show: A⊕ is convex, and its 
boundary can therefore intersect each segment of ∂ B⊕ at most twice, making ∂ Sα consist of (parts of) segments from ∂ A⊕
and ∂ B⊕ and at most O (m) intersection points. The problem is that ∂ A⊕ and ∂ B⊕ also contain circular arcs, in which case 
∂ A⊕ may intersect an arc of ∂ B⊕ �(n) times.

To show an upper bound of O (n + m), we distinguish two cases. In the first case, we assume α ≥ 1 − α. Note that in 
this case, the circular arcs that are part of the boundary of A⊕ have a radius larger or equal to those of B⊕ . Additionally, 
∂ A⊕ is smooth and is an alternating sequence of circular arcs and segments, as A is convex. In this case, we do in fact have 
that any line segment or circular arc b of ∂ B⊕ can intersect ∂ A⊕ at most twice. Consider two intersection points of b with 
∂ A⊕: as the curvature of ∂ A⊕ is at most that of b, there can never be another intersection point between these two, or we 
would violate the convexity of A⊕ . See Fig. 8 for an illustration of this case.

For the second case, we assume α < 1 − α. We charge all the intersections to the arcs and line segments of ∂ A⊕ and 
∂ B⊕ . Each line segment of ∂ B⊕ can intersect ∂ A⊕ at most twice, as A⊕ is convex, so there can be at most O (m) such 
intersections. Similarly, for arcs of ∂ B⊕ that intersect ∂ A⊕ at most three times, there can be at most O (m) intersections in 
total. It remains to consider the arcs of ∂ B⊕ that intersect ∂ A⊕ more than three times.

Let b be such an arc of ∂ B⊕ . Consider any quadruple of consecutive intersection points i0, i1, i2, i3 with ∂ A⊕ along b, see 
Fig. 9, where the part of ∂ A⊕ between i1 and i2 that does not contain i0 and i3 is outside the disk supporting b. This part 
is denoted ã; note that ã must contain at least one circular arc, denoted a. Notice that we consider all intersection points 
5
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Fig. 9. When α < 1 − α, a single arc b of ∂B⊕ , shown in blue, can have many intersections with ∂ A⊕ , but no other arc b′ , shown as a dashed blue arc, can 
have many intersections with the same part of ∂ A⊕ . The intersections of b with ∂ A⊕ are shown in red.

between ∂ A⊕ and b, except possibly for the first one or two and last one or two. These first and last ones can be charged 
to b, and this charge is at most four per arc b. Let c be the center of the supporting disk of b. If any of the angles �i0ci1, 
�i1ci2, or �i2ci3, is larger than ε for some constant ε > 0, we again charge the intersection points i1 and i2 to b, and we 
have less than 360/ε of such charges. So we now assume that all three angles are at most ε. We charge the intersection 
points i1 and i2 to a, the arc of a disk that appears on ã.

It remains to show that a is charged at most once. We can limit the distance by which ã can protrude outside of b: as 
A⊕ is convex, ã cannot cross the line through i0 and i1, nor the line through i2 and i3. This restricts ã to the shaded area 
in Fig. 9. It is possible that ã intersects a different arc b′ of ∂ B⊕ in this shaded area. We observe that the disk that b′ is a 
part of cannot contain the intersection points i1 and i2, as otherwise those points would not be intersections of ∂ A⊕ and 
∂ B⊕ . Now b′ can intersect ∂ A⊕ at most twice, as more intersections would violate the convexity of A⊕ . In particular, b′
cannot intersect ∂ A⊕ four times, and hence b′ cannot charge intersections on it to a. We conclude that a is charged only 
once. From this we conclude that there are at most O (n + m) intersection points in total, and that ∂ Sα therefore consists of 
at most O (n + m) vertices, line segments and circular arcs. �
Lemma 5. Let A and B be two simple polygons of n and m vertices, respectively. Then ∂ Sα consists of O (nm) vertices, line segments 
and circular arcs, and this bound is tight in the worst case.

Proof. The worst-case lower bound of �(nm) follows by taking A and B to be two rotated “combs”; see Fig. 5. For α = 1/2, 
Sα consists of �(nm) distinct components. The upper bound follows directly from the fact that A ⊕ Dα and B ⊕ D1−α have 
complexities O (n) and O (m), respectively. Each individual arc and edge on the boundaries of A ⊕ Dα and B ⊕ D1−α intersect 
at most a constant number of times, so we cannot have more than O (nm) intersection points. �

In fact, not just Sα , but any Hausdorff middle has complexity �(nm) for the example in Fig. 5. Since Sα is maximal, the 
components cannot be connected without changing the Hausdorff distance to A or B , and other middles must have at least 
some point in every component of Sα to achieve Hausdorff distance 1/2 to both A and B .

