Chromatic k-Nearest Neighbor Queries

Thijs van der Horst =

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Maarten Loffler 2 a

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Frank Staals =

Department of Information and Computing Sciences, Utrecht University, The Netherlands

—— Abstract

Let P be a set of n colored points. We develop efficient data structures that store P and can
answer chromatic k-nearest neighbor (k-NN) queries. Such a query consists of a query point ¢ and a
number k, and asks for the color that appears most frequently among the k points in P closest to
q. Answering such queries efficiently is the key to obtain fast k-NN classifiers. Our main aim is to
obtain query times that are independent of k while using near-linear space.

We show that this is possible using a combination of two data structures. The first data structure
allow us to compute a region containing exactly the k-nearest neighbors of a query point ¢, and
the second data structure can then report the most frequent color in such a region. This leads

1/2 logn) for points in R, and with query

to linear space data structures with query times of O(n
times varying between O(n2/3 log?/? n) and O(n5/6 polylogn), depending on the distance measure
used, for points in R?. These results can be extended to work in higher dimensions as well. Since
the query times are still fairly large we also consider approximations. If we are allowed to report a
color that appears at least (1 —) f* times, where f* is the frequency of the most frequent color,
we obtain a query time of O(logn + log log . n) in R* and expected query times ranging between

O(n'/2e7%/2) and O(n'/?=%/%) in R? using near-linear space (ignoring polylogarithmic factors).
2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases data structure, nearest neighbor, classification

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.67

Related Version Full Version: https://doi.org/10.48550/arXiv.2205.00277

Funding Maarten Loffler: Partially supported by the Dutch Research Council (NWO) under the
project numbers 614.001.504 and 628.011.005.

Acknowledgements We would like to thank an anonymous reviewer for the randomized solution

presented in Section 3.2.1, which led to our current solution for finding D (q) in Section 3.2.2.

1 Introduction

One of the most popular approaches for classification problems is to use a k-Nearest Neighbor
(k-NN) classifier [3, 10, 12, 14]. In a k-NN classifier the predicted class of a query item ¢
is taken to be the most frequently appearing class among the k£ items most similar to q.
One can model this as a geometric problem in which the input items are represented by
a set P of n colored points in R%: the color of the points represents their class, and the
distance between points measures their similarity. The goal is then to store P so that one can
efficiently find the color (class) ¢* most frequently occurring among the k points in P closest
to a query point g. See Figure 1(left). We refer to such queries as chromatic k-NN queries.
To answer such queries, k-NN classifiers often store P in, e.g., a kd-tree and answer queries
by explicitly reporting the k points closest to ¢, scanning through this set to compute the
most frequently occurring color [3]. Unfortunately, for many distance measures (including
? Thijs van der Hors.t, Maarten Léfﬁer, and Frank Staals;

37 icensed under Creative Commons License CC-BY 4.0
30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 67; pp. 67:1-67:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:t.w.j.vanderhorst@uu.nl
mailto:m.loffler@uu.nl
https://www.uu.nl/staff/MLoffler/Profile
mailto:f.staals@uu.nl
https://doi.org/10.4230/LIPIcs.ESA.2022.67
https://doi.org/10.48550/arXiv.2205.00277
https://www.nwo.nl/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2

Chromatic k-Nearest Neighbor Queries

Figure 1 (left) A set of input points from three different classes (colors). The class of a query
point ¢ is determined by the labels of its k nearest neighbors (with & = 7 as shown here ¢ is classified
as red). (middle) The color partition for £ = 1. (right) The color partition for k£ = 3.

the Euclidean distance) such an approach has no guarantees on the query time other than
the trivial O(n) time bound. Even assuming that the dependency on n during the query time
is small (e.g. when the points are nicely distributed [11]), the approach requires ©(k) time to
explicitly process all k points closest to q, whereas the desired output is only a single value:
the most frequently appearing color. Hence, our main goal is to design a data structure to
store P that has sublinear query time in terms of both n and k, while still using only small
space. We focus our attention on the Ly (Euclidean) distance, and the Lo, distance metrics.
Most of our ideas extend to more general distance measures and higher dimensions as well.
However, already in the restricted settings presented here, designing data structures that
provide guarantees on the space and query time turns out to be a challenging task.

If the value k is fixed in advance, one possible solution is to build the k*"-order Voronoi
diagram Vory,(P) of P, and preprocess it for point location queries. The k**-order Voronoi
diagram is a partition of R? into maximal cells for which all points in a cell (a Voronoi region)
Vi, p(S) have the same set S of k closest points from P. Hence, in each Voronoi region there
is a fixed color that occurs most frequently among S. See Figure 1(right) for an illustration.
By storing Vory(P) in a data structure for efficient (i.e. O(logn) time) point location queries
we can also answer chromatic k-NN queries efficiently. However, unfortunately Vory(P) may
have size ©(k(n — k)) [15] (for points in R? and the L distance). For other L,, distances
the diagram is similarly large [17, 6]. Hence, we are interested in solutions that use less,
preferably near-linear, space.

