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A B S T R A C T

Peak mitigation is of interest to power companies as peak periods may require the operator to over provision
supply in order to meet the peak demand. Flattening the usage curve can result in cost savings, both for the power
companies and the end users. Integration of renewable energy into the energy infrastructure presents an op-
portunity to use excess renewable generation to supplement supply and alleviate peaks. In addition, demand side
management can shift the usage from peak to off-peak times and reduce the magnitude of peaks. In this work, we
present a data driven approach for incentive-based peak mitigation. Understanding user energy profiles is an
essential step in this process. We begin by analysing a popular energy research dataset published by the Ausgrid
corporation. Extracting aggregated user energy behavior in temporal contexts and semantic linking and contex-
tual clustering give us insight into consumption and rooftop solar generation patterns. We implement, and per-
formance test a blockchain-based prosumer incentivization system. The smart contract logic is based on our
analysis of the Ausgrid dataset. Our implementation is capable of supporting 792,540 customers with a reasonably
low infrastructure footprint.
1. Introduction

Integration of renewable energy, especially solar energy into energy
infrastructure is on the rise, driven in part by the economic benefits such
as government incentives and money saved on energy bills and in part
due to rising awareness of the environmental benefits [1]. Prosumers are
a category of consumers who generate part of the energy they need
through their on site micro-generation devices and buy the remainder
from the energy grid as needed [2]. Several prosumers living in close
proximity to one another can form prosumer communities or microgrids
[3]. Prosumers can use the generated solar energy for their own needs or
if there is a surplus, sell it to the grid or other customers.

Peak periods [4] are periods when the demand for energy is the
highest in a given time frame. Peak demand is rising as a result of an
increasing number of retail users [5]. Maintaining grid stability in pres-
ence of variation in demand, especially during peak demand periods is an
arandikar).
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important task for the grid operator [6]. If peak demand approaches the
available grid capacity, grid operators must take measures in order to
maintain grid stability and reliable supply. This can be accomplished
either by increasing available supply or reducing the peak load.
Increasing available supply to match the projected peak usage value re-
quires the operator to over-provision generation capacity, which can be
expensive. This additional capacity is only used during peak periods and
often takes the form of peaker plants [7] that are often coal or diesel
powered and thus polluting. Moreover, the operation and maintenance
costs of these peaker plants that are only used some of the time increase
the price per kWh of energy, a cost that is usually passed on to the
consumer.

The process of reducing the magnitude of the peak is called peak
shaving. Peak shaving is of interest to grid operators and customers as it
offers the potential for cost reduction by either deferring or avoiding
investments in additional capacity. Surplus solar energy if sold back to
niversity Press. This is an open access article under the CC BY license (http://
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Fig. 1. Participants of the system.
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the grid presents an opportunity to supplement energy supply during
peak energy demand periods. Surplus solar energy that is generated
during off-peak periods, can be stored in a battery infrastructure to
discharge as needed. Pilot studies have been conducted on using grid
connected battery systems [8] to reduce peaks. Local solar energy pro-
duction has the advantage of being co-located with the consumption
sites, thus reducing transmission losses inherent in transporting elec-
tricity over large distances [9].

Another important peak shaving strategy is demand response or de-
mand side management [10]. Traditionally, user demand was considered
inelastic and supply was largely structured around demand. Now, while
demand certainly continues to drive supply, there is a value found in
regulating demand in order to shift some of the peak time usage to
off-peak times, in order to flatten the usage curve and reduce the required
capacity of energy infrastructure. Demand side response to peak con-
sumption can take the form of increased prices to disincentivize con-
sumers from running shiftable or non-urgent appliances during peak
times. Another approach is the use of incentivization tokens which is a
scheme under which the prosumer can earn tangible benefits for
reducing usage at peak times.

In this paper, we present a data driven approach for incentive-based
peak shaving by using a two-pronged strategy.

1) Firstly, energy consumers who record consumption below a calcu-
lated threshold during identified peak consumption periods are
awarded reward tokens.

2) Secondly, the top surplus producing prosumers in the network are
rewarded according to the amount of surplus they produce.

Net production or surplus production in a given time period is defined
as:

Surplus ¼ Production� Consumption (1)

We chose for our analysis, the Ausgrid dataset [11] published by the
Ausgrid corporation, which offers one year of energy generation and
consumption data collected from smart meters installed on site for 300
random and anonymized customers in their network. The prosumer
reward management system is implemented on a Hyperledger Fabric
[12] blockchain in order to be transparent and decentralized. Further, the
system is performance tested under varying loads using Hyperledger
Caliper [13].

The work has the following structure:

1) Section 2 presents the design rationale and the salient building blocks
of the solution.

2) An aggregation analysis of temporal energy behavior presented in
section 3: a) identifies periods of peak usage and high variation b)
identifies thresholds for categorizing net producers based on surplus
values.

3) A semantic analysis of energy behavior in order to identify thresholds
for low, medium, and high categories for energy consumption is
discussed in section 4.