2.3. Sα as a morph

By increasing α from 0 to 1, Sα morphs from A = S0 into B = S1. (Examples of such morphs are presented in Figs. 1
and 10.) The following lemma shows that this morph has a bounded rate of change.

Lemma 6. Let Sα and Sβ be two intermediate shapes of A and B with dH (A, B) = 1 and α ≤ β . Then dH (Sα, Sβ) = β − α.

Proof. We have dH (Sα, Sβ) ≥ β−α because, by the triangle inequality, dH (A, B) = 1 ≤ dH (A, Sα) +dH (Sα, Sβ) +dH (Sβ, B) ≤
α + dH (Sα, Sβ) + 1 − β .

It remains to show that dH (Sα, Sβ) ≤ β −α. We show that Sβ ⊆ Sα ⊕ Dβ−α ; the proof that Sα ⊆ Sβ ⊕ Dβ−α is analogous. 
Let p be some point in Sβ . Then, by definition of Sβ , there exist some points a ∈ A and b ∈ B such that d(a, p) ≤ β and 
d(b, p) ≤ 1 − β . Let p̄ be the point obtained by moving p in the direction of a by β − α. By the triangle inequality, we then 
have that d(a, p̄) ≤ β − (β −α) = α and d(b, p̄) ≤ (1 − β) + (β −α) = 1 −α. This implies that p̄ ∈ Sα . As p was an arbitrary 
point in Sβ , and d(p, p̄) ≤ β − α, we have that Sβ ⊆ Sα ⊕ Dβ−α . So dH (Sα, Sβ) ≤ β − α. �
6
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Fig. 10. Some examples of morphs Sα between two shapes A and B .

The lemma implies that, even though the number of connected components of Sα can change when α changes, new 
components arise by splitting and never ‘out of nothing’, and the number of components can only decrease through merging 
and not by disappearance.

The morph 〈Sα | α ∈ [0, 1]〉 from A to B has a consistent submorph property, formalized below.

Lemma 7. If a morph from A = S0 to B = S1 contains a shape C , then the morph from A to C concatenated with the morph from C to 
B is the same as the morph from A to B: they contain the same collection of shapes in between and in the same order.

Proof. Let α be the value such that Sα(A, B) = C . We define S ′
β(A, C) := (A ⊕ Dβ) ∩ (C ⊕ Dα−β) for β ∈ [0, α], giving the 

morph from A to C . We need to show that Sβ(A, B) = S ′
β(A, C). The case for the morph from C to B is analogous and 

therefore omitted.
Let x be any point in Sβ(A, B). By definition it has a distance of at most β to A, and Lemma 6 establishes that it has 

distance at most α −β to C . This implies that x ∈ S ′ (A, C). As this works for any point x, we have that Sβ(A, B) ⊆ S ′ (A, C). 
β β

7
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Fig. 11. Figures (a) and (b) show the offsets of A, respectively B with distance 1/2. Figure (c) shows the resulting S1/2 in green. Any connected shape must 
cross the vertical middle line or stay on one side of it. In both cases, the Hausdorff distance doubles.

Now let x′ be any point in S ′
β(A, C). By definition it has distance at most β to A, and distance at most α − β to some point 

c ∈ C . As dH (B, C) = 1 −α, by the triangle inequality x′ must have distance at most (α −β) + (1 −α) = 1 −β to some point 
in B . This shows x′ ∈ Sβ(A, B). As this works for any point x′ , we also have that S ′

β(A, C) ⊆ Sβ(A, B). We conclude that 
Sβ(A, B) = S ′

β(A, C). �
As a corollary of this lemma, {α ∈ [0, 1] | Sα is convex} is a connected interval.

2.4. The cost of connectedness

For some applications, it might be necessary to insist that the middle shape is always connected. However, in the worst 
case, the cost of connecting all components of Sα can be that the Hausdorff distance of the resulting shape to A and B
becomes 1. See Fig. 11 for an example where this is the case. In fact, any connected shape has distance at least 1 for this 
example.