The only result on the theory of chromatic k-NN queries that we are aware of is that
of Mount et al. [20]. They study the problem in the case that we measure distance using
the Euclidean metric and that the number of colors ¢, as well as the parameter k, are small
constants. Mount et al. state that it is unclear how to obtain a query time independent
of k, and instead analyze the query times in terms of the chromatic density p of a query q.
The chromatic density is a term depending on the distance from the query point ¢ to the
k' nearest neighbor of ¢, and the distance from ¢ to the first point at which the answer
of the query would change (e.g. the (k + t)'" nearest neighbor of ¢ for some ¢ > 0). The
intuition is that if many points near ¢ have the same color, queries should be easier to answer
than when there are multiple colors with roughly the same number of points. The chromatic
density term models this. Their main result is a linear space data structure for points in R?
that supports O(log®n + (1/p)?log(1/p)) time queries. We aim for bounds only in terms
of combinatorial properties (i.e. n, ¢, and k) and allow the number of colors, as well as the
parameter k, to be comparable to n. Our results are particularly relevant when &k and ¢ are
large compared to n.

T. van der Horst, M. Loffler, and F. Staals

Table 1 Our results for exact chromatic k-nearest neighbors problems. Bounds marked with *
are expected bounds. The general L,, metric bounds hold for m = O(1).

Dimension Metric Preprocessing time Space Query time

d=1 L, O(n**logn) O(n) O(n'?logn)

d=2 L (nz (4+5) O(n) (n1 1/(12+35))

d>3 Lm O(n*~ 1 4 pltd/d=210) O (n) O =1/ (D) 2d=2+0))

O(n1+d/(d+1)) O(TL) O(nl 1/(d+1)+5)

Lo

d>2 (n1+d/(d+1)) O(nlog?~'n) O((nlog?! n)l—l/(d+1))
Lo (n2 1/d o 1+d/<d+1))* O(n) (1— (d—l)/d(d+1))

Table 2 Our results for the approximate chromatic k-nearest neighbors problems.

Dimension Metric Preprocessing time Space Query time
d=1 Ly, O(nlonglE n) O(ne™) O(logn—l—loglogi n)
d—2 Lo O(ne=%)* O(ne=%) O(n'/?e=%/%)*

Lo O(n*° +ne™ ") O(ne™) O(n'/?e=3/%)*

Our approach. Our main idea is to answer a query in two steps. (1) We identify a region
DF (q) that contains exactly the set k-NN,,(q) of the k sites closest to ¢ according to distance
. (2) We then find the mode color ¢*; that is, the most frequently occurring color
among the points in the region DF (¢). This way, we never have to explicitly enumerate
the set k-NN,,,(¢). We will design separate data structures for these two steps. Our data
structure for step (1) will find the smallest metric disk DF (q) containing k-NN,,(¢) centered
at q. We refer to such a query as an range finding query. If the distance used is clear from

the context we may write k&-NN(q) and D*(q) instead.

metric L,,

Range mode queries.
For these data structures we exploit and extend the result of Chan et al. [§8]. They show an
array A with n entries can be stored in a linear space data structure that allows reporting the
mode of a query range (interval) A[i..j] in O(n'/?) time. Furthermore, points in R? can be
stored in O(n polylogn + r2?) space so that range mode queries with axis-aligned orthogonal
ranges can be answered in O((n/r)polylogn) time.
parameter. In particular, setting r = [n!/2?] yields an O(n polylogn) space solution with
O(nl_l/ Zd polylogn) query time. Range mode queries with halfspaces can be answered in
O((n/r)*=4" 4 polylogn) time using O(nr?~1) space [8]. Range mode queries in arrays
have also been considered in an approximate setting [7]. The goal is then to report an element

Here, r € [1,n] is a user-choosable

that appears sufficiently often in the range.

Results and organization. Refer to Table 1 for an overview of our exact solutions. We first
consider the problem for n points in R'. In this setting, we develop an optimal linear space
data structure that can find DF (¢) in O(logn) time, for any m > 1 (Section 2). We then use
Chan et al. [8]’s data structure to report the mode color in DF (q). Since we present all of our
data structures in the pointer machine model augmented with real-valued arithmetic, this

The data structure in step (2) answers so-called range mode queries.

67:3

ESA 2022

67:4

Chromatic k-Nearest Neighbor Queries

1/2=9) Jowerbound

yields an O(nl/ 2logn) time query algorithm. There is a conditional (n
for chromatic k-NN queries using linear space and O(n3/ %) preprocessing time (refer to
Section 5) so this result is likely near-optimal. In Section 3 we present our data structure for
finding DF (¢) in R2. For the L., metric we show that we can essentially find DF (q) using
a binary search on the radius of the disk, and thus there is a simple O(nlogn) size data
structure that allows us to find the range D*(q) in O(log®n) time (or O(n®) time, for an
arbitrarily small § > 0, in case of a linear space structure). For the Ly metric, we can no
longer easily access a discrete set of candidate radii. It is tempting to therefore replace the
binary search by a parametric search [18, 19]. However, the basic such approach squares
the O(n'/?) time required to solve the decision problem and is thus not applicable. The
full strategy requires a way to generate independent comparisons; typically by designing
a parallel decision algorithm [18]. Neither task is straightforward to achieve. Instead, we
show that we can directly adapt the query algorithm for answering semi-algebraic range
queries [2] (essentially the decision algorithm in the approach sketched above) to find D% (q)
in O(n'/? polylogn) time. Unfortunately, the final query time for chromatic k-NN queries
is dominated by the O(n°/® polylogn) time range mode queries, for which we use a slight
variation of the data structure of Chan et al. [8]. We briefly discuss these results in Section 4,
We do show that the data structure can be constructed in O(n®/?) expected time, rather than
the straightforward O(n?) time implementation that directly follows from the description
of Chan et al.. For the L, metric we can answer range mode queries in O(n?’/ 4polylogn)
time using Chan et al.’s data structure for orthogonal ranges. However, we show that we
can exploit that the ranges are squares and use a cutting-based approach (similar to the one
used for the Ly distance) to answer queries in O(n?/? log?/® n) time instead. If we wish to
reduce the space from O(nlogn) to linear the query time becomes O(n?/3+9).