4) The system is implemented on a blockchain and sections 3 and 4
inform its logic which is encoded in smart contracts. The design,
implementation, and performance characterization of the incentiv-
ization system are discussed in section 5.

5) Section 6 discusses how our solution builds upon the state of the art,
while section 7 presents the salient conclusions of this study.

2. Proposed system

2.1. System participants and requirements

This system involves three distinct entities or organizations. First, the
user platform is composed of prosumer representatives and perhaps a
2

government agency to ensure legal compliance. The second organization
is the power company that monitors the user generation and production
and offers the rewards. The third organization is the grid battery, where
the energy generated by the prosumers is stored and quality checked
before sending it to its destination. Pilot studies [14] are currently un-
derway to study peak shaving through the use of community batteries.
Prosumers can connect through the grid network and store their surplus
in the community battery owned and maintained by the Power company.
By participating in a community battery infrastructure, prosumers have
the opportunity to earn credits towards their electricity bills and thus get
more value out of their solar investment without needing to own and
maintain individual battery systems. The power company and the user
platformmust be in agreement about the logic for calculation of rewards.
As the user platform represents the prosumers, it must also have the
opportunity to check and approve all the transactions against its own
calculations as shown in Fig. 1. Moreover, the storage provider is
responsible for storing the generated energy and hence must verify that
the amount of energy generated shown by the smart meter is actually
generated and available for use. Thus, all three organizations must agree
upon the business logic and approve each transaction, and the reward
system must be transparent to all parties involved.

As the ecosystem consists of a number of small actors with their own
distributed generation devices, there is a push towards decentralized
management in order to cut out intermediaries and prevent the man-
agement from being concentrated in the hands of a third party. We expect
many small scale producers to join this system and we must evaluate how
many users it can support.

Blockchain, a decentralized ledger, fulfils the requirements outlined
above, as it prevents the decision making from being concentrated in the
hands of a single party. Moreover, its inherent features of immutability
and robustness due to its decentralized nature and the cryptographic
linking of transaction blocks fit our use case well. Such a decentralized
system must also be secure and only open to authenticated users. It is
therefore necessary to restrict membership only to members of the
community and to authenticate all users. This also reduces the operation
cost and computational complexity inherent in an open decentalized
ledger system, also known as a public blockchain system.

We built our implementation using the Hyperledger Fabric, which is
one of the most popular enterprise grade permissioned blockchain plat-
forms. It is open source, free to use and has a modular architecture,
allowing the operator to tailor the implementation components to their
needs. This blockchain implementation is the underlying transaction
infrastructure of the reward system that processes and records the



Table 1
Customer IDs in the cleaned Dataset.

ID 13, 14, 20, 33, 35, 38, 39, 56, 69, 73, 74, 75, 82, 87, 88, 101, 104, 106, 109, 110,
119, 124, 130, 137, 141, 144, 152, 153, 157, 161, 169, 176, 184, 188, 189, 193,
201,
202, 204, 206, 207, 210, 211, 212, 214, 218, 244, 246, 253, 256, 273, 276, 297
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transactions. In order to performance benchmark our implementation,
we ran benchmarks using varying loads to evaluate the implementation
based on latency and throughput. We implemented our benchmarking
experiments in Hyperledger Caliper which interacts with the Hyper-
ledger Fabric implementation and submits transactions as per the
configured parameters.

2.2. Data driven approach

Section 3 analyses and aggregates the user data and extracts user
energy behavior based on seasons (winter, summer, autumn, and spring),
day of week (weekday or weekend) and time of day, and uses this to
identify peak consumption times. Also, the aggregation of surplus energy
production gives thresholds for classifying prosumers according to the
amount of surplus energy they produce.

Further in section 4 the dataset rows are semantically linked, clus-
tered, and labelled based on contexts such as Solar Production and User
Demand. Based upon the clustering analysis, low, medium, and high
thresholds are identified for user demand and solar production contexts.

The blockchain system as described in section 5 encodes the business
logic in smart contacts and implements the reward mechanism based on
the peak consumption times, surplus production, and user demand
thresholds identified in section 3 and section 4. This system is perfor-
mance tested to identify the number of users that can be supported. Fig. 2
presents the schematic outline of the proposed system and how the
different modules of this work are linked.

3. Ausgrid Dataset and analysis

The data used in this study is the solar home electricity dataset
published by the Ausgrid Corporation in New South Wales (NSW),
Australia [15]. We begin our analysis by presenting a brief overview of
the dataset.

3.1. Ausgrid Dataset overview

The Ausgrid dataset includes data collected from installed electricity
meters for 300 random customers in the Ausgrid network from July 1,
2012 to July 30, 2013 recorded at half-hour intervals (Δt¼1/2 h). The
Ausgrid dataset is popular among researchers investigating grid-
defection [16], home energy management [17], and load forecasting
using historical smart meter data [18].