3. The Hausdorff middle of more than two sets

A natural question is whether the results from the previous section extend to more than two input shapes. There are 
several ways to formalize the notion of a Hausdorff middle between multiple shapes. Analogous to the case of two sets, we 
are interested in a middle shape that minimizes the maximum Hausdorff distance to each input set. Let M = {A1, . . . , Am}
be a collection of m input shapes with largest pairwise Hausdorff distance 1. We define Tα as 

⋂
i(Ai ⊕ Dα); the (maximal) 

middle set is then given by the smallest value α for which Tα ⊕ Dα contains all input sets. We denote this smallest α by 
α(M) := min{ α | maxi dH (Ai, Tα) ≤ α }. If α is clear from the context, we use the notation A⊕ to mean A ⊕ Dα .

In this section, we first study the largest possible α(M) for general and convex input. We then study some general 
properties of Tα with respect to connectivity and convexity. After this, we consider whether there is some subset of M
that requires the same value of α, and obtain a Helly-type property for convex input. Finally, we will give various algorithms 
to compute or approximate α(M) efficiently.

3.1. The largest α(M)

In this section, we are interested in the largest possible value of α(M). We first discuss the general case and then study 
the case where all sets A ∈ M are convex. In both cases, we provide an exact answer. This section relies on some tedious 
calculations, which turn out to be easier if we do not normalize pairwise distances of our objects to 1.

As it turns out, for some inputs it may be the case that α(M) = 1; see Fig. 12. Here, there can be no shape with 
Hausdorff distance less than 1 to all the input shapes, meaning any of the three input shapes can be chosen as “the 
middle”. Hence, for two input sets, we always have α(M) = 1/2, but for more input sets, the value depends on the input, 
and α(M) will be in [1/2, 1]. The example in Fig. 12 requires non-convex sets, raising the question of what the range of 
α(M) can be when all Ai are convex.

If we have three convex sets that are points, and they form the corners of an equilateral unit-side triangle, then we can 
easily see that α(M) = 1/

√
3 ≈ 0.577 and the middle shape is exactly the point in the middle of the triangle.

An example with three line segments shown in Fig. 13 surprisingly achieves (for λ ≈ 0.253135, θ ≈ 123.37◦) a larger 
value α∗ ≈ 0.6068 = r, which we call the magic value. Lemma 9 shows that no three convex sets achieve α(M) > α∗ . Thus 
the magic value is a tight upper bound for three convex sets.

We define the magic value as α∗ = 1/z ≈ 0.6068, where the value of z is derived from Fig. 14, and defined as z :=
min{λ + 1 − cos(2θ) | λ ≥ 0, θ ∈ (90◦, 180◦), and λ + 1 − cos(2θ) = ‖(−λ cot(2θ) − sin(2θ) + sin(θ), λ − cos(2θ) + cos(θ))‖} ≈
1.647986325231 (at λ ≈ 0.253135, θ ≈ 123.37◦ , verified using Wolfram Cloud).
8
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Fig. 12. The pairwise Hausdorff distance in this construction is 1, and for any α < 1, T ⊕
α does not contain point p.

Fig. 13. Three segments A1, A2, and A3. Of these, A3 is the diameter of a circle with radius r; the other two (A1 and A2) are tangent to the circle and are 
copies of one another reflected through A3, such that all pairwise Hausdorff distances are at most 1 (length of dashed segments). The top left vertex of A3

is furthest (at distance r) from the middle set Tr (green), so α({A1, A2, A3}) is the radius r of the circle.

Lemma 8. Let M = {A1, . . . , Am} be a collection of compact convex regions in the plane, and α := α(M). There is some Ai ∈ M
with d �H (Ai, Tα) = α.

Proof. By construction, we have d �H (Tβ, Ai) ≤ β for all i and all β . (Recall that this is equivalent to Tβ ⊆ Ai ⊕ Dβ .) Moreover, 
if Tβ is nonempty, then for any i, the map γ �→ d �H (Tγ , Ai) is continuous on the domain [β, ∞), as Tγ changes continuously. 
We show that for some i, we have d �H (Ai, Tα) = α. If instead d �H (Ai, Tα) < α for all i, then unless Tβ is empty for all β < α, 
we can decrease α, contradicting minimality of α. If instead α is the minimum value for which Tα is nonempty, then either 
α = 0 and we are done because Tα contains all Ai , or α > 0 and Tα has no interior (when viewed as a subset of the plane). 
Because Tα is the intersection of convex sets, it is convex. If it has no interior, it is either a segment or a point, and by 
convexity it must lie on the boundary of A⊕

i for some i, contradicting that d �H (Ai, Tα) < α. �
Lemma 9. Let M = {A1, A2, A3} be compact convex regions in the plane. Let α := α(M) and d = maxi, j dH (Ai, A j), then d ≥ α/α∗
(equivalently d ≥ zα).