Since the query times are still rather large, we then turn our attention to approximations;
refer to Table 2 for an overview. If f* is the frequency of the mode color among k-NN(q) then
our data structures may return a color that appears at least (1 —¢)f* times. In case of the Lo
distance our data structure presented in Section 6 now achieves roughly O(nl/ 2g=3/ 2) query
time, where the O notation hides polylogarithmic factors of n and €. The main idea is that
approximate levels in the arrangement of distance functions have relatively low complexity,
and thus we can store them to efficiently answer approximate range mode queries.

2 The one-dimensional problem

In this section we consider the case where P is a set of n points in R'. In this case all
L,,-distance metrics with m > 1 are the same, i.e. L,,(a,b) = |a — b|. We develop a linear
space data structure supporting queries in O(nl/ 2logn) time. Building the data structure
will take O(n?/?) time. We follow the general two-step approach sketched in Section 1. We
first show that there is an optimal, linear-space data structure with which we can find D¥(q)
in O(logn) time, even if k is part of the query. As we then briefly describe how we can
directly use the data structure by Chan et al. [8] to find the mode color of the points in
Dk (q) in O(n'/?logn) time.

Range finding queries. Given a set P of n points in R!, we wish to store P so that given a
query, consisting of a point ¢ € R! and a natural number k, we can efficiently find the k"
furthest point from ¢, and thus D, (¢). We show that by storing P in sorted order in an
appropriate binary search tree, we can answer such queries in O(logn) time. To this end,
we first consider answering so called rank queries on a ordered set, represented by a pair of
binary search trees. This turns out to be the crucial ingredient in the data structure.

T. van der Horst, M. Loffler, and F. Staals

Let RU B be an ordered set of elements, and let Ty be a be a binary search tree whose
internal nodes store the elements from R, and in which each node is annotated with the
number of elements in that subtree. Similarly, let Ts be a binary search tree storing B. We
can efficiently compute the element among R U B with rank & (i.e. the k*" smallest element):

» Lemma 2.1. Let Ts and Tr be two binary search trees with size annotations, and let k be
a natural number. We can compute the element of rank k among B U R in O(height(Tg) +
height(Tg)) time.

To support efficiently querying D*(g) we now store P in a balanced binary search tree
Tp with subtree-size annotations, so that we can: (i) search for the element of rank k, and
(ii) given a query value ¢ € R! we can split the tree at ¢ in O(logn) time. We can implement
Tp using e.g. a red black tree [22] (although with some care even a simple static balanced
binary search tree will suffice). We will use the split operations only to answer queries; so we
use path copying in this operation, so that we can still access the original tree once a query
finishes [21]. The data structure uses O(n) space, and can be built in O(nlogn) time.

Given a query (g, k) the main idea is now to split Tp into two trees Tp< and Tp>, where
P< C P is the set of points left of ¢ and PZ = P\ P< is the remaining set of points right of
q (or coinciding with ¢). Observe that in these two trees, the points are actually ordered by
distance to ¢ (albeit for Tp< the points are stored in decreasing order while the points in
Tp> are stored in increasing order). So, we can essentially use the procedure from Lemma 2.1
on the trees Tp< and Tp> to find the point in P< U P> with rank k (according to the “by
distance to ¢”-order). The only difference with the algorithm as described in Lemma 2.1 is
that for Tp< the roles of the left and right subtree are reversed. Splitting T" into Tp< and
Tp> takes O(logn) time. Since both subtrees have height at most O(logn), Lemma 2.1 also
takes O(logn) time. So, we obtain the following result:

» Theorem 2.2. Let P be a set of n points in R. In O(nlogn) time we can build a linear
space data structure so that given a query q,k we can find the smallest disk DF (q), with
respect to any L, metric, containing k-NN,,(q) in O(logn) time.

Range mode queries. What remains is to store P such that given a query interval @ we
can efficiently report the mode color among P N Q. Chan et al. [8] show that an array A of
size n can be preprocessed in O(n3/ 2) time into a linear space structure that can report the
range mode of a query range A[i : j] in O(nl/ 2) time. By implementing arrays with balanced
binary search trees, we can also implement this structure in the pointer machine model. This
increases the query and preprocessing times by an O(logn) factor. We then store (the colors
of) the points in increasing order in this structure. Together with Theorem 2.2 we obtain:

» Theorem 2.3. Let P be a set of n points in R'. In O(n®/?logn) time, we can build a data
structure of size O(n), that answers chromatic k-NN queries on P in O(n'/?logn) time.