The dataset includes solar PV production from roof top solar panels
and residential load data for individual households. The residential load
includes two distinct categories: (1) Energy Consumption and (2)
Fig. 2. Schematic outline of the system.
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Heating Load. The first category records the general energy consumption
in the household. The heating load refers to energy consumption for
heating water in the household. The utility provider controls this load by
operating electric water heating during specific periods of the day. This is
done with the aim of reducing overall network load during peak times
and providing financial incentives to the customer. This is an optional
feature and in the Ausgrid dataset [15], 137 out 300 have opted for this
feature. The individual customers are only identified by a serial list
(1:300) of Customer ID which serve as aliases and their geographical
context location is identified by post code.

While, in principle the Ausgrid dataset consists of 1 year of electricity
production and consumption data for 300 consumers at a resolution to
30 min, in practice there are several inconsistencies and anomalies in the
data. Ratnam et al. [11] performed a detailed study on the Ausgrid
dataset to identify these inconsistencies and identify a subset of cus-
tomers to be included in the clean dataset with complete records. The
current study uses this subset of customers, listed in Table 1. The
geographic spread of these customers based on their postcodes is shown
in Fig. 3. It can be seen in Fig. 3 that most of the customers in the clean
dataset are located around Newcastle and Sydney metropolitan areas in
NSW, Australia.
3.2. Aggregated energy profile for all customers

To gain an overview of the energy profiles of the customers as a
group, we combined their energy profiles into an aggregate consumer.
The energy profile of this aggregated consumer was cumulatively re-
sampled on a monthly (Fig. 4(a)) and daily basis (Fig. 4(b)). The sea-
sonal characterization of the months of a calendar year for Australia is
outlined in Table 2. It can be seen from Fig. 4(a) and Table 2 that the
energy profile of the consumers as a group shows significant seasonal
variation. The peak in energy consumption corresponds to winter
(June–August) and summer (December–February). This can be directly
correlated with increased load due to climate control requirements
during this period. While the overall monthly loads are similar for the
summer and winter months, cumulative re-sampling on a daily basis
shows higher peaks and greater variation during the summer months
(December–February).

To better identify the days with high consumption during the summer
months, we sorted aggregated household consumption in descending
order, and the first 12 data-points were plotted chronologically along
with the corresponding day of the week in Fig. 5. It can be seen in Fig. 5
that the highest aggregated daily consumption occurs on the weekends
when the household members are home. However, there are two outliers
of high consumption on weekdays: (1) Monday: 24-12-2012 and (2)
Tuesday: 08-12-2013. The second outlier is especially interesting as it
coincides with the peak summer temperatures and bush fire warnings
across most of Australia and especially NSW [19]. It can be seen in Fig. 4
that solar energy production is highest in the summer months due to
higher solar radiation after which it tapers off. Conversely, the heating
load for electric water heating is highest during the winter months and it
tapers off during the summer months.

In addition to the solar home electricity dataset [15], we obtained the
historical Recommended Retail Price (RRP) for electricity in NSW and
the total regional demand data for NSW, Australia between July 1, 2012
to June 30, 2013 at 30min interval [20] corresponding to the timestamps
in the Ausgrid Dataset. We computed the coefficient of variation for all



Fig. 3. Location of the customers.

Fig. 4. Energy profile aggregated across all customers.
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the fields in the cleaned Ausgrid dataset (aggregated across all cus-
tomers), the regional demand and RRP are shown in Fig. 6. It can be seen
that both Solar energy and heating load show high variation in the range
of 1.2–1.8. It can be observed that variation in solar energy production
reduces during summer whereas the variation in heating load peaks
during summer. Energy consumption shows much lower variation.
However, we can see a comparatively higher variation in energy con-
sumption during the summer. This agrees with the observations made
earlier in Fig. 4. Fig. 6(d) shows that the regional demand remains quite
stable with low variation except during the summer. Finally, Fig. 6(e)
shows that the energy price in NSW shows low variation throughout the
year with occasional sharp spikes throughout the year.
4

3.3. Seasonal energy profile for all customers

To better understand the seasonal variation in the energy profiles of
the customers, we focused on the energy data for all the customers over a
1 month period in the middle of each season. The representative months
for each season are listed in Table 2. Thereafter, we averaged the energy
profile across all the customers for the 1 month period. This allowed us to
compute a representative daily energy profile for an averaged customer
during the four seasons. The results are shown in Fig. 7. It can be
observed in Fig. 7 that the heating load is concentrated around midnight
and early mornings i.e., during periods of low consumption. Solar energy
production follows a clear bell curve. Energy production starts at around



Table 2
Seasons in Australia.

Season Period Representative month

Winter June–August July-2012
Spring September–November October-2012
Summer December–February January-2013
Autumn March–May April-2013
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8 a.m. followed by a gradual rise and a peak at around 2 p.m. Thereafter
it declines, finally stopping around 7 p.m. As expected, the highest
overall production is observed in spring and summer followed by autumn
and least in winter. The daily energy consumption profile shows signif-
icant seasonal variation. In the winter (Fig. 7(a)) we observe two peaks:
one in the morning before the start of the working day and the second
one in the evening at the end of the working day. This second peak can be
observed persistently across all seasons in Fig. 7. This indicates consistent
user demand in the evenings. In all the seasons except summer, we
observe either a flat load curve between morning and evening or an in-
verse plateau in winter. However, in the summer season, we can observe
an almost linear rise in load between morning and evening. This may be
related to the rising electricity consumption associated with increased
climate control as the temperature increases during the day. As the
temperatures fall in the evening and the night, the load tapers off.