Proof. By Lemma 8, we have d �H (Ai, Tα) = α for some i. If x is a point, we will write �d(x, ·) to denote d �H ({x}, ·). Without 
loss of generality assume that d �H (A3, Tα) = α and �d(a, Tα) = d(a, t) = α with a ∈ A3 and t ∈ Tα . Let T = A⊕

1 ∩ A⊕
2 ⊇ Tα . 

There is no point t′ ∈ T with d(t′, a) < α, since then �d(t′, A3) < α, in which case t′ ∈ A⊕
3 and therefore t′ ∈ Tα , contradicting 

that d �H (a, Tα) = α. So t is a point in T closest to a and hence �d(a, T ) ≥ α.
Assume that α > 0 (otherwise we are done) and let Ht be the half-plane (not containing a) bounded by the line through 

t that is perpendicular to seg(t, a), see also Fig. 14. The set T is convex, as it is the intersection of convex sets. Therefore, 
if T contains a point p, then T also contains seg(t, p). Since t is a point of T closest to a, no such segment intersects the 
open disk of radius α centered at a, and therefore T ⊆ Ht .

Let C be the circle of radius α centered at t . For the remainder of the proof, let i ∈ {1, 2}. Let bi be a point of Ai closest 
to t . Then bi lies on or inside C . If bi �= t , we can define the half-plane Hi (not containing t) bounded by the line through 
bi that is perpendicular to seg(t, bi). For bi �= t , we have by convexity of Ai and bi being closest to t that Ai ⊆ Hi , so 
�d(a, Ai) ≥ �d(a, Hi). Without loss of generality, assume that �d(a, Hi) < α/α∗ (otherwise d ≥ d � (A3, Ai) ≥ �d(a, Ai) ≥ α/α∗).
H
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Fig. 14. Derivation of the expression for z.

If d(a, bi) ≥ 2α, then bi lies diametrically opposite to a on C , but then �d(a, Hi) ≥ 2α > α/α∗ , which is a contradiction, 
so d(a, bi) < 2α. Let ti ∈ A⊕

i be the midpoint of bi and a, then d(a, ti) < α = d(a, t). If d(b1, t) < α, then T contains a point 
interior to seg(t, t2), contradicting that �d(a, T ) ≥ α. So b1 and (analogously) b2 lie on C .

Let θi be the clockwise angle �atbi ∈ (−180◦, 180◦). Define b(θ) to be the point on C for which θ is the clockwise angle 
�atb(θ), so that bi = b(θi). Similarly, let H(θ) be the half-plane (not containing C ) bounded by the line tangent to C at b(θ), 
so that Hi = H(θi). Assume without loss of generality that |θ1| ≥ |θ2| (otherwise relabel A1 and A2). If θ1 and θ2 are both 
positive or both negative, consider the circle of radius α/2 centered at the midpoint of a and t . Then t1 lies on the (shorter) 
arc of this circle connecting t2 and t . This arc lies entirely in A⊕

2 , so t1 lies in Tα , which contradicts that there is no point 
t′ ∈ T with d(t′, a) < α. So assume without loss of generality that θ2 ≤ 0 ≤ θ1 (otherwise mirror all points). If θ1 − θ2 < 180◦ , 
then T contains the segment between t and the midpoint of b1 and b2. This segment does not lie in Ht , which contradicts 
that T ⊆ Ht . Moreover, if θ1 −θ2 = 180◦ , then b1 and b2 are antipodal on C , so dH (A1, A2) ≥ dH (H(θ1), H(θ2)) = 2α > α/α∗ . 
So consider the remaining case where θ1 − θ2 > 180◦ .