3 Range finding queries two dimensions
In this section we give a data structure that, given a query point ¢ € R?, reports the smallest

range DF (q) centered at ¢ containing k-NN,,(q). In Section 3.1 we consider the case where
the L., metric is used. In Section 3.2 we then consider the Lo metric.

67:5

ESA 2022

67:6

Chromatic k-Nearest Neighbor Queries

-
® o O 4
e e .
e r*
° g
"""" o | ’q
° : °
. °
[]

Figure 2 The considered radii r;, and r*, for k = 5.

3.1 The L., metric case

For a given value r > 0, define S(q,r) = [gz — 7, ¢z + 7] X [gy — 7, ¢y + 7] as the axis-aligned
square with sidelength 2r centered at g. We call r the radius of such a square. Now observe
that D*(q) = S(g,r*) is also an axis-aligned square, in particular with radius r* equal to
the distance Lo (q,p) between g and the k'"' nearest neighbor p of ¢. Thus we either have
r* = |gy — ps| or 7* = |gy — py|. This leads us to the following data structure. We store
the z-coordinates zq,...,x, of the points in P in increasing order in a balanced binary
search tree. Similarly, we store the y-coordinates of the points in P in sorted order yi,..., Y.
We set ©g = yop = —o0 and z,41 = yp+1 = 00, and call these values coordinates as well.
In addition, we store P in a data structure for O(logn) time orthogonal range counting
queries, for which we use a range tree [5, 23]. The entire data structure can be constructed
in O(nlogn) time, and uses O(nlogn) space.

Now let zg,...,x¢ be the a-coordinates that are at most ¢,. The sequence r; = |q, — x4/,
fori=0,...,¢, defines a sequence of decreasing radii. See Figure 2 for an illustration. We
can find the smallest radius r; for which S(g,r;) contains at least k points by performing
binary search over the radii, performing orthogonal range counting at each step to guide the
search. By performing a similar procedure for the z-coordinates greater than g¢,, as well as
for the y-coordinates, we obtain a set of four squares, that each contain at least k£ points.
The smallest of these squares contains exactly k points and is thus D*(q). As each procedure
performs O(logn) orthogonal range counting queries, we obtain the following theorem.

» Theorem 3.1. Let P be a set of n points in R%. In O(nlogn) time, we can build a data
structure of size O(nlogn), that can report D¥(q) and D% (q) in O(log® n) time.

Following an idea of Chan et al. [8] we can reduce the space used by replacing the binary
range tree used for the orthogonal range queries by one with fanout n° for some constant
§ > 0. This increases the query time to O(n’® + k') time, where &’ is the output size.

» Theorem 3.2. Let P be a set of n points in R2. Let § > 0 be an arbitrarily small constant.
In O(nlogn) time, we can build a data structure of O(n) size, that can report D¥(q) and
DE (q) in O(nd) time.

T. van der Horst, M. Loffler, and F. Staals

3.2 The L, metric case
3.2.1 Randomized query times

In this section, we sketch a simple randomized data structure that finds D5 (q) in expected
O(n'/?1ogP™* n) time'. The data structure consists of the large fan-out partition tree of
Agarwal et al. [2], used for semialgebraic range searching. Together with this tree, we take
a random sample P’ of P by including each point with probability 1/n'/2. Note that this

1/2 points in expectation.

random sample will contain n

The main idea is to combine binary search on the ordered distances R = {L2(q,p’) |
p' € P’} with circular range counting. Let 7* be the distance between ¢ and its k" nearest
neighbor among P. We then search for two consecutive distances r;,7;11 € R, such that
r; < r* < r;p1. Because the number of points p € P with r; < Lo(q,p) < riy1 is ni/2 in
expectation, we can then afford to report these points with semialgebraic range reporting,
and combining binary search with range counting again to find »*. This leads to an expected

query time of O(n'/? logPH1 n).

3.2.2 Worst-case query times

In this section we show how to achieve the same complexity bounds of Section 3.2.1, but
with a worst-case query time bound, rather than a randomized bound.

The data structure. For now, we assume that the set P lies in Dy-general position for
some constant Dy (see [2] for a definition). The details on this assumption are not important,
and we show in the full version of the paper how to handle arbitrary point sets. The data
structure consists of two copies of the large fan-out (fan-out n°, for some constant § > 0)
partition tree of Agarwal et al. [2], built on P. The first copy, which we call T, will be
augmented slightly to support generating candidate ranges (disks) that will eventually lead
to D¥(q). The second copy will be used as a black box, answering circular range counting
queries to guide the search for D¥(q) by counting the number of points inside the candidate
ranges.

The tree T is constructed by recursively partitioning the space into open, connected
regions, called cells. Once a cell contains a small (constant) number of points of P, the
recursion stops and T gets a leaf node containing these points. There may be points of
P that do not lie on these cells, but rather on the zero set of the partitioning polynomial
used to partition the space. For range searching with arbitrary point sets, Agarwal et al. [2]
store these points in an auxiliary data structure. However, with our assumption that P lies
in Dg-general position, we do not need this auxiliary data structure, and will simply store
the points inside a leaf node, whose parent is the node corresponding to the partitioning
polynomial. We further adjust 7 such that each internal node corresponding to a cell w
stores an arbitrary point in w. During the construction of 7, a point inside each cell is
already computed. Hence the construction time is unaltered.