It can also be seen in Fig. 7 that between 8 a.m. and 7 p.m. there are
periods where solar production is higher than the consumption in the
household leading to surplus energy production which can be fed back
into the grid or be utilized for charging the community level battery
storage. The surplus energy produced by the individual customers at each
half-hour interval was calculated by subtracting the energy consumption
and controlled heating load from the solar production. The resulting
column was used to filter the data set by dropping the rows with negative
surplus as they represent the intervals where the total consummation in
the household exceeds the solar production. The summary statistics for
the resulting dataset are listed in Table 3.

4. Smart energy transaction analytic

The semi-structured dataset includes information about timestamps,
involved actor identifiers, etc. Analysis of this dataset can help to under-
stand the behavior of actors and their associated contextual activities. For
example, in the case of smart energy systems, the energy dataset can be
studied in depth to understand the energy demand and solar production.
To achieve this, we extract information from the dataset rows and trans-
form it into a more expressive structured representation. Each row of the
dataset is considered to be a transaction. If the proposed blockchain-based
incentivization system is implemented, each dataset transaction along
Fig. 5. Peak daily energy co
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with additional reward fields would be added to the blockchain through a
blockchain transaction as explained in section5. Theproceduralworkflow
for analyzing Ausgrid Dataset follows four steps:

1) Split the dataset transactions into data nodes based on context, where
a context represents an event category such as heating consumption,
solar production, etc;

2) Semantically link data nodes occurring within multiple context;
3) Cluster data nodes for each context based on their contextual simi-

larity, such as similar energy consumption value ranges. The identi-
fied value ranges are used as labels for each unique cluster;

4) Compute cross-contextual similarity to understand the energy de-
mand and solar production.

Fig. 8 shows the workflow for smart energy transaction analytics.
Initially, we take semi-structured and smart energy dataset transactions
and split them into unique contexts (e.g. solar production, heating con-
sumption, energy consumption, total demand per region, price, etc), and
semantically link each transaction through diverse contexts. Next, we
cluster data nodes for each individual context, where each cluster rep-
resents data nodes with similar properties. Further, we label each cluster
with unique properties. Afterwards, we compute the pairwise similarity
between clusters inside a single layer by calculating their Euclidean
distance related to clusters of all other layers, where a lower distance
means a higher similarity. This process allows us to not only understand
the changing behavioral patterns of transactions in a single context but
also across contexts. In this paper, we primarily analyse similarity for
cluster of transactions within user demand layer with respect to other
contextualised layers.

Based on the presented system design in section 4, we implement
smart energy transaction analytic in the following stages.
4.1. Semantic linking and contextualisation

Semantic linking and contextualisation in complex datasets are
required to analyse actors' transactions. In general, datasets are repre-
sented as monolayer graphs to visualise the relationships between the
actors, where graph nodes denote different actors and edges represent
the interactions between actors. However, monolayer graphs often fail to
capture the dynamically changing structural contexts of actors and their
corresponding evolving relationships. Hence, we adopt a multilayer
graph theory that defines a set of context-based layers.

Fig. 9 shows an example of such a multilayer representation of smart
energy transactions arranged in five layers, where each layer denotes a
context. In this example, a multilayer network has a set of nodes like a
normal network (i.e. a monolayer graph) but a distinct set of layers. Each
nsumption in summer.



Fig. 6. Coefficient of Variation on a daily basis for fields in the Ausgrid Dataset, regional energy demand and Recommended Retail Price.
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layer in the multi-layered representation represents a diverse context
(e.g. solar production, heating consumption, energy consumption,
regional price, regional demand) and various relationships of entities
[21]. A multilayer network representation allows to link edges between
same entities across multiple layers and provides a cross-context view of
smart energy transactions. This improves the understanding of different
interactions among the entities within complex systems across multiple
and cross-contextual viewpoints.
6

To provide contextualised semantic linking and exploit semantic
enrichment of complex datasets, we adopt a multilayer approach
based on transaction attributes and topological structure. For this
purpose, we define a set of layers showing different contexts. Addi-
tionally, we jointly consider the context of all networked entities and
their network similarity strength. To define a semantic link, we
consider different semantic labels for edges across cross-contextual
layers, while similar semantic labels for edges stay within a single



Fig. 7. Seasonal variation in daily energy profile aggregated across all customers.
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layer. Our multi-layered approach provides a fully interconnected
network where all layers contain all nodes and follows a diagonal
coupling model in which inter-layer edges only exist between nodes
and their counterparts. Our model also adopts a categorical coupling
model in which inter-layer edges are present between any pair of
layers and links between pairs in each layer describe similarity
strengths. We implement three steps for constructing a semantic
multi-layered network.

4.1.1. Step 1
Takes dataset transactions as input and extracts each row of data

schema as context (e.g. energy consumption, price ranges, location),
facts, attributes, concepts, and events to enable the accurate analysis of
unstructured data.
Table 3
Summary statistics during periods of surplus energy
production.