In fact, it will turn out that in the worst case, θ2 = −θ1. Suppose that p ∈ A1 ⊆ H(θ1) is the point of A1 clos-
est to a. We have d ≥ d(a, p) and d ≥ �d(p, A2) ≥ �d(p, H(θ2)). Moreover, since −θ1 ≤ θ2 < θ1 − 180◦ , the value of 
�d(p, H(θ)) decreases as θ ∈ [−θ1, θ2] decreases. In particular, we have �d(p, H(θ2)) ≥ �d(p, H(−θ1)). Since |θ1| ≥ |θ2|, we 
have θ1 ∈ (90◦, 180◦). Let λp = �d(p, H(−θ1)) − �d(b(θ1), H(−θ1)). If λp < 0, then d(a, b(θ1)) < d(a, p), and p would not 
be a point of A1 closest to a because the angle �ab(θ1)p would be at least 90 degrees. Combining the above lower 
bounds, we obtain d ≥ min{max{d(a, p), �d(p, H(−θ1))} | p ∈ H(θ1), λp ≥ 0}. The right hand side of the above inequality 
is attained for some p on the boundary of H(θ1). We parametrize such points p with parameters λ and θ1: let pλ(θ1) be 
the unique point on the boundary of H(θ1) with �d(pλ(θ1), H(−θ1)) = �d(b(θ1), H(−θ1)) + λ. The above inequality becomes 
d ≥ minλ≥0 max{d(a, pλ(θ1)), �d(b(θ1), H(−θ1)) + λ}.

We need to minimize this quantity over all values of λ ≥ 0 and θ1 ∈ (90◦, 180◦). We will show that it is minimized when 
its terms d(a, pλ(θ1)) and �d(b(θ1), H(−θ1)) + λ are equal. The point pλ(θ1), and hence the two terms, vary continuously in 
λ and θ1. For fixed θ1, both terms are convex as a function of λ. Therefore, for any fixed θ1, the function is minimized 
either when λ = 0, or the two terms are equal. As θ1 approaches 180◦ , the first term approaches at least 2α (for any λ), 
and as θ1 approaches 90◦ , the second term approaches at least 2α. Since the optimal value is less than 2α, there exists 
an optimal value of θ1. Assume for a contradiction that the terms are not equal in an optimal solution. Fix λ = 0, and 
consider the two terms as a function of θ1. For θ1 ≈ 90◦ and λ = 0, we have d(a, pλ(θ1)) ≈ α < 2α ≈ �d(b(θ1), H(−θ1)) + λ. 
Conversely for θ1 ≈ 180◦ and λ = 0, we have d(a, pλ(θ1)) ≈ 2α > 0 ≈ �d(b(θ1), H(−θ1)) +λ. Hence, by the intermediate value 
theorem, the inequality as a function of θ1 (with fixed λ = 0) is minimized when the terms are equal. We handled the 
case with λ > 0 above, so our inequality becomes d ≥ min{�d(b(θ1), H(−θ1)) + λ | λ ≥ 0, θ1 ∈ (90◦, 180◦), and d(a, pλ(θ1)) =�d(b(θ1), H(−θ1)) + λ}. Following the derivation in Fig. 14, this corresponds to d ≥ zα = α/α∗ . �
3.2. Convexity and connectedness of Tα

In this subsection, we use α := α(M) for simplicity. Similarly to Section 2.1, we examine the properties of Tα for 
different types of input. We arrive at straightforward generalizations of the results obtained for two sets.

1. If all Ai are convex, then Tα is convex.
2. If one of the Ai is connected and the rest are convex, then Tα is connected.
3. For some input where each Ai is connected, and at least two are not convex, Tα is disconnected.
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Fig. 15. When the input sets are not convex, all sets may be necessary to realize the value of α. Figure (a) shows our input construction, along with the 
radius of the circle and the Hausdorff distance. Figure (b) shows that when all sets are present, the required value of α is (1 + ε)/2. Figure (c) shows that 
with the blue set is removed, the required value of α is reduced to (1 + ε/2)/2.

Property 1 follows from the same argument as before: Tα is the intersection of convex sets, and therefore itself convex. 
Property 3 can be shown by extending the construction from Fig. 5 with some other sets: if the intersection of two of the 
sets is not connected, adding more sets will not make Tα connected as long as the pairwise Hausdorff distance does not 
increase. We establish Property 2 with the following lemma.

Lemma 10. Let M = {A1, . . . , Am} be a set of compact connected regions of the plane, with Ai convex for i < m. Then Tα is connected.