Answering a query. To query the structure with a query point ¢, we keep track of a set
of nodes N; for each level i of T that is explored by our algorithm. With slight abuse of
terminology, we refer to the sets P’ of points stored in the leaves of T as cells. Let ; denote

1 We would like to thank an anonymous reviewer for the solution sketched in this section, which led to
our current solution for finding D5 () in Section 3.2.

67:7

ESA 2022

67:8

Chromatic k-Nearest Neighbor Queries

Figure 3 (left) A partitioning of P into four cells. The red crosses are the points p(w). (right) The
disk D*(g) (dashed boundary) and the disks D(q,r~) (dotted boundary, dark gray) and D(g,r")
(dotted boundary, light gray).

the cells corresponding to the internal nodes in N;, and P; denote the cells corresponding to
the leaf nodes in N;. We maintain that p¥(g), the k*" nearest neighbor of ¢, is contained
in a cell in ©; U P;. Initially, N; contains the root node. If T is a single leaf, then the cell
corresponding to the root node will be stored in P;. Otherwise, it will be stored in £2;.
The query algorithm works as follows. Say the algorithm is at level ¢ in 7. For a cell
w € Q; stored in an internal node, let p(w) be the point inside w that was stored with it. Let

R; = {Ls(g,pw)) [w e U} U] {La(g,p) | p € P/}

P!eP;

be the set of distances to these points p(w), as well as to all points stored in the leaves in
P; and in the nodes in N;. Let r* be the distance between ¢ and its k*" nearest neighbor
among P. This is the radius of D*(g). To find this radius, we compute the largest distance
r~ € R;, and the smallest distance »* € R;, such that r— < 7* < r*. See Figure 3. If r~
(respectively 7) does not exist, set it to 0 (respectively co). We show how to compute r.
Computing r~ works similarly.

To compute rT, we use a combination of median finding and binary search. For some
radius r € R;, we decide if r™ > r or ¥ < r using a circular counting query. If D(q,r)
contains less than k points, we have v+ > r. Otherwise, we have r* < r. By performing this
procedure for the median radius in R;, we can discard half of R; with each query.

Once we have that rT is the distance between ¢ and a point in P (it is constructed
through a leaf node of T'), we have found r*. We then terminate the algorithm, returning
the disk with the found radius. Otherwise we continue the search in the next level of 7. To
continue the search through the tree, we construct the set N;;1 by replacing every node
v € N; with its children whose cells are crossed by one of D(q,r~) and D(q,r"). A cell w is
crossed by a disk D if wN D # () and w Q D. The sets ;41 and P;;; are then constructed
from these child nodes. Once these sets are constructed, we advance the algorithm to level
i+ 1 and repeat the procedure.

» Lemma 3.3. The query algorithm correctly returns D*(q).

Proof. We claim that this algorithm correctly returns D*(q). First, note that if the algorithm
returns a disk, that disk contains k points, and its radius is equal to the distance between
q and a point of P. Therefore, it is indeed D*(q). We now show that our algorithm will
always return a disk, and therefore that our algorithm is correct. To show this, it suffices to
show that for every level i of T traversed by our algorithm, the set €; U P; contains the cell
containing p*(gq).

T. van der Horst, M. Loffler, and F. Staals

We give a proof by induction. It holds trivially that ; U P; contains a cell containing
p*(q). We prove that if Q; U P; contains a cell w’ containing p*(q), then either the algorithm
terminates and returns D¥(q), or there is a cell w € Q;41 U P;y1 containing p*(q).

If W' € P;, then R; will contain 7*. It will then find »* = r* and terminate, returning
D(q,r*) = D¥(q). Now assume that w’ € ;. Let v € N; be the internal node corresponding
to w’. Now let w be the cell stored in a child of v, such that p*(g) lies in w. We show that
w € Qi+1 UPiig.

Our algorithm performs repeated median finding on the radii in R;, resulting in the largest
radius r~ € R; and smallest radius 7™ € R;, such that D(q,7~) and D(g,r™), contains less
than, respectively at least, k points of P. Let r,, be the distance between ¢ and p(w), the
point in w that was stored in 7. If r, < r*, then we have that r, < r~, implying that
D(q,r7) intersects w. Also, because w is open, and because p*(q) € w, there must be a point
p' € w such that 7~ < r* = Ly(q,p*(q)) < La2(q,p’). This shows that w is not contained in
D(q,r7), and thus that D(q,r) crosses w. With similar reasoning, it can be seen that if
rw > r*, then D(q,r") crosses w. Thus, w will be crossed by at least one of D(q,7) and
D(q,r"), and thus w € Q;41 U Pi1. Hence, our algorithm is correct. <

» Theorem 3.4. Let P be a set of n points in R%. Let § > 0 be an arbitrarily small constant.
In O(n'*?) expected time, we can build a data structure of O(n) size, that can report D5(q)
in O(n'/? polylogn) time.

4 Range mode queries in two dimensions

In this section we discuss answering range mode queries in R?, and see how we can use

them together with the data structures from Section 3 to answer chromatic k-NN queries.