Metric Surplus Energy (kWh)

Min 0.001000
Mean 0.397672
Max 4.095000
25% 0.134000
50% 0.284000
75% 0.477000

7

4.1.2. Step 2
Creates an attributed multi-layered network embedding M using the

extracted activities pertaining to different transactions. Contrary to
monolayer networks, a multilayer network M¼(VM, EM, V, L) has an
underlying set V of N physical nodes that manifests on layers in L con-
structed from elementary layer sets (i.e L1, L2, ⋯, Ld, where d is the
number of contexts). The set of node-layer tuples in M is VM ⊆
V�L1�⋯�Ld, and the set of multilayer edges is EM ⊆ VM�VM. The edge
((i, α), (j, β)) 2 EM indicates that there is an edge from node i on layer α to
node j on layer β (and vice versa, if M is undirected).

4.1.3. Step 3
Creates a semantic link between layers in the multilayer network M

by utilising attribute similarity between nodes in the same layer. We link
nodes with similar attributes in each layer and measure the similarity of
nodes using the Euclidean distance as a measure of similarity to compare
the pairwise affinity of nodes. The higher the Euclidean distance score,
the lower is the similarity score and vice-versa. We further construct a
weighted similarity graph in each layer by measuring the similarity be-
tween nodes based on their contextual activity in each specific layer. If
the similarity score of two nodes is higher than a threshold, it creates a
link between them across layers. The threshold is use case dependent and
determined based on the input transaction dataset schema. Finally, we
assign a weight to each link between two similar nodes based on their
similarity score, where the higher weight corresponds to links between
more similar nodes.



Fig. 8. Transaction analytic workflow.

Fig. 9. Multilayered contextualisation of smart energy transactions.
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Based on the smart energy dataset presented in section 3.1, we
construct a multilayered network with six identified layers.

� L1-Solar production represents the amount of energy produced by
different residents;

� L2-Energy consumption represents the amount of energy consumption
pertaining to each resident;

� L3-Heating consumption is the heating load across diverse residents;
� L4-Regional price shows the price paid by each resident for their en-
ergy usage at the given time across a geographical location;

� L5-Regional demand represents the overall energy demand across a
specific geographical region;

� L6-User demand is the overall demand per resident. While, user de-
mand is not represented in the dataset, we represent it as an addi-
tional layer, where user demand per resident is the sum of energy
consumption and heating consumption per resident.
8

4.2. Contextual clustering and labelling

The multi-layer network constructed using steps in section 4.1 con-
tains raw, but contextualised information. Hence, the next step is to find
similar nodes based on the characteristics of each layer. The smart energy
transaction analytics model does not consider links or edges for clus-
tering. Instead, we utilize feature values of each row of the dataset, where
a feature is represented by the column values for each transaction. To
achieve this, we applied a clustering technique that tags similar nodes
based on their feature values with the same arbitrary but fixed label.
Initially, we fetch themultilayered contextualised graphs across temporal
stages as input for clustering and labelling. Further, we utilize OPTICS
[22], an augmented cluster-ordering algorithm to find similarities among
different nodes in each layered context through a distance function and a
minimum number of neighbors required as a unique cluster.

We implemented the OPTICS clustering technique in python using
scikit-learn1 library. In the current implementation, we configured clus-
tering hyper-parameter MinPts¼15, and Eps is set to infinity. The hyper-
parameter Eps is the radius of clustering neighborhood around a node
point, whileMinPts represents the minimum number of neighbors around
a radius Eps. We used Minkowski [23] distance metric to compute the
Euclidean distance between different node points with unique feature
values. Fig. 10 shows the clusters obtained for L6-User demand layer,
while Fig. 11 shows the clusters obtained for L1-Solar production layer for
all customers. Each point in Figs. 10 and 11 with similar colors represents
the customers belonging to the same cluster with similar transactions,
while black colored points represent the noise. In both cases, we compute
clusters with four different values ofMinPts¼15, 25, 50, 100 respectively.
We observe that with MinPts¼15, our clustering approach finds clusters
closest to the original dataset, but with low density. In general, increasing
MinPts value increases the density of clusters. Hence, in the current
implementation, we fixed the value of MinPts¼15. However, for future
works, we will consider dynamically estimating the value of MinPts
depending upon the individual layer size and structure. Fig. 12 shows
clustering for a subset of customerswithin L6-User demand layer. Similarly
as in Figs. 10 and 11, Fig. 12 shows clustering with fourMinPts values, but
represents cluster for a subset of customers within L6-User demand layer.
We observe that the same customers in different transactions can corre-
spond to varied demand values represented in different clusters.
1 https://scikit-learn.org/.

https://scikit-learn.org/


Fig. 10. User demand clusters for all customers.