Proof. Consider the set T ′
α = ⋂m−1

i=1 A⊕
i . This set is convex, as it is the intersection of convex sets. Also note that by defini-

tion of Tα , Am has directed Hausdorff distance at most α to T ′
α . Let A = T ′

α and B = Am , normalized such that d �H (B, A) = 1. 
We now apply Lemma 3 to A and B , using zero as the value for α. We obtain the result that Tα = (T ′

α ⊕ D0) ∩ (Am ⊕ Dα)

is connected. Note that the Hausdorff distance from A to B may be bigger than one, but this does not matter for the proof 
of Lemma 3. �
3.3. Helly-type properties

An interesting question is whether there are any sets in the input that could be removed while maintaining the same 
optimal value of α. To make this precise, we need some definitions. We say a collection M of m sets is d-sufficient, if there 
is a collection Md ⊂M of d sets such that α(M) = α(Md). We remind the reader that we assume the maximum pairwise 
Hausdorff distance between our input sets is 1.

Lemma 11. For every m, there is a collection M of m connected sets in the plane that is not (m − 1)-sufficient.

Proof. Fig. 15 depicts a construction of four sets which are not 3-sufficient, which generalizes to more sets. The example 
has one set that is a disk of radius 1 + ε (shown in orange in Fig. 15(a)), and m − 1 sets that are circles on the boundary 
of this disk with m − 1 protrusions of some small length ε. These protrusions are evenly spaced along the boundary of the 
disk, and in each location there is a distinct set out of the m − 1 sets missing (each subset of size m − 2 is represented by 
some protrusion). In the example, we have protrusions containing the red and the blue set, the blue and the purple set, 
and the red and the purple set. This way, for the case where all sets are present (Fig. 15(b)), the protrusions don’t have any 
influence on Tα , meaning that α ≥ (1 + ε)/2 is required to let T ⊕

α contain the entire disk. However, if we remove one set 
(other than the orange disk), there will be one protrusion where all sets are now present, meaning it will change the shape 
of Tα . Because of this, the center of the disk will already be covered with a smaller value of α, namely (1 + ε/2)/2. This 
is shown in Fig. 15(c): the dotted arc shows the dilation of the bump caused by the protrusion, which covers a part of the 
disk that would otherwise not be covered (shown as a dashed circle). Note that if we remove the orange disk, it is sufficient 
to use a value of α = ε/2. Further note that with a minor adaptation, all sets become polygonal and simply connected. �

We have shown that in general, we cannot remove any sets from the input while maintaining the same value of α. 
However, when all input sets are convex, we can show that there is always a subset of size at most three that has the same 
optimal value of α.

Lemma 12. Let M = {A1, . . . , Am} be a collection of convex sets. Then there exists a subcollection M′ ⊆M of size at most three such 
that α(M) = α(M′).
11
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Proof. Consider growing some value β from 1/2 to 1. At some point, T ⊕
β := Tβ ⊕ Dβ contains all sets in M (i.e. when 

β = α(M)). There are two ways in which this can happen: (1) Tβ is non-empty for the first time, and immediately the 
condition holds, or (2) Tβ grows, and its dilation now covers the last point of all sets in M. As Tβ is convex no new 
components can appear except for the first, and thus we have only those two cases.

In Case 1, Tβ is either a segment or a point; otherwise, Tβ ′ would have been non-empty for some β ′ < β . If it is a 
segment, it is generated by two parallel edges of some Ai, A j ∈ M such that we have α({Ai, A j}) = α(M). If it is a point, 
it is the common intersection of the dilation of some number of sets from M; we argue that you can always pick three 
sets for which β is optimal. Let a be the single point in Tβ ; consider the vectors V perpendicular to the boundaries of the 
dilated input sets intersecting in this point. The vectors V must positively span the plane:1 otherwise, all vectors would lie 
in a common half-plane, and a would not be the first point to appear in Tβ . As we are in the plane, there must be a subset 
U ⊂ V of three vectors that positively span the plane by themselves. The three corresponding sets Ai, A j, Ak ∈ M satisfy 
α({Ai, A j, Ak}) = α(M).

In Case 2, as our input sets are convex, Tβ itself is also convex. Let a ∈ Ai be one of the last points of M to be covered 
by T ⊕

β . As T ⊕
β is convex, a must be on its boundary; let c be the piece of boundary curve a lies on. This piece of curve is 

either generated by the dilation of some boundary curve in Tβ , or by the dilation of one of its vertices. If it is the dilation of 
a boundary curve, it can be traced back directly to a boundary curve of some A j , in which case Ai and A j have Hausdorff 
distance 2β , and α({Ai, A j}) = α(M) for any choice of k. If it can be traced back to a vertex of Tβ , this vertex is generated 
by the intersection of the boundaries of some A⊕

j and A⊕
k , in which case we also have that α({Ai, A j, Ak}) = α(M). �

Combining the previous lemma with Lemma 9, we obtain the following result.