Our results build on the data structure of Chan et al. [8] for finding the mode color among
three-dimensional points in halfspaces. We show that using a standard lifting transformation
that maps the points P C R? into planes in R?, we can apply their result to answer range
mode queries with disks in the Lo metric. Our main contribution is that we show that a

similar approach can answer range mode queries with squares (disks in the L., metric).

Somewhat surprisingly, this leads to better query times compared to directly using the
existing range mode data structures for orthogonal ranges [8]. Finally, we show that we
can, in fact, construct the data structures in (expected) O(n®/3) time rather than O(n?)
(worst-case) time. We briefly sketch these ideas here. Refer to the full version for details.

The data structure for the Ly metric. We lift the set of points P C R? to a set of planes
H in R3. The points in a query disk @ map to the subset of planes passing below a point
h*. Hence, we have to report the mode color ¢ of these planes. The main idea in the data
structure of Chan et al. [8] is to build a (1/7)-cutting on the planes in H; a subdivision of
R3 into O(r3) interiorly disjoint cells, whose interiors are each crossed by at most n/r planes
(for r = n'/3). Let A be the cell containing the query point h*. The key insight is that the
mode color ¢ of the planes passing below the query point h* is either the mode color ca of
all planes passing below A, or the color of one of the planes that intersect A. The data
structure stores the color ca for each cell A, so at query time we only have to consider the
at most n/r colors of the planes that intersect A. Our insight is that for £-NN queries we
can use the tools from Section 3 to find these colors in O(n'/?) time, leading to a total query
time of O(n®/%) (rather than O(n%/?) time in the case of arbitrary query points in R?).

67:9

ESA 2022

67:10

Chromatic k-Nearest Neighbor Queries

The data structure for the L., metric. For a point p € P C R?, the graph of the distance
function Lo (p,q) = max{|ps — qu|, |py — ¢y|} forms an upside-down pyramid V,, in R3. For
a point ¢ € R? we have that Lo (p,q) < 7 if and only if (gs, qy,7) lies above V,. Thus, we
can again transform the problem to that of finding the mode color among those graphs in R?
that lie below a given query point. Using a similar cutting-based solution as sketched above —
again exploiting that we can quickly find the (colors of the) graphs intersecting a cell A in
R? rather than R? — yields a linear space data structure answering queries in an O(n?/3+9)
time. Using O(nlogn) space we can decrease the query time to O(n®/3 log?/3 n).

Construction. Our final contribution in terms of the range mode data structures is that
we show how to efficiently construct the above data structures. In case of both the Lo
and the L., metrics, there is a somewhat straightforward algorithm to construct the above
data structures in O(n?) time. The bottleneck being the time required to compute the
mode color ca for all cells A of the cutting. We argue that this can actually be done in
roughly O(m“2 +r3n®) time, for some a € (0,1). For our choice of parameter r, this leads to
algorithms with subquadratic running time. We summarize our results for the chromatic
k-NN problem in the following theorems.

» Theorem 4.1. Let P be a set of n points in R%2. There is a linear space data structure
that answers chromatic k-NN queries on P with respect to the Lo metric. Building the data
structure takes expected O(n®/3) time, and queries take O(n®/% polylogn) time.

» Theorem 4.2. Let P be a set of n points in R%2. There is a linear space data structure
that answers chromatic k-NN queries on P with respect to the Lo, metric. Building the data
structure takes O(n®/3) time, and queries take O(n?/3+%) time. We can decrease the query
time to O(n?/? log?/? n) time using O(nlogn) space and O(n°/3 log?/3 n) preprocessing time.

5 Lower bounds

We now discuss to what extent our results for the exact version of the problem may be
improved further. Chan et al. [8] show that there is a conditional Q(n'/27%) time lower
bound on range mode queries, provided we insist on using only linear space and O(n3/ 2)
preprocessing time. We extend this bound to chromatic k-NN queries in R'. More generally,
Lemma 5.1 shows that we can reduce chromatic k-NN queries in R? to range mode queries
using range counting. Due to space restrictions, further details on the lower bound can be
found in the full version of the paper.

» Lemma 5.1. Let P be a set of n points in RY. A range mode query with a query ball D,,
(with respect to the L., metric) can be answered using a single range counting query with
query range D,, and a single chromatic k-NN query.

Proof. We use the range counting query to find the number of points in the range D,,. Let
this be k, and let g be the center point of the ball D,,. Hence, DX (¢) = D,,, and thus the
answer to the chromatic k-NN query with center ¢ and value k is the mode color of D,,. <«

Relations to range counting queries. Next, we relate the cost of range finding queries, i.e.
the problem solved in our first step, to range counting queries. Given a data structure for
range finding queries we can answer range counting queries using only logarithmic overhead:

» Lemma 5.2. Let P be a set of n points in R%. A range counting query on P with a disk
Dy under metric m can be performed using O(logn) range finding queries.