Fig. 11. Solar production for all customers.
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After identifying the clusters for each layer, we implicitly know the
transaction activity of different customers represented as a node within a
cluster. Hence, the next step is to label the clusters. In this work, we pri-
marily focus on analysing energy production and consumption per trans-
action, hence we label only the clusters in L1-solar production and L6-User
demand layers. To this end, we encapsulate each cluster with either of k
label categories. In this paper, we define k¼3 namely: High, Medium, and
Low label categories. Initially, we define a feature associated to each
cluster 2 C, where a feature is a tuple of length n¼2 with the highest and
lowest values of all nodes in the same cluster, and C is the number of
9

clusters obtained in a specific layer. Further, we compute the average
MEAN of these feature values of each cluster. Henceforth, we identify the
lowest (X) and the highest (Y)MEAN value of all clusters 2 C and compute
the distance between the lowest and the highest mean X and Y as Z¼Y�X.
Next, we map k ranges to k labels using Z/k representing the value range
for the labels. The value range enables us to define the two global
thresholds t1 and t2, where t1¼XþZ/k and t2¼Y�Z/k. Based on the
thresholds, finally we assign labels to each cluster. A cluster is labelled
High: if MEAN>t2, while we label a cluster Medium: if t1<MEAN�t2.
Finally, a cluster is labelled Low: if MEAN�t1. In this work, we primarily



Fig. 12. User demand cluster distribution per customer.
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label clusters obtained in solar production and user demand layers. For L1-
solar production layer, the computed thresholds t1 and t2 are 1.43016 and
2.8603, respectively. While for the user demand layer, the thresholds t1
and t2 are 1.8306 and 3.6608.
4.3. Cross-contextual similarity

After obtaining the clusters and corresponding cluster labels in each
layer, the next step is to analyse the similarity of clusters in one layer with
respect to all clusters of another layer. This allows us to understand the
changes in behavioral activity of transactions in one context with regards
to another context. To achieve this, we compute pairwise similarity of
two clusters in one layer (e.g. cluster (Ci, Cj) in L6-User demand layer with
all clusters of L1-solar production layer). Henceforth, we compute the
similarity of cluster pair (Ci, Cj) 2 L6-User demand with cluster Ck 2 L1-
solar production layer using Euclidean distance E as follows:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1
ðDk

i � Dk
j Þ2

q
(2)

where, N is the total number of clusters in L1-solar production layer, Dk
i

and Dk
j are the number of edges from cluster Ck to clusters Ci and Cj

respectively. We perform similarity computation for all the possible
combinations of clusters in L6-User demand with all the clusters of other
layers. The final output of this operation is a collection of all suitable
pairs of clusters with their associated similarity regarding each layer. The
key to the dictionary is a pair of clusters labels and the value is another
dictionary of the computed similarity in regard to each layer, where the
key is the name of the layer and the value is the computed Euclidean
Distance. As a future work, we also plan to use this pairwise similarity
computation for proactive prediction of cluster size and structure.

5. Blockchain based reward system

In this section we use the insights garnered from section 3 and
section 4 to design the smart contract that will process prosumer re-
wards. Each row from the dataset (1 transaction) is modelled as a key
value pair token on the blockchain, created through a blockchain
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transaction, where the token's value field is composed of the values
from the row being processed. In addition, we add six new values in the
value field of each token, RSeasonal, RWeekend, RPeakTime, RMini-
Producer, RProducer, and RMegaProducer which are boolean fields,
which will be set to true if the conditions for a reward of that type are
met for a particular transaction. A token is created for each customer at
each half-hour interval and consists of customer data from the dataset as
well as the reward fields mentioned.

Section 3, identified several energy generation and usage patterns. Of
these, we focus on the observations listed below for creating our smart
contract. Alongside we mention, the reward field that will be updated
based on that observation. The smart contract is written in Golang v1.16
[24] and creates the token shown in Fig. 13 for each transaction.

1) The Highest consumption was observed in summer and winter sea-
sons, which can be attributed to climate control needs. Moreover, the
highest variation in energy consumption was observed in summer. So,
for low consumption during summer and winter the customer can win
a reward associated with the field RSeasonal.

2) Peak loads were seen on weekends when household members are
home. If a customer's consumption is low on the weekend, they will
gain a reward associated with the field RWeekend.

3) Peaks were twice a day, once in the morning before the start of the
workday and once in the evening at the end of the workday. So, in the
case of low consumption during identified peak times the customer
can get a reward associated with the field RPeakTime.

4) The identified thresholds for 25th percentile, 50th percentile and
75th percentile surplus production are ta, tb and tc. If surplus solar
production for any customer is greater than or equal to ta, then the
field set to true is RMiniProducer. Similarly, the fields RProducer and
RMegaProducer are set to true for transactions when surplus gener-
ation is greater than or equal to tb and tc respectively. Thus, a trans-
action with surplus production in the 75th percentile will have
RMiniProducer, RProducer, and RMegaProducer, all set to true.

Moreover, in section 4, of the several observations made on user
generation and usage behavior, we focus on the thresholds identified for
user demand. The thresholds identified are used for labelling clusters. In



Fig. 13. Structure of transaction token.
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the case of user demand, if the demand in kWh associated with a given
transaction is less than t1 then it is labelled as low, while if it is more than
t2, it is labelled as high. Demand between t1 and t2 is labelled as medium.