Theorem 13. Let M = {A1, . . . , Am} be a collection of convex regions in the plane, and let Tα = ⋂
i A⊕

i . Then α(M) is at most the 
magic value α∗ ≈ 0.6068.

3.4. Algorithms

For any given collection M = {A1, . . . , Am} of polygons, we want to compute α(M). We present two algorithms, a simple 
approximation algorithm and a more complex exact algorithm. They both use the same decision algorithm as a subroutine. 
To be precise, given M and some α, the decision algorithm decides if α ≤ α(M). We first present an algorithm for the 
decision problem. Then we sketch how they are used in the approximation algorithm and the exact algorithm. We denote 
all vertices and edges of the Ai as features of M.

Decision algorithm Assuming the input has total complexity n, we can test whether a given value of α ≤ α(M) as follows. 
Compute the intersection Tα of the dilations A⊕

1 , . . . , A⊕
m in O (n2 logn) time, using the construction of an arrangement 

of straight and circular arcs [17,20]. The set Tα will always have at most quadratic complexity, but it can be disconnected. 
Next we compute T ⊕

α . We take every connected component T of Tα separately, compute T ⊕ , and then compute their union. 
Since the connected components of Tα are disjoint and can be partitioned into O (n2) convex pieces, the Minkowski sums 
of these pieces with Dα form a set of pseudo-disks with total complexity O (n2), see [21]. It is known that such a union has 
O (n2) complexity and can be computed in O (n2 log2 n) time [1,21]. Thus, we can compute Tα in O (n2 log2 n) time.

Note that Tα ⊆ A⊕
i , by definition. It remains to test Ai ⊆ T ⊕

α , for each Ai . We test all those containments by a standard 
plane sweep [13] in O (n2 logn) time. As soon as we find any proper intersection between an arc of ∂(T ⊕

α ) and some edge 
of some ∂ Ai , we can stop the sweep and conclude that α needs to be larger. If there were no proper intersections of this 
type, there were only O (n2) events (and not O (n3)), including the ones between edges of different ∂ Ai . When there are no 
proper intersections, each shape Ai lies fully inside or outside T ⊕

α . We can test this in O (n2 logn) time (replace each Ai by 
a single point and then test by a plane sweep or planar point location [13]), and conclude that α must be larger or smaller 
than the one tested. Thus this decision algorithm takes O (n2 log2 n) total time.

Approximation algorithm The decision algorithm leads to a simple approximation algorithm to find a value of α that is at 
most a factor 1 + ε from the optimum. We can perform �log 1/ε� steps of binary search in the range [1/2, 1], testing if T ⊕

α

contains all Ai using the above decision algorithm. This takes O (n2 log2 n log 1/ε) time in total.

Exact computation We can compute an exact value of α(M) in polynomial time. To this end, we imagine a continuous 
process where we grow α from 1/2, and keep track of T ⊕

α . The first time (smallest α) T ⊕
α covers all Ai , we have found 

the Hausdorff distance α(M) corresponding to the Hausdorff middle, and we can construct Tα explicitly as the Hausdorff 
middle. Such an approach is sometimes called wavefront propagation or continuous Dijkstra; it has been used before to 
compute Voronoi diagrams [13,18], straight skeletons [2] and shortest paths on terrains [23]. This approach is combinatorial 
if there are finitely many events and we can determine each on time, before it occurs. Instead of explicitly maintaining T ⊕

α

1 We say vi ∈R2 span the plane positively, if for every point p ∈R2 there are some numbers ai ∈R+ such that ∑ai vi = p.
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Fig. 16. Left, two sets shown by red and blue line segments, and the construction of Tα from lines parallel to edges of M and circles centered at vertices of 
M. Right, construction of T ⊕

α from lines at distance 2α from edges of M, circles of radius 2α centered at vertices of M, and circles of radius α centered 
at certain vertices of Tα .

when α grows, we will determine a polynomial-size set of critical α values that contains the sought one, and find it by 
binary search, using the decision algorithm described above.