T. van der Horst, M. Loffler, and F. Staals

Proof. Let ¢ be the center of the query disk. We binary search over the integers 0,...,n,
using a range finding query to find a disk DF (q) for each considered integer k. If the reported
disk is smaller than D,,, the number of points inside D,, is at least k. Otherwise, the number
of points is smaller than k. It follows that with O(logn) range finding queries, we can count
the number of points in D,,. <

It thus follows that range finding is roughly as difficult as range counting. In particular,
a Q(n) time lower bound for range counting queries using S(n) space implies an Q(Q(n))
time lower bound for range finding queries with S(n) space. For example, in the semigroup
model there is an Q(n/S(n)/%) time lower bound for halfspace range counting [4]. Since
every halfspace is a disk Dy (of radius 00), this lower bound also holds for range counting
with disks in the Lo metric, and thus also for range finding.

The range mode queries from step 2 are also related to a form of range counting. A
“type-2” range counting query with query range) asks for all the distinct colors appearing
in @ together with their frequencies, i.e. for each reported color ¢ we must also report the
number of points in P N @ that have color ¢ [9]. Clearly, answering “type-2” queries is more
difficult than range counting (just assign all points the same color), so the above lower bounds
also hold for “type-2” queries. Such “type-2” queries however also allow us to solve the range
mode problem. When the number of colors is small (e.g. two), and we already know the
number of points k in the query range D¥(q) it seems that answering range mode queries is
not much easier than answering (“type-2”) range counting queries. We therefore conjecture
that answering range mode queries is roughly as difficult as answering range counting queries.

» Conjecture 5.3. If answering a range counting query with a query range D using S(n)
space requires Q(n) time then answering a range mode query with query range D using S(n)
space requires Q(Q(n)) time.

Note that this conjecture together with Lemma 5.1 would imply that answering a k-NN
query is at least as hard as answering a range counting query. Furthermore, since we can
answer a range counting query using O(logn) range finding queries (Lemma 5.2) that would
then mean our two-step approach has negligible overhead with respect to an optimal solution
to chromatic k-NN queries.

6 The approximate problems

In this section we sketch our approach for answering e-approximate chromatic k-NN queries.
Refer to the full version for details. Our goal is to report a color ¢ that occurs at least
(1 —¢)f* times, where f* is the frequency of the mode color ¢* of k-NN(gq). We again use
the two-step approach of finding the range D¥(q) (step (1)) and computing the mode of the
range (step (2)). We use exact range finding data structures from Sections 2 and 3, and
focus our attention on approximating step (2) for two reasons: first, the running times in our
exact solutions are dominated by step (2), and second, it is unclear how to use approximate
solutions to k-NN queries (that is, approximate ranges) and still obtain guarantees on the
approximation factor of our e-approximate chromatic k-NN queries.

For points in R! we can directly use the result of Bose et al. [7] to answer (1 — ¢)-
approximate range mode queries. In O(n logﬁ n) time, we can thus build an O(n/e) size
data structure that can answer k-NN queries in O(logn + log log . n) time.

For points in R?, and the Lo-metric, we answer approximate range mode queries as
follows; we use similar ideas for the Lo, metric. We use the standard lifting transformation
to transform the set of points P a set of planes H. A query disk) now corresponds to a

67:11

ESA 2022

67:12

Chromatic k-Nearest Neighbor Queries

N\

Wﬁl

Figure 4 (left) An illustration of the idea in R?, the planes (here lines) of a single color, their
ki = (ﬁ)l—levels (bright red), and the g(e)-approximate k;-levels Lc,o, Le,1,... (in dark red).

(right) For each 4, the £; forms the lower envelope of the L. ; surfaces over all colors c. We search
for the largest ¢ for which ¢ lies above £; (dashed).

vertical halfline with a top endpoint A*, and the mode color ¢* of PN Q@ is the most frequently
occurring color among the planes passing below h*. Our aim is to report a color ¢ such that
at least (1 —¢)f* planes of that color pass below h*.

The main idea to answer approximate range mode queries efficiently is to compute, for
each color ¢, a series of g(e)-approximate k;-levels (for some function ¢) considering only the
planes of color ¢. For each choice of i, we then consider the lower envelope £; of all those
k;-levels among the various colors. See Figure 4 for an illustration. Now observe that if h*
lies in between £; and £;1, the frequency f* of a mode color ¢* may only be a g(¢) fraction
larger than k;11, while the frequency of the color defining £; directly below h* is at least k;.
So if g(e) and k;/k; 41 are sufficiently small this is a (1 — &)-approximation. One additional
complication is that even though our g(e)-approximate k;-levels have fairly small complexity,
their lower envelopes do not. So, we need to design a data structure that can test if h* lies
above or below £; without explicitly storing £;. We show that with near-linear space we can
answer such queries in O, (n'/?) time. This then leads to an O.(n'/?) time query algorithm
for answering k-NN queries.

We use the same approach to answer approximate queries under the L., metric. Here,
the approximate levels are constructed using the result of Kaplan et al. [13]. This leads to
roughly the same complexities.

7 Concluding Remarks

We presented the first data structures for the chromatic k-NN problem with query times that
depend only on the number of stored points. While we focused mostly on the two-dimensional
case, our exact result extend to higher dimensions and other metrics as well (see full version).
Our two-step approach essentially reduces the problem to efficiently answering range mode
queries. The main open question is how to answer such queries efficiently. Since it is unlikely
that we can answer such queries in Q(n!/?) time (using only near-linear space), it is also
particularly interesting to consider further improvements to the e-approximate query data
structures. For the Euclidean distance, finding the query range may now be the dominant
factor (depending on the choice of €). One option is to report a range that contains only
approximately the k nearest neighbors of a query point. However, this further complicates
the analysis. For the L., distance it may also be possible to reduce the space usage by using
a different method for computing the approximate levels (e.g. using the results by Agarwal
et al. [1] or the recent results of Liu [16]).