5) For user demand, the thresholds t1¼1.8306 kWh and t2¼3.6608 kWh
were used to create labelled clusters of low, medium, and high con-
sumption levels.
5.1. Smart contract

The smart contract encodes the business logic of the reward system.
When this smart contract is deployed, we set an endorsement policy that
stipulates that all organizations in the network must endorse each
transaction. This is due to the reasons identified in section 2.2. The al-
gorithm of interest is Algorithm 2, while Algorithm 1 is a helper
algorithm.

Algorithm 1. TokenExists
In Algorithm 2, first the identity of the invoker organization is found
from the identity of the invoker client. If the client is not a member of the
Power Company this attempt to create a transaction is rejected. As the
Power company is the one that awards the tokens and has access to both
creation and generation data for all customers, it is the only organization
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with the privilege of initiating transactions. However, it cannot actually
process transactions without the endorsement of the other two organi-
zations. Then, the provided timestamp string is converted into an integer
array by removing special characters and by type conversion. This is done
in order to work with the individual parts of the timestamp such asmonth
and date. The key to the token to be created is checked against the world
state to make sure that there is no collision between the new key and an
existing key. This can only happen if a transaction token for a given
customer and timestamp has already been created and is now being
recreated. Each customer will have transaction tokens with timestamps
corresponding to each half-hour period of the day and thus will have only
one token per half-hour. If the token for a given half-hour period for a
customer exists already, the transaction will be rejected. Now, the con-
ditions for the various rewards are checked and the relevant field is
updated if the customer will get that particular reward. Thus, if the
customer's consumption is low and the season calculated from the month
part of the timestamp is summer or winter, which are known to be high
consumption periods, then the RSeasonal field gets updated. Similarly,
for low consumption on the weekend or during identified morning and
evening peak times, the fields RWeekend and RPeakTime respectively
will be updated. Also, if the transaction shows a net production, the value
of the surplus will be checked against the percentile thresholds identified
in Table 3 in order to update the fields RMiniProducer, RProducer and
RMegaProducer. After updating the rewards, the token will be saved to
the world state with the key customer_timestamp.
5.2. Implementation

Our test infrastructure included 5 Virtual Machines (VM) on a Cloud
environment as shown in Fig. 14. Each VM has Ubuntu 20.04 installed
and features 32 GB RAM, 4 dedicated virtual CPUs, and a 100 GB SSD
disk. Each VM uses Docker version 19.03, Docker Compose version 1.26,
Hyperledger Caliper version 0.4.2 and Hyperledger Fabric 2.3.0, which
are all the latest stable versions available at the time of writing. The
Ordering service uses the RAFT [25] consensus algorithm with 3
Ordering Service Nodes (OSN) as recommended in the Hyperledger
Fabric documentation. We chose LevelDB as the state database as it is the



Fig. 14. Experimentation testbed. VM: virtual machine; OSN: ordering service nodes.
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more performant choice [26]. Each node of our network runs as a Docker
container and is connected in a Docker Swarm to ensure high availability.
Our experiments feature an architecture of 3 Organizations. We run the
load generator Hyperledger Caliper on a separate VM as it is resource
intensive, in this case VM1. Each organization, including the orderer
organization uses a separate VM to run its Docker containers. Our reason
for this setup is twofold. Firstly, the orderer organization, or any of its
OSN must not be in control of any of the member organizations as it
performs a vital function. Moreover, putting the orderer organization on
the same VM as an organization will consume resources of that VM and
will skew the results for that organization negatively due to resource
contention and perhaps positively due to proximity to the orderer. In a
real world implementation, each organization would have its own
infrastructure and therefore, we put each organization on a separate VM.
Thus, we avoid resource contention arising from an increasing number of
containers on the same infrastructure.
Fig. 16. Transaction throughput and latency at varying send rates.
5.3. Results

As mentioned in section 5.2, we use Hyperledger Caliper to create
and send transaction requests to the implemented blockchain network.
Each transaction in our experiments runs the smart contract for creating
a token which was described in Algorithm 2. Each transaction thus
consists of one query and one created transaction. We ran 10,000
Fig. 15. Request send rate at varying limits of maximum unfinished
transactions.
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transactions for each data point shown in the graphs. Four worker
processes were created to drive the load and we configured the fixed
load rate control mechanism in our benchmark. The fixed load rate
controller in Hyperledger Caliper starts with a configured send rate in
transactions per second (TPS) and maintains a defined backlog of
transactions in the network by modifying the send rate. We configured
the starting send rate to 1000 TPS and varied the maximum limit of
unfinished transactions to observe the effects on the request send rate as
shown in Fig. 15. We found that the send rate achieved rose with the
increase in the maximum permissible number of unfinished trans-
actions configured. As shown in Fig. 16, with the rise in send rate, the
throughput of the system increased. However, average latency per
transaction and maximum latency per transaction rose as well. The
value of average latency remained under 1 second even at a throughput
of over 440.3 TPS which was achieved at a send rate of 443 TPS. The
throughput could be increased further by increasing request send rates,
but with diminishing returns due to the increase in transaction latency.
The current dataset contains data for 300 customers updated every half
an hour, which corresponds to a throughput of 0.167 TPS. So, extrap-
olating, we can say that the current implementation is able to support
792,540 customers with a reasonably low infrastructure footprint. This
implementation can be scaled further by providing it with more re-
sources through horizontal and vertical scaling as described in Thakkar
and Nathan [27].
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Algorithm 2. Create transaction token
6. Related works

Several studies [28–31] focus on different aspects of
blockchain-based energy trading among prosumers in a microgrid. Our
work presents an approach for incentive-based peak shaving and does not
discuss prosumer to prosumer trading.