The value α(M) that we aim to compute occurs when T ⊕
α has grown just enough to cover all Ai . This can happen in 

three ways, roughly corresponding to a vertex of Ai becoming covered, an edge of Ai becoming covered at some point “in 
the middle”, or a hole of T ⊕

α collapsing and disappearing interior to Ai . We call the vertices, edges, and arcs of M and T ⊕
α

the features (of their boundaries). The three ways of covering all Ai , expressed in the features of M and T ⊕
α , are now: (1) 

a feature of T ⊕
α coincides with a vertex of some Ai , (2) a vertex of T ⊕

α lies on a feature of some Ai , or (3) features of T ⊕
α

collapse and cause a hole of T ⊕
α to disappear. In the last case, when that hole was inside some Ai , this can be the event 

where Ai is covered fully for the first time. In all cases, one, two, or three features of T ⊕
α and zero or one feature of some 

Ai are involved, and at most three features in total. When three edge or circular arc features pass through a single point for 
some value of α, we say that these features are concurrent. Similarly, when an edge or circular arc passes through a vertex 
for some α, we say they are concurrent.

It can be that more than three features of T ⊕
α pass through the point where, e.g., a hole in T ⊕

α disappears, but then we 
can still determine this critical value by examining just three features of T ⊕

α , and computing the α value when the curves 
of these three features are concurrent.

Let us analyze which features make up the boundary of T ⊕
α , see Fig. 16. There are four types: (1) straight edges, which 

are at distance 2α from an edge of M, and parallel to it, (2) circular arcs of radius 2α, which are parts of circles centered 
at vertices of M, (3) circular arcs of radius α, centered at a vertex of Tα , and (4) vertices where features of types (1)–(3) 
meet. Every one of the features of the boundary of T ⊕

α is determined by one or two features of M. In particular, each arc of 
type (3) is centered on an intersection point which is a vertex of Tα , of which there can be �(n2) in the worst case (Fig. 5). 
Depending on the type of intersection point, its trace may be linear in α, or may follow a low-degree algebraic curve (when 
the intersection has equal distance α to an edge and a vertex of M).

Since any critical value can be determined as a concurrency of two (vertex and edge or arc) or three features (three 
edges or arcs) from M and T ⊕

α , and features of T ⊕
α in turn are determined by up to two features of M, every critical value 

depends on at most six features of the input M. If we choose any tuple with up to six features of M, and compute the α
values that may be critical, we obtain a set of O (n6) values that contain all critical α values, among which α(M). We can 
compute this set in O (n6) time, as it requires O (1) time for each tuple of up to six features of M.

Theorem 14. Let M be a collection of m polygonal shapes in the plane with total complexity n, such that the Hausdorff distance 
between any pair is at most 1, and let ε > 0 be a constant. The Hausdorff middle of M can be computed exactly in O (n6) time, and 
approximated within ε in O (n2 log2 n log 1/ε) time.

Parametric search could result in a faster exact algorithm, but for this one would need to express whether input features 
are close to a given Sα in terms of low-degree polynomials. This is nontrivial given that Sα as function of α varies in a 
complex manner.

4. Discussion and future research

We have defined and studied the Hausdorff middle of two planar sets, leading to a new morph between these sets. We 
also considered the Hausdorff middle for more than two sets. While we assumed that the input sets are simply connected, 
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our definition of middle and the morph immediately generalize to more general sets, like sets with multiple components and 
holes. In this sense our definition of middle is very general. Other interpolation methods between shapes do not generalize 
to more than two input sets and cannot easily handle sets with multiple components.

There are many interesting open questions. For example, when both input sets are one-dimensional curves, is there a 
natural way to define a Hausdorff middle curve that is also 1-dimensional?

Besides the maximal middle set, there are other options for a Hausdorff middle. For example, we can choose Sα clipped 
to the convex hull of A ∪ B , which is also a valid Hausdorff middle. In Fig. 11, the green shape would be reduced to the 
part inside the square, which may be more natural. This Hausdorff middle can also be used in a morph.

Another interesting question could be if, for two shapes A and B , we can find a translation or rigid motion of A such 
that some measure on the Hausdorff middle (e.g. area, perimeter, diameter) is minimized.

For two or more shapes in the plane, we could also define a middle based on area of symmetric difference. Here we may 
want to average the areas for the middle shape, and possibly choose the middle that minimizes perimeter. This problem is 
related to minimum-length area bisection [22].

Similarly, for a set of curves, we could define a middle curve based on the Fréchet distance. This appears related to the 
Fréchet distance of a set of curves rather than just a pair [16].
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