T. van der Horst, M. Loffler, and F. Staals

—— References

1

10

11

12

13

14

15

16

17

18

19

Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow levels in
3-dimensional arrangements and its applications. SIAM Journal on Computing, 29:912-953,
1999.

Pankaj K. Agarwal, Jiri Matousek, and Micha Sharir. On range searching with semialgebraic
sets. II. STAM J. Comput., 42(6):2039-2062, 2013. doi:10.1137/120890855.

Charu C Aggarwal. Data classification: algorithms and applications. CRC press, 2014.

Sunil Arya, David M. Mount, and Jian Xia. Tight lower bounds for halfspace range searching.
Discrete & Computational Geometry, 47(4):711-730, 2012. doi:10.1007/s00454-012-9412-x.
Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23(4):214-229, 1980. doi:10.1145/358841.358850.

Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Papadopoulou,
and Maksym Zavershynskyi. On the complexity of higher order abstract voronoi diagrams.
Computational Geometry, 48(8):539-551, 2015. doi:10.1016/j.comgeo.2015.04.008.
Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate range mode and
range median queries. In Volker Diekert and Bruno Durand, editors, STACS, pages 377-388,
2005. doi:10.1007/978-3-540-31856-9_31.

Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T.
Wilkinson. Linear-space data structures for range mode query in arrays. Theory of Computing
Systems, 55:719-741, 2014.

Timothy M. Chan, Qizheng He, and Yakov Nekrich. Further Results on Colored Range
Searching. In Sergio Cabello and Danny Z. Chen, editors, 36th International Symposium on
Computational Geometry (SoCG 2020), volume 164 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 28:1-28:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-
Zentrum fir Informatik. doi:10.4230/LIPIcs.SoCG.2020.28.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21-27, 1967.

Jerome H. Friedman, Jon Louis Bentley, and Raphael A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3(3):209-226, 1977. doi:10.1145/355744.355745.

W. E. Henley and D. J. Hand. A k-nearest-neighbour classifier for assessing consumer credit
risk. Journal of the Royal Statistical Society. Series D (The Statistician), 45(1):77-95, 1996.
URL: http://wuw. jstor.org/stable/2348414.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar voronoi diagrams for general distance functions and their algorithmic applications.
Discrete €& Computational Geometry, 64:838-904, 2020.

Yan-Nei Law and Carlo Zaniolo. An adaptive nearest neighbor classification algorithm for data
streams. In Alipio Mério Jorge, Luis Torgo, Pavel Brazdil, Rui Camacho, and Jodo Gama,
editors, Knowledge Discovery in Databases: PKDD 2005, pages 108-120, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

D. T. Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE Transactions on
Computing, 31:478-487, 1982.

Chih-Hung Liu. Nearly optimal planar k£ nearest neighbors queries under general distance
functions. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2842-2859. STAM, 2020. doi:10.1137/1.9781611975994.173.

Chih-Hung Liu, Evanthia Papadopoulou, and Der-Tsai Lee. The k-nearest-neighbor voronoi
diagram revisited. Algorithmica, 71(2):429-449, 2015. doi:10.1007/s00453-013-9809-9.

N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852-865, 1983.

Nimrod Megiddo. Combinatorial optimization with rational objective functions. Mathematics
of Operations Research, 4(4):414-424, 1979. doi:10.1287/moor.4.4.414.

67:13

ESA 2022

https://doi.org/10.1137/120890855
https://doi.org/10.1007/s00454-012-9412-x
https://doi.org/10.1145/358841.358850
https://doi.org/10.1016/j.comgeo.2015.04.008
https://doi.org/10.1007/978-3-540-31856-9_31
https://doi.org/10.4230/LIPIcs.SoCG.2020.28
https://doi.org/10.1145/355744.355745
http://www.jstor.org/stable/2348414
https://doi.org/10.1137/1.9781611975994.173
https://doi.org/10.1007/s00453-013-9809-9
https://doi.org/10.1287/moor.4.4.414

67:14

Chromatic k-Nearest Neighbor Queries

20

21

22
23

D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. Chromatic nearest neighbor
searching: A query sensitive approach. Computational Geometry, 17:97-119, 2000.

Neil Sarnak and Robert E Tarjan. Planar point location using persistent search trees. Com-
munications of the ACM, 29(7):669-679, 1986.

Robert Endre Tarjan. Data structures and network algorithms. SIAM, 1983.

Dan E. Willard. New data structures for orthogonal range queries. SIAM Journal on Computing,
14(1):232-253, 1985. doi:10.1137/0214019.

https://doi.org/10.1137/0214019

	1 Introduction
	2 The one-dimensional problem
	3 Range finding queries two dimensions
	3.1 The L_infinity metric case
	3.2 The L_2 metric case
	3.2.1 Randomized query times
	3.2.2 Worst-case query times

	4 Range mode queries in two dimensions
	5 Lower bounds
	6 The approximate problems
	7 Concluding Remarks