Pop et al. [32] present an architecture for implementing demand
response programs in microgrids. Their solution, implemented in
Ethereum [33] takes the baseline values for each prosumer which is the
average of their past values and then calculates the required flexibility
per prosumer. Their results do not include an analysis of the performance
of their blockchain implementation itself.

Di Silvestre et al. [34] also present a framework for demand side
response by calculating baseline usage per customer, publishing the
required reduction in usage with the reduction amount and timewindow,
and monitoring compliance. Their system architecture considers two
organizations, one composed of grid and market operators and the other
composed of market operators and customers. This architecture reduces
the agency that the users have in the implemented business logic. Also,
the article does not characterize the performance of the blockchain
implementation.

Guo et al. [35], Wang et al. [36] and Afzal et al. [37] also propose an
individualized incentivization model. These articles also do not discuss
the performance of their blockchain implementation. Moreover, Afzal
13
et al. [37], implement their solution using Ethereum. In addition, Di
Silvestre et al. [34], Guo et al. [35], Wang et al. [36] and Afzal et al. [37]
do not use real world data to inform their incentivization logic, but Guo
et al. [35] and Wang et al. [36] do use real world data to validate their
model.

In our work, the logic of our incentivization system is informed by an
in depth analysis of the Ausgrid dataset. The logic encoded in the smart
contracts is based on an aggregation analysis and semantic clustering of
all transactions so that all customers are subject to the same rules. Thus, it
does not penalize good performers. Our system was implemented in
Hyperledger Fabric, which is formed of authenticated nodes with clearly
defined privileges in the network and provides identity management and
provenance tracing. Hyperledger Fabric authentication can also help
companies fulfil their legal obligations like Know your customer and
Anti-money laundering which are imposed by governments of several
countries [38]. Also, the consensus in Hyperledger Fabric is achieved
based on an agreed endorsement policy and thus it does not rely on
computation intensive and thus energy intensive mechanisms like Proof
of Work to reach consensus. In our architecture, the user platform is a
separate organization that gives the user representatives the opportunity
to review and approve the business logic before it is updated on the
platform. Further, we performance test our implementation under vary-
ing loads and present our findings in terms of transaction throughput and
latency.



N. Karandikar et al. Blockchain: Research and Applications 2 (2021) 100016
7. Conclusion

This work presents a data-centric approach for incentive-based peak
shaving and demonstrates the implementation of a blockchain-based
reward platform. First, we extracted from the Ausgrid dataset, aggre-
gated user energy behavior in different temporal contexts such as seasons
(summer, winter, spring, autumn), days of the week (weekday, week-
end), and time of the day. Analysing the aggregated user profile gave us
peak consumption times in seasonal, weekly, and daily contexts, as well
as thresholds to categorize surplus production. Semantic linking and
contextual clustering and labelling of this data gave us thresholds to
categorize user demand. This analysis informed the logic of the smart
contract in our blockchain implementation. Based on this study, we
present the following conclusions.

1) Seasonal peak consumption was observed in the summer and winter
seasons. On a weekly basis, the highest consumption was seen on
weekends. Moreover, there are two peaks observed daily, one before
the start of the work day and one in the evening at the end of the
workday. The highest variation in consumption was also seen in
summer. Additionally, outliers associated with high consumption
were linked to increased demand during heat waves in the region.

2) Aggregation analysis of surplus production gave us thresholds ta, tb
and tc for categorizing transactions into Mini Producer, Producer and
Mega producer categories respectively. The values for ta, tb and tc
were 0.134000 kWh, 0.284000 kWh, and 0.477000 kWh,
respectively.

3) Contextual clustering identified two thresholds for production t1 and
t2 with values 1.43016 and 2.8603, respectively. Similarly, for user
demand layer, the thresholds t1 and t2 with values 1.8306 and 3.6608
were identified. These threshold values enable us to characterize
production and demand in low, medium, and high categories.

4) The implementation of the blockchain-based reward system encoded
a smart contract with the business logic for earning rewards based on
our analysis. If the conditions for a given reward are met, the smart
contract processes the reward for the transaction. A given transaction
can acquire multiple rewards.

5) While the Power company is the only organization allowed to initiate
transactions, all three organizations must endorse each transaction in
order to perform various checks and prevent the management from
being concentrated with a particular entity. This implementation with
a reasonably low infrastructure footprint was shown to be able to
support 792,540 customers.
